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§I. Introduction 

So-called general purpose systems for 

algebraic computation such as ALTRAN, MACSYMA, SAC, 

SCRATCHPAD and REDUCE are almost exclusively 

concerned with what is usually known as "classical 

algebra", that is, rings of real or complex poly- 

nomials and rings of real or complex functions. 

These systems have been designed to compute with 

elements in a fixed algebraic structure (usually 

the ring of real functions). Typical of the 

facilities provided are: the arithmetic operations 

of the ring, the calculation of polynomial gcd's, 

the location of the zeros of a polynomial; and 

some operations from calculus: differentiation, 

integration, the calculation of limits, and the 

analytic solution of certain classes of 

differential equations. For brevity, we shall 

refer to these systems as CA systems. 

Up until about 1900, the various algebraic 

objects that had been studied were based on the 

real or complex numbers. However, the work of 

such people as Cayley in group theory, Weber in 

fields, Wedderburn in linear associative 

algebras, and Noether in ring and ideal theory, 

established the notion of abstract groups, 

fields, division algebras, rings and ideals. 

This type of algebra has come to be known as 

modern algebra. With this in mind I define a 
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modern algebra system (or MA system) to be an 

algebra system which enables a user to compute in 

a wide range of different structures. Within 

reasonable bounds, an HA system should permit a 

user to define the structure in which he wishes to 

compute. To illustrate the distinction that I am 

attempting to draw between CA systems and HA 

systems, consider the problem of solving the system 

of linear equations 

n 
Ej= I aijx.=3 bi' i = l,...,m . 

where the aij and b.j are elements of a field K. In 

a CA system the user has to be satisfied with the 

one or two choices for K provided by the system 

(probably the rational field). In a true HA 

system the user would have a great deal of choice 

in specifying K. Thus, for example, he could take 

K to be a Galois field or a finite algebraic 

extension of the rationals. 

A further distinction that can be made 

between CA systems and HA systems is that, whereas 

in CA systems the interest is in performing 

calculations with individual elements, in HA 

systems it is desirable to have the capability to 

compute some global properties of an algebraic 

structure. Here, I have in mind such things as 

the centre of a group, the radical of a ring, or 

a system of fundamental units for an algebraic 

number field. 

To summarise then, a CA system works at the 

element level (locally) of an enormously rich but 

fixed algebraic structure, while an HA system 

allows the user to define the structure in which 

he wishes to work (subject to limitations imposed 
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by the implementation). Further, an MA system will 

often provide tools which can be used to investi- 

gate a structure globally. 

§2. Issues in the Design of MA Systems. 

While there is overlap in the problems faced 

by the designers of the two types of algebraic 

system, the designer of an MA system is faced with 

some novel problems. Chief among these must be 

the types of algebraic object (group, ring, field 

etc) permitted under the system, and, within a 

particular type of algebraic structure, the poss- 

ible modes of specification (permutation group, 

matrix group etc). It is in this area that 

efficiency/generality trade-offs must be made. 

While it is possible, in principle, to provide the 

user with machinery sufficiently powerful to 

enable him to define and calculate in almost any 

algebraic structure, this would be achieved at the 

cost of unacceptable inefficiency. An alternative 

approach is to look at the ways in which algebrai- 

sts describe structures of a particular type, and, 

from among these, choose the ones that appear to 

have the greatest versatility. 

It is also necessary for an MA system to 

permit the coexistence of several distinct 

structures. For example, in group theory it is a 

standard technique when investigating a group G 

which is too complex to be investigated directly, 

to examine various homomorphlc images onto less 

complex groups. Structure-preserving mappings 

play such an important role in abstract algebra 

that an MA system without some abilities to work 

with mappings would be seriously deficient. 

I summarise below the more important 

issues in the design of an MA system: 

(i) What kinds of algebraic structure will be 
included? 

(ii) How will these various types of 
structure be represented? 

(iil) How should simultaneous computation in 
distinct structures be organized? 

(iv) How are sets of elements of these structures 
to be represented? 

(v) What kind of mappings are to be permitted 
and how are they to be represented? 

It should be noted that there are two parts 

to each of the above representation problems: What 

is the appropriate syntax to describe the object 

(in the user language of the system); and how is 

the object to be represented internally in the 

computer? 

§3. The MA System Cayley 

Over the past eight years I have been 

engaged in the development of what I believe to be 

the first serious attempt to build an MA system 

(Cannon [1,2,3]). This system is a package 

primarily intended for computing with discrete 

groups. Although it contains some facilities for 

working with infinite groups, the system is heavily 

biased towards finite groups. The user can specify 

a group either as a permutation group, as a group 

of matrices (over a finite field or the integers), 

or by a finite presentation. Apart from providing 

for element calculations, the system enables the 

user to compute such global information as conjug- 

acy classes, normal subgroups, derived series, 

Sylow subgroups, centralizers and normalizers. 

Since the study of matrix groups naturally 

involves the study of their actions on vector 

spaces and modules, Cayley allows the user to 

define and compute in various types of vector 

space and module. 

