
S M P - A S y m b o l i c M a n i p u l a t i o n P r o g r a m

C h r i s A. C o l e a n d S t e p h e n W o l f r a m
Physics Department, California Institute of Technology, Pasadena CA 91125.

SMP is a new general-purpose symbolic manipula-
tion computer program which has been developed during
the past year by the authors, with help from G.C.Fox,
J.M.Greif, E.D.Mjolsness, L.J.Romans, T.Shaw and
A.E.Terrano. The primary motivation for the construc-
tion of the program was the necessity of performing very
complicated algebraic manipulations in certain areas of
theoretical physics. The need to deal with advanced
mathematical constructs required the program to be of
great generality. In addition, the size of the calculations
anticipated demanded that the program should operate
quickly and be capable of handling very large amounts of
data. The resulting program is expected to be valuable
in a wide variety of applications.

Of the existing symbolic manipulation programs,
SCHOONSCHIP was the only one designed to handle the
very large expressions encountered, and MACSTMA the
only one of any generality.

In this paper, we describe some of the basic con-
cepts and principles of SMP. The extensive capabilities of
SMP are described, with examples, in the "SMP Hand-
hook" (available on request from the authors).

The basic purpose of SMP is to manipulate symbolic
expressions. These expressions may represent algebraic
formulae, on which mathematical operations are pep
formed. By virtue of their symbolic nature, they may
also represent procedures and actions.

The ability to manipulate symbolic expressions, as
well as sets of numbers, allows for much greater general-
ity and a much richer architecture than in numerical
computer languages.

The s t r u c t u r e of express ions in SMP is def ined
recursively as follows:

ezpr consists of symbol
or ezpr[ezpr, ezpr, ...] (projection)
or | [ecTwl t ecT~r, [ezlor) t ez~- | (list)

Symbols are the fundamenta l units. Project ions
represent ex t rac t i on of a pa r t in an expression. Lists
al low expressions to be co l lected together.

Permission t'o copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM O-89791-047-8/81-0800-0020 S00,75

These three fundamental forms suffice to represent
all the objects, operations and procedures required in
symbolic manipulations.

Symbols are labelled by a unique name (e.g. x3 or
Mu I t) which is used to represent them for input and out-
put. Expressions may be assigned as values for symbols.
A symbol to which a value has been assigned becomes
essentially a short notation for its value, and is replaced
by the value whenever it occurs. If no value has been
assigned to a symbol, the results of (most) operations
are such as would hold for any possible value of the sym-
hol. The set of possible values represented by a symbol
may be delimited by assignin~ a list of properties to the
symbol.

The projection f [ezpr] represents the part of the
expression f selected by the "filter" ezpr. If f is a list,
the entry with index ezpr is selected. If f is a symbol
with no value, operations performed on f [ezpr] hold for
any value of f. Properties assigned to f may specify
particular treatment. "System-defined" symbols stand
for many fundamental operations. Projections from
these symbols (e.g. Plus) yield expressions which
represent the action of these operations on the filter
expressions.

In pro jec t ions such as f i x1 , x2 , x3] or f [x l] [x2]
with several filters, the filters are used successively or
together ("curried" or "uncurried') in selection of a part
of f ,

Lists are ordered and indexed sets of expressions.
The index and value of each entry in a list may be arbi-
trary expressions. A particular value in a llst is
extracted by projection with the corresponding index as
a filter.

It the value of some symbol f is a list, the entries of
the list describe parts of the "object" f: they give the
values for projections of f with different filters. Entries
may be introduced into such a list by assignment of
values for p ro jec t ions of f .

For example, f t I [1] taJ (or f [1] ta) defines f to
be a n ob jec t Whose p ro jec t ion wi th f i l ter 1 is a . The
values of o t h e r p ro jec t ions f r o m f r e m a i n unspec i f i ed
f [x+y] z (x + y) " 2 then yields I [x+Nl : (x + y) " 2 , [1] : a I
and defines the value for a projection of f with filter
x+W to be (x + y) " 2 .

Lists whose indices are successive integers (starting
at I 0 and termed "contiguous") are used to represent
vectors. They are analogous to "arrays" in numerical
languages such as FORTRAN, ALGOL or APL. Lists whose
indices are fixed symbols are analogous to C, COBOL or
PLI1 "structures" or PASCAL "records".

SMP i n c o r p o r a t e s many l lst man ipu la t i on facilities.
Ar g e n e r a t e s a l ist wi th a specif ied s t r u c t u r e and en t r i e s

Proceedings of the 1981 ACM Symposium 2 0 SMP - A Symbolic Manipulation Program
on Symbolic and Algebraic Computation

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800206.806365&domain=pdf&date_stamp=1981-08-05

according to a given "template": it alone encompasses
many of the list manipulation capabilities of APL. Pro-
jections may be defined to be distributed over entries of
any lists appearing as their filters, allowing lists to be
used to collect a set of expressions on which the same
operations may be performed. F I at "unravels" sublists
within lists. Sort, Cat (concatenate), Cgc (cycle),
Rev (reverse), Union and Inter (intersection) are also
provided.

