
The Basis of a Computer System
for Modern Algebra

John J. Cannon
Department of Pure ?~thematics

University of Sydney

§I. Introduction

So-called general purpose systems for

algebraic computation such as ALTRAN, MACSYMA, SAC,

SCRATCHPAD and REDUCE are almost exclusively

concerned with what is usually known as "classical

algebra", that is, rings of real or complex poly-

nomials and rings of real or complex functions.

These systems have been designed to compute with

elements in a fixed algebraic structure (usually

the ring of real functions). Typical of the

facilities provided are: the arithmetic operations

of the ring, the calculation of polynomial gcd's,

the location of the zeros of a polynomial; and

some operations from calculus: differentiation,

integration, the calculation of limits, and the

analytic solution of certain classes of

differential equations. For brevity, we shall

refer to these systems as CA systems.

Up until about 1900, the various algebraic

objects that had been studied were based on the

real or complex numbers. However, the work of

such people as Cayley in group theory, Weber in

fields, Wedderburn in linear associative

algebras, and Noether in ring and ideal theory,

established the notion of abstract groups,

fields, division algebras, rings and ideals.

This type of algebra has come to be known as

modern algebra. With this in mind I define a

Permi~ion to copy withom ~ e all or part of th~ martial is granted
prov~ed that the copies a ~ not made or di~ributed ~ r direct
comme~ial advantage, the ACM copyright notice and the title of the
publication and i~ date appear, and notice is given that copying is by
permission of the A~ocmtion ~ r Computing Machine~. To copy
otherwi~, or to republish, ~ q u i ~ s a fee and/or sp~ific permission.

©1981 ACM 0-89791-047-8 / 81-0800-(XX) I $00.75

modern algebra system (or MA system) to be an

algebra system which enables a user to compute in

a wide range of different structures. Within

reasonable bounds, an HA system should permit a

user to define the structure in which he wishes to

compute. To illustrate the distinction that I am

attempting to draw between CA systems and HA

systems, consider the problem of solving the system

of linear equations

n
Ej= I aijx.=3 bi' i = l,...,m .

where the aij and b.j are elements of a field K. In

a CA system the user has to be satisfied with the

one or two choices for K provided by the system

(probably the rational field). In a true HA

system the user would have a great deal of choice

in specifying K. Thus, for example, he could take

K to be a Galois field or a finite algebraic

extension of the rationals.

A further distinction that can be made

between CA systems and HA systems is that, whereas

in CA systems the interest is in performing

calculations with individual elements, in HA

systems it is desirable to have the capability to

compute some global properties of an algebraic

structure. Here, I have in mind such things as

the centre of a group, the radical of a ring, or

a system of fundamental units for an algebraic

number field.

To summarise then, a CA system works at the

element level (locally) of an enormously rich but

fixed algebraic structure, while an HA system

allows the user to define the structure in which

he wishes to work (subject to limitations imposed

Proceedings of the 1981 ACM Symposium The Basis of a Computer System
on Symbolic and Algebraic Computation for Modern Algebra

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800206.806362&domain=pdf&date_stamp=1981-08-05

by the implementation). Further, an MA system will

often provide tools which can be used to investi-

gate a structure globally.

§2. Issues in the Design of MA Systems.

While there is overlap in the problems faced

by the designers of the two types of algebraic

system, the designer of an MA system is faced with

some novel problems. Chief among these must be

the types of algebraic object (group, ring, field

etc) permitted under the system, and, within a

particular type of algebraic structure, the poss-

ible modes of specification (permutation group,

matrix group etc). It is in this area that

efficiency/generality trade-offs must be made.

While it is possible, in principle, to provide the

user with machinery sufficiently powerful to

enable him to define and calculate in almost any

algebraic structure, this would be achieved at the

cost of unacceptable inefficiency. An alternative

approach is to look at the ways in which algebrai-

sts describe structures of a particular type, and,

from among these, choose the ones that appear to

have the greatest versatility.

It is also necessary for an MA system to

permit the coexistence of several distinct

structures. For example, in group theory it is a

standard technique when investigating a group G

which is too complex to be investigated directly,

to examine various homomorphlc images onto less

complex groups. Structure-preserving mappings

play such an important role in abstract algebra

that an MA system without some abilities to work

with mappings would be seriously deficient.