As a system, Cayley comprises a language 

(see Cannon [2] for an early draft of the language), 

an interpreter, and a large library containing 

implementations of group theoretic and other alge- 

braic algorithms. Apart from code written in 

Sydney, the library contains implementations of 

group theory algorithms produced by NeubUser's 

team in Aachen and Newman's team in Canberra. 

Although Cayley was conceived as a group 

theory package, the fact that it allows computat- 

ion in certain types of ring, field, vector space 

and module as well as in groups, means that the 

lessons learnt with Cayley have general applicab- 

ility to the design of MA systems for areas other 

than group theory. In the remainder of this paper 

we discuss the principle features of the Cayley 

design. 
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§4. The Specification of Al~ebraic Structures 

4.1. Groups 

A basic decision taken early in the Cayley 

development was that the system should be powerful 

enough to compute with groups sufficiently large 

and complex to be relevant to contemporary 

research in finite group theory. For example, the 

classification of finite simple groups has thrown 

up computational problems involving permutation 

groups having degrees exceeding i000, and, occas- 

ionally, very much larger degrees (Sims [5,6]). 

In the most general sense a group is specif- 

ied by defining a set, and a rule of composition 

for the elements of the set. The implementation of 

this general concept presents serious difficulties. 

Further, element multiplication would be extremely 

slow. For these reasons it was decided to restrict 

groups to those types which are widely employed and 

for which reasonable computation techniques are 

known. At present Cayley allows groups to be 

specified in the following ways: 

(i) As a subgroup of the symmetric group Zn, 
for some integer n. In practice, n is 
restricted to around I0,000. 

(ii) As a subgroup of the general linear group 
GL(n,K), where n is the dimension and K is 
an integral domain. Currently, Cayley 
allows K to be a finite field or the ring 
of integers. It is not difficult to extend 
the possibilities for K. 

(iii) As a finite presentation by generators and 
relations. 

4.2 Syntax for Groups 

The definition of a permutation or matrix 

group is done in two distinct steps. The first 

step defines the type of permutation or matrix 

group with which we wish to work. The second 

step defines the actual permutation or matrix group 

by listing a set of generators for the group. It 

should be noted that for certain problems, the 

first step alone suffices. For example, it is 

sufficient to specify the group type if it is 

merely wished to form some products of particular 

elements. 

The following two group specifications will 

serve to illustrate the flavour of the Cayley 

syntax. 

(i) G : PERM(8); ; 

G.GENERATORS: A = (1,2,3,4,6,7,8), 
B = (2,3,5,7,8,6,4); 

(ii) G : ~TRIX(3,GF(2)); 
G.GENERATORS: X = (i,0,0, 1,1,0, 0,1,1), 

Y = (1,1,O, O,l,1, O,1,0); 

Both examples define G to be the simple group 

PSL(2,7): the first defines it as the subgroup of 

generated by the permutations (1,2,3,4,6,7,8) and 

(2,3,5,7,8,6,4), while the second example defines 

it as the subgroup of GL(3,K), where K is the field 

of two elements, generated by the pair of matrices 

As w i t h  p e r m u t a t i o n  and m a t r i x  g r o u p s ,  t h e  

specification of a finitely presented group 

involves two steps. The first step lists the r 

generator symbols and the second gives the actual 

defining relations. In effect the first step 

defines the free group of rank r. We give the 

Cayley statements needed to define FSL(2,7) as the 

finitely presented group 

{R,SIR 3 = S 3 = (RS) 4 = (R-iS) 4 = E} 

G : FREE(R,S); 
G.RELATIONS : R÷3 = S÷3 = (R,S)+4 = (R+-i*S)÷4 = i; 

4.3 Fields 

I shall confine myself to finite algebraic 

extensions of a field K. Let K(e): K be a simple 

algebraic extension of the field K, where u has 

minimum polynomial m(x) over K. Then any element 

of K(e) has a unique representation in the form 

p(e), where p is a polynomial over K and the degree 

of p(x) is less than the degree of m(x). 

Further, the prime subfield of an arbitrary 

field K is isomorphic either to the field Q of 

rationals or the field Z of integers modulo a 
P 

prime number p. Thus, calculation in finite 

algebraic extensions of either of these fields 

reduces to calculating with polynomials. Here it 

is desirable to have access to the polynomial 

facilities provided in most CA systems. 

Finite fields present few difficulties. If 

the required finite field is small (i.e. having at 

most a few thousand elements) Cayley computes the 

table of Zech logarithms for the ~eld. 

At the time of writing no machinery has been 

provided for working with extensions of Q in 

Cayley. However, in the near future it is planned 
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to implement simple extensions of the rationals. I 

am loath to implement the general case in view of 

the fact that field calculations would often be 

extremely expensive. 

The extension field K(a) of K is defined in 

Cayley using a statement of the form 

L : FIELD(K,a,x,m(x)) 

where m(x) is the minimum polynomial of a over K. 

(It is assumed that the field K has been defined 

previously.) 