An ordinary symbol (such as x) is taken to stand
for the same expression whenever it appears. A "gen-
eric" symbol (such as Sx) may represent any one of a
possibly infinite class ("genus") of expressions. Different
occurrences of a generic symbol may stand for different
members of the class. "Generic expressions" or "pat-
terns" may stand for any one of a class of expressions in
which generic symbols are replaced by suitable expres-
sions.

List entries whose indices and values are patterns
define transformations for classes of expressions. Pro-
jection of the list with an expression which is a particular
case of the index pattern yields a corresponding speciali-
zation of the value pattern. The necessary replacements
of generic symbols in the index are performed in the
value.

For example, g= ~ [$x] :$x "2 1 (or g [$x] :$x^2)
defines g to be the operation of transforming an arbi-
t ra ry expression into its square. Thus g [2] becomes 4
while g Ix+g] becomes (x+g) "2 . This is to be con-
trasted with the assignment f ix+ N] = (x+g) "2 given
above, which defined a value only for projection with the
specific filter x+g,

Lists with entries of the form { [$x] : ezpr~, where
ezpr is some expression containing the generic symbol
Sx, correspond to "lambda functions" in LISP, with Sx
the "bound variable". Assignments such as f [$x] : $x-2
parallel "function definitions" familiar from FORTRAN, C
and so on.

When several occurrences of the same generic sym-
bol appear explicitly in a particular pattern, they must
correspond to the same expression. Generic symbols in
different patterns may represent different expressions.

List entries whose indices are arbitrary patterns
define transformations for expressions with particular
structures. For example, the assignment
f [$ x , l - I x] = h [I x] defines f i s , l - a] to become h is]
and f f S , - 4] to become h i S] .

Two patterns are "literally equivalent" if all of their
parts are identical, possibly after properties of projec-
tions such as commutativity have been accounted for. A
p a t t e r n ezp r2 "ma tches" s z p r l if t he simplified form of
e.zpr2 a f te r su i tab le r e p l a c e m e n t s for gener ic symbols is
l i teral ly equivalent to ezpr l . Rep lacements for gener ic
symbols m u s t be deducible by l i teral compar i son f rom at
leas t one of the o ccu r r ences of each gener ic symbol in
ezpr2. Thus f [$x+$g,$x, a+$g] is determined to
match f[S,2,a+3], but f [$x+$g,$x-$y] is not deter-
mined to match f iS, -i].

If assignments are made for several patterns with
overlapping domains of applicability, the assignments for
more specific patterns are used in preference to those
for more general cases. Hence, with g[8] :a
g[$x] =I/$x the value of g becomes ~ [8] =a,
[Ix] =I/$x} so that projections of g with the specific
filter 8 are a but projections with other filters are the
reciprocals of those filters.

A Boolean condition may be associated with a pat-
tern to restrict expressions which it matches.
pat..ycozmE represents a pattern equivalent to .pot, but
cons t r a ined to m a t c h only express ions for which cond is
d e t e r m i n e d to be " t rue" a f te r neces sa ry r e p l a c e m e n t s

for generic symbols. Hence, for example,
f [$x y(S<1~x<7}] =$x^2 defines values for projections
of f whose filters lie between ~ and 7; thus f [GI
becomes 36 but f II] or f Ix] remain unevaluated.

The arbitrary structure of patterns used as indices
in lists allows definition of "functions" whose "argu-
ments" are constrained to be of particular "types".

SMP incorporates standard logical and relational
operations such as ~ (Not). & (And), ' ~ (Uneq unequal),
together with character determination projections such
as Natp (natural number) and Polgp (polynomial).
"False" and "true" are identified with 8 and non-zero
numbers respectively.

The values of entries in a list may themselves be
lists. The resulting term may be pictured as an "n-ary"
or "multiway" tree. Each list is a node on the tree, with
branches leadin£ to the list entries and labeled by the
list indices. A particular part of the tree is selected by a
pro jec t ion with a success ion of f i l ters specifying the
b r a n c h to be t a k e n a t e a c h node e n c o u n t e r e d in descen t
f rom the roo t of the t ree .

Contiguous lists of lists (with successive integer
indices) represent matrices and tensors. Lists of lists
with fixed indices are analogous to hierarchical data
bases. Lists of lists with patterns as indices represent
"functions" with several parameters.

"Multi-generic" symbols (such as Six) represents
sequences ("null projections") of expressions. Thus for
example, f [$$x] stands for projections of f with arbi-
trary sets of filters; in f[a,b,c] $$x represents
[e,b,c]. The assignment
Log [$x $$x] =Log [$x] +Log [$$x] (space indicates mul-
tiplication) defines a logarithms to be expanded, so that
Logla b (x+g}] becomes LogIa]+Loglb]+Log[x+gl.

All SMP expressions have the structure of n-ary
trees. Projections are nodes whose branches (labeled by
successive integer indices) lead to the filters of the pro-
jection. Symbols form the ultimate terminals ("leaves")
of the tree. Parts of an expression may be selected by
projections with suitable filters, and may be modified,
added or removed by assignments or deassignments for
these projections. With t: f[a^2,b] the value of the
projection t [1,1] is a and the assignment
t [1 , 1] : x ^ 2 causes t to become f I x ^ 4 , b] .

Expressions input to SMP are evaluated by replacing
each of their parts (starting with the smallest) by any
values assigned to them. This process is carried out to
the maximum extent possible: unless further assign-
ments are made, the resulting output expressions can be
evaluated no further; if input again, they will be output
unchanged.

Picturing an expression as an n-ary tree, the termi-
nals (symbols) are evaluated first, followed by the suc-
cessively larger parts encountered on ascending towards
the root of the tree. In evaluating projections, any
system-defined procedures are invoked first. Projec-
tions with properties such as associativity or antisym-
merry are cast into a canonical form, in which
mathematically equal expressions are rendered syntacti-
cally equivalent. Finally. values ass igned to the objects
("projectors") of the projec t ions are scanned. Any value
ass igned for the requi red p a r t (project ion) is used.
Assigning a= 3 the express ion a"2 is f irst evaluated to
3 " 2 and t h e n simplified by the sys tem-def ined pro-
cedure associa ted with PeN to 9. The express ion 8^8
would be left u n c h a n g e d by this sys tem-def ined pro-
cedure . Its value m a y be specified by a n as s ignment
s u ch as 0^8. • I.

The SMP procedure for evaluation is arranged so
that maximal simplifications and cancellations occur at
all stages. In this way, the complexity of intermediate

21
SMP - A Symbol ic Man ipu la t ion Program

expressions used in generating simple final results is
kept to a minimum.

Values assigned for a projection may involve further
projections from the same object ("projector"), thereby
representing recursive or sel~-referential function defini-
tions. Evaluation of such values is performed in a
sequence of passes through the complete expressions
involved; in each pass the recursion is carried only one
step further. Thus with the definition
g [$ x] = $ x g [$ x - 1] the expression g [2] is evaluated
first to Ig[O] then simplified to g[8] and then
evaluated to 8g [-I] and at this stage immediately sim-
plified to 8.]n conventional recursive evaluation
schemes, g [-I] would be evaluated before the product
8g [-i] was established to be zero, and the evaluation of
g [2] would not terminate. The direct recursive defini-
tion f [O] : f [l] : l ; f [$ x] : f [$ x - 1] + f [$ x - 2] of the
Ftbonacci series provides a fur ther example. The sim-
plest reeursive evaluation of f [~t3 forms a binary tree
requir ing exponential t ime and memory space; in SMP,
the time and space required grow only quadratically with
Tt.

There are two possible kinds of assignment of a
value ezpr2 to an expression esprl. In "immediate
assignment", e~p.rl= e~p,r2 specifies the value of ezprl to
be the present value of ezpr2. The resulting value is
maintained in an evaluated form, and updated by any
subsequent assignments when used. In "delayed assign-
ment", s~prl: : e~pr2 specifies that whenever the value
of esprl is requested, the value of espr2 found at that
time is to be given. In this case, the unevaluated form of
e.zpr2 is maintained as the value of e~.prl, and is
evaluated a_fresh when tt is used.

With the assignments b=c a=b the value of a
becomes c. A subsequent reassignment b = d leaves the
value of a unchanged. On the other hand, with a delayed
assignment a : : b the value of a is always the value of b
at the time of the request. Thus, with b=cl a= :b a
request for the value of e would give c : after the reas-
signment b=d arequest for a would however give d.

Expressions assigned as "delayed values" for pat-
terns are evaluated after replacement of the necessary
generic symbols.

Delayed values may represent "procedures" to be
re-executed whenever "called". (A feature which exem-
plifies the necessity for delayed assignment is that con-
dittonals may depend on symbolic expressions of
undetermined truth value,)

Projections may have the property that some or all
of their filters are to be maintained in an unsimplified
form. In this way, a "procedure" assigned as the value of
a symbol may be "passed by name".

SMP incorporates constructs necessary for pro-
gramrnlng: local variables, If, For, Do, Rpt (repeat)
and Sutch (switch), together with local and non-local
returns and jumps.

Assignments define values for expressions to be
used whenever the expressions appear. "Replacements"
such as x->g+1 are syntactic constructs which may be
applied selectively in a particular expression by an S
(substitution) projection Replacements may involve
patterns. Note that in substitutions, as in assignments,
associativity and commutativity (or other filter reorder-
Ing symmetries) of projections are accounted for, so that
S [a b c~2 d, $x"2 a -> 1 -$x l yields (l - c } b d.

In addit ion to standard ar i thmet ic operations (such
as + (Plus), * (Po•), (Dot inner product) and * *
(Omu I t outer product)) and elementary functions (such
as Log) SMP treats a large number of the special func-
tions of mathematical physics (such as Chg (confluent
hypergeometric function) and Geg (Gegenbauer func-
tion)). Numerical values of expressions involving such

functions