I summarise below the more important

issues in the design of an MA system:

(i) What kinds of algebraic structure will be
included?

(ii) How will these various types of
structure be represented?

(iil) How should simultaneous computation in
distinct structures be organized?

(iv) How are sets of elements of these structures
to be represented?

(v) What kind of mappings are to be permitted
and how are they to be represented?

It should be noted that there are two parts

to each of the above representation problems: What

is the appropriate syntax to describe the object

(in the user language of the system); and how is

the object to be represented internally in the

computer?

§3. The MA System Cayley

Over the past eight years I have been

engaged in the development of what I believe to be

the first serious attempt to build an MA system

(Cannon [1,2,3]). This system is a package

primarily intended for computing with discrete

groups. Although it contains some facilities for

working with infinite groups, the system is heavily

biased towards finite groups. The user can specify

a group either as a permutation group, as a group

of matrices (over a finite field or the integers),

or by a finite presentation. Apart from providing

for element calculations, the system enables the

user to compute such global information as conjug-

acy classes, normal subgroups, derived series,

Sylow subgroups, centralizers and normalizers.

Since the study of matrix groups naturally

involves the study of their actions on vector

spaces and modules, Cayley allows the user to

define and compute in various types of vector

space and module.

As a system, Cayley comprises a language

(see Cannon [2] for an early draft of the language),

an interpreter, and a large library containing

implementations of group theoretic and other alge-

braic algorithms. Apart from code written in

Sydney, the library contains implementations of

group theory algorithms produced by NeubUser's

team in Aachen and Newman's team in Canberra.

Although Cayley was conceived as a group

theory package, the fact that it allows computat-

ion in certain types of ring, field, vector space

and module as well as in groups, means that the

lessons learnt with Cayley have general applicab-

ility to the design of MA systems for areas other

than group theory. In the remainder of this paper

we discuss the principle features of the Cayley

design.

The Basis of a Computer System
for Modern Algebra

§4. The Specification of Al~ebraic Structures

4.1. Groups

A basic decision taken early in the Cayley

development was that the system should be powerful

enough to compute with groups sufficiently large

and complex to be relevant to contemporary

research in finite group theory. For example, the

classification of finite simple groups has thrown

up computational problems involving permutation

groups having degrees exceeding i000, and, occas-

ionally, very much larger degrees (Sims [5,6]).

In the most general sense a group is specif-

ied by defining a set, and a rule of composition

for the elements of the set. The implementation of

this general concept presents serious difficulties.

Further, element multiplication would be extremely

slow. For these reasons it was decided to restrict

groups to those types which are widely employed and

for which reasonable computation techniques are

known. At present Cayley allows groups to be

specified in the following ways:

(i) As a subgroup of the symmetric group Zn,
for some integer n. In practice, n is
restricted to around I0,000.

(ii) As a subgroup of the general linear group
GL(n,K), where n is the dimension and K is
an integral domain. Currently, Cayley
allows K to be a finite field or the ring
of integers. It is not difficult to extend
the possibilities for K.

(iii) As a finite presentation by generators and
relations.

4.2 Syntax for Groups

The definition of a permutation or matrix

group is done in two distinct steps. The first

step defines the type of permutation or matrix

group with which we wish to work. The second

step defines the actual permutation or matrix group

by listing a set of generators for the group. It

should be noted that for certain problems, the

first step alone suffices. For example, it is

sufficient to specify the group type if it is

merely wished to form some products of particular

elements.

The following two group specifications will

serve to illustrate the flavour of the Cayley

syntax.

(i) G : PERM(8); ;

G.GENERATORS: A = (1,2,3,4,6,7,8),
B = (2,3,5,7,8,6,4);

(ii) G : ~TRIX(3,GF(2));
G.GENERATORS: X = (i,0,0, 1,1,0, 0,1,1),

Y = (1,1,O, O,l,1, O,1,0);

Both examples define G to be the simple group

PSL(2,7): the first defines it as the subgroup of

generated by the permutations (1,2,3,4,6,7,8) and

(2,3,5,7,8,6,4), while the second example defines

it as the subgroup of GL(3,K), where K is the field

of two elements, generated by the pair of matrices

As w i t h p e r m u t a t i o n and m a t r i x g r o u p s , t h e

specification of a finitely presented group

involves two steps. The first step lists the r

generator symbols and the second gives the actual

defining relations. In effect the first step

defines the free group of rank r. We give the

Cayley statements needed to define FSL(2,7) as the

finitely presented group

{R,SIR 3 = S 3 = (RS) 4 = (R-iS) 4 = E}

G : FREE(R,S);
G.RELATIONS : R÷3 = S÷3 = (R,S)+4 = (R+-i*S)÷4 = i;

4.3 Fields

I shall confine myself to finite algebraic

extensions of a field K. Let K(e): K be a simple

algebraic extension of the field K, where u has

minimum polynomial m(x) over K. Then any element

of K(e) has a unique representation in the form

p(e), where p is a polynomial over K and the degree

of p(x) is less than the degree of m(x).

Further, the prime subfield of an arbitrary

field K is isomorphic either to the field Q of

rationals or the field Z of integers modulo a
P

prime number p. Thus, calculation in finite

algebraic extensions of either of these fields

reduces to calculating with polynomials. Here it

is desirable to have access to the polynomial

facilities provided in most CA systems.

Finite fields present few difficulties. If

the required finite field is small (i.e. having at

most a few thousand elements) Cayley computes the

table of Zech logarithms for the ~eld.

At the time of writing no machinery has been

provided for working with extensions of Q in

Cayley. However, in the near future it is planned

The Basis of a Computer System
for Modern Algebra

to implement simple extensions of the rationals. I

am loath to implement the general case in view of

the fact that field calculations would often be

extremely expensive.

The extension field K(a) of K is defined in

Cayley using a statement of the form

L : FIELD(K,a,x,m(x))

where m(x) is the minimum polynomial of a over K.

(It is assumed that the field K has been defined

previously.)

4.4 Vector Spaces

The definition and representation of vector

spaces over those fields definable in Cayley pres-

ent no particular problems. Since all vector

spaces of dimension n over a field K are isomorphic,

it is convenient to take the space V(n,K) of n

dimensional row vectors over K as the standard

vector space. The type of vector space can then

be specified by stating n and K. If desired, a

basis can be supplied either for V(n,K) or for a

subspace of V(n,K).

The following Cayley statements define the

subspace of V(3,GF(9)) spanned by the vectors

(l,w,w 2) and (l,O,w), (where w is a primitive

element of the field):

K : FIELD(Z(3),w,x,x÷3 + 2"x÷2 + i);
V : VECTOR SPACE(3,K);
V.BASIS : X = (l,w,w÷2), Y = (l,0,w);

Vector spaces are an example of a structure

which can be acted on by other structures. Thus,

in Cayley, subgroups of GL(n,K) are permitted to

act on V(n,K).

§5. Representation of Algebraic Structures

In the previous section the various types of

algebraic structures that are specifiable in

Cayley were outlined. In most cases the machine

representation of their elements should be clear

to the reader. How are the structures themselves

to be represented in a computer? It might seem

that having laid down rules as to the kind of

structures permitted (e.g. permutation groups),

the problem has already been settled. The problem,

however, is more complex than this. I shall

discuss the problem in terms of permutation groups.

For certain computations wlth a permutation group,

such as evaluating words in the generators, or

testing whether the group is abelian, knowing the

generators alone suffices. In order to answer

deeper questions about the group, such as, for

example, determining its conjugacy classes of

elements, one needs to have available the set of its

elements in some form. At thls stage one might

simply conclude that it is necessary to create and

store the complete list of elements of the group.

However, if one analyzes how the set is actually

used, It becomes clear that a large amount of group

theoretic computation can be carried out provided

that the following operations are available:

(i) Determine the order of G;

(il) Determine if an element of the symmetric
group E n is in G;

(ill) Run through the elements of G without
repetition.

In [4], Sims introduced the notion of base and

strong generating set and used them to give a very

elegant solution to this problem for permutation

groups.

The great majority of permutation group

algorithms have been designed to utilize the strong

generating set concept. Two points should be made

here: firstly, the cost of obtaining a strong

generating set is often high compared to the cost

of subsequent computation (e.g. computing a

centralizer); and secondly, in a typical session

computing with a permutation group, one tends to

deploy a series of algorithms that assume the

availability of a strong generating set for the

group. It is therefore clear that once a strong

generating set has been calculated for G, then it

should be retained throughout the computation.

In Cayley I have adopted the philosophy of

saving not only such critical information as strong

generators, but also other information that may be

useful in subsequent computation. Thus, for

example, if the classes are computed for any

reason they will be automatically saved. Any

subsequent calculation requiring the conjugacy

classes will check to see if they are already

known before attempting to construct them.

It is necessary then to keep track of the

information that has accumulated for an algebraic

The Basis of a Computer System
for Modern Algebra

structure. This is done by means of a structure

table, one of which is associated with each

algebraic structure stored in the machine. This

table stores such information as :

(i)

(ii)

(iii)

(iv)

(v)

Type of structure;

Definition of structure;

Method of representing individual elements;

Representation of the set of elements (e.g.
strong generating set plus associated
information in the case of a permutation
group).

The properties and structural information
already computed which could be useful in
subsequent calculations.

A Cayley computation, then, can be viewed,

from the point of view of the machine, as the con-

struction of a rather complex data structure. As

new facts are discovered about the object, they are

added to this data structure. As the computation

progresses it is expected that at least some of the

users' requests can be met by doing little more

than extracting information from this data

structure. The construction of this data structure

is invisible to the user.

It is necessary to distinguish between

information that clearly belongs to a single

structure (e.g. classes of a group) from infor-

mation whose definition involves two or more

structures (e.g. coset table of a subgroup). In

the course of computing with an algebraic

structure A, it is usual to generate substructures

of A and homomorphic images of A. The relation-

ship between A and a substructure or homomorphic

image of A must be noted, and there must be

provision for the storage of information common

to a pair of structures related in such a

manner. In Cayley this is achieved by means of

a structure relationship table.

Finally, given a request from a user, the

system must have suitable machinery which matches

the desired information with what is currently

known and then produces a "micro program" to

compute the answer as economically as possible.

I conclude this section by summarizing the

issues raised:

(iil)

(i) Very compact methods for representing the
set of elements of certain types of group
are known.

(ii) Having computed certain information about an
algebraic structure, it is often desirable
to retain it so as to avoid subsequent
recalculation.

An algebraic structure is stored in the
machine by means of a structure table.
This table stores not only the definition of
the structure but also what is known about
the structure and its whereabouts.

(iv) Information common to a pair of related
structures is stored in a structure
relationship table.

(v) Sophisticated machinery is necessary to
properly utilize the data structure which
is constructed during a computation
session.

Acknowledgement

This work was supported by a grant from the

Australian Research Grants Committee.

References

i. J.J. Cannon:

2.

3.

4.

5.

6.

A general purpose group theory

program. Procs. 2 nd Internal. Conf.

Theory of Groups. Lecture Notes in Math.,

Vol. 372, Springer, Berlin, 1974, 204-217.

J.J. Cannon: A draft description of the

group theory language Cayley. SYMSAC'76.

Proceedings of the 1976 ACM Symposium on

Symbolic and Algebraic Computation.

Association for Computing Machinery, New

York, 1976, 66-84.

J.J. Cannon: Software tools for group theory.

Proceedings of a Symposium in Pure

Mathematics, 37, American Mathematical

Society, Providence, R.I. 1981.

C.C. Sims: Computational methods in the

study of permutation groups. Computation-

al Problems in Abstract Algebra (Proc.

Conf., Oxford, 1967). Edited by J. Leech,

Pergamon, Oxford, 1970, 169-183.

C.C. Sims: Some group-theoretic algorithms.

Topics in Algebra. Lecture Notes in

Math., Vol. 697, Springer, Berlin, 1978,

108-124.

C.C. Sims: A method for constructing a

group from a subgroup. Topics in Algebra.

Lecture Notes in Math., Vol. 697,

Springer, Berlin, 1978, 125-136.

The Basis of a Computer System
for Modern Algebra