4.4 Vector Spaces 

The definition and representation of vector 

spaces over those fields definable in Cayley pres- 

ent no particular problems. Since all vector 

spaces of dimension n over a field K are isomorphic, 

it is convenient to take the space V(n,K) of n 

dimensional row vectors over K as the standard 

vector space. The type of vector space can then 

be specified by stating n and K. If desired, a 

basis can be supplied either for V(n,K) or for a 

subspace of V(n,K). 

The following Cayley statements define the 

subspace of V(3,GF(9)) spanned by the vectors 

(l,w,w 2) and (l,O,w), (where w is a primitive 

element of the field): 

K : FIELD(Z(3),w,x,x÷3 + 2"x÷2 + i); 
V : VECTOR SPACE(3,K); 
V.BASIS : X = (l,w,w÷2), Y = (l,0,w); 

Vector spaces are an example of a structure 

which can be acted on by other structures. Thus, 

in Cayley, subgroups of GL(n,K) are permitted to 

act on V(n,K). 

§5. Representation of Algebraic Structures 

In the previous section the various types of 

algebraic structures that are specifiable in 

Cayley were outlined. In most cases the machine 

representation of their elements should be clear 

to the reader. How are the structures themselves 

to be represented in a computer? It might seem 

that having laid down rules as to the kind of 

structures permitted (e.g. permutation groups), 

the problem has already been settled. The problem, 

however, is more complex than this. I shall 

discuss the problem in terms of permutation groups. 

For certain computations wlth a permutation group, 

such as evaluating words in the generators, or 

testing whether the group is abelian, knowing the 

generators alone suffices. In order to answer 

deeper questions about the group, such as, for 

example, determining its conjugacy classes of 

elements, one needs to have available the set of its 

elements in some form. At thls stage one might 

simply conclude that it is necessary to create and 

store the complete list of elements of the group. 

However, if one analyzes how the set is actually 

used, It becomes clear that a large amount of group 

theoretic computation can be carried out provided 

that the following operations are available: 

(i) Determine the order of G; 

(il) Determine if an element of the symmetric 
group E n is in G; 

(ill) Run through the elements of G without 
repetition. 

In [4], Sims introduced the notion of base and 

strong generating set and used them to give a very 

elegant solution to this problem for permutation 

groups. 

The great majority of permutation group 

algorithms have been designed to utilize the strong 

generating set concept. Two points should be made 

here: firstly, the cost of obtaining a strong 

generating set is often high compared to the cost 

of subsequent computation (e.g. computing a 

centralizer); and secondly, in a typical session 

computing with a permutation group, one tends to 

deploy a series of algorithms that assume the 

availability of a strong generating set for the 

group. It is therefore clear that once a strong 

generating set has been calculated for G, then it 

should be retained throughout the computation. 

In Cayley I have adopted the philosophy of 

saving not only such critical information as strong 

generators, but also other information that may be 

useful in subsequent computation. Thus, for 

example, if the classes are computed for any 

reason they will be automatically saved. Any 

subsequent calculation requiring the conjugacy 

classes will check to see if they are already 

known before attempting to construct them. 

It is necessary then to keep track of the 

information that has accumulated for an algebraic 
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structure. This is done by means of a structure 

table, one of which is associated with each 

algebraic structure stored in the machine. This 

table stores such information as : 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Type of structure; 

Definition of structure; 

Method of representing individual elements; 

Representation of the set of elements (e.g. 
strong generating set plus associated 
information in the case of a permutation 
group). 

The properties and structural information 
already computed which could be useful in 
subsequent calculations. 

A Cayley computation, then, can be viewed, 

from the point of view of the machine, as the con- 

struction of a rather complex data structure. As 

new facts are discovered about the object, they are 

added to this data structure. As the computation 

progresses it is expected that at least some of the 

users' requests can be met by doing little more 

than extracting information from this data 

structure. The construction of this data structure 

is invisible to the user. 

It is necessary to distinguish between 

information that clearly belongs to a single 

structure (e.g. classes of a group) from infor- 

mation whose definition involves two or more 

structures (e.g. coset table of a subgroup). In 

the course of computing with an algebraic 

structure A, it is usual to generate substructures 

of A and homomorphic images of A. The relation- 

ship between A and a substructure or homomorphic 

image of A must be noted, and there must be 

provision for the storage of information common 

to a pair of structures related in such a 

manner. In Cayley this is achieved by means of 

a structure relationship table. 

Finally, given a request from a user, the 

system must have suitable machinery which matches 

the desired information with what is currently 

known and then produces a "micro program" to 

compute the answer as economically as possible. 

I conclude this section by summarizing the 

issues raised: 

(iil) 

(i) Very compact methods for representing the 
set of elements of certain types of group 
are known. 

(ii) Having computed certain information about an 
algebraic structure, it is often desirable 
to retain it so as to avoid subsequent 
recalculation. 

An algebraic structure is stored in the 
machine by means of a structure table. 
This table stores not only the definition of 
the structure but also what is known about 
the structure and its whereabouts. 

(iv) Information common to a pair of related 
structures is stored in a structure 
relationship table. 

(v) Sophisticated machinery is necessary to 
properly utilize the data structure which 
is constructed during a computation 
session. 
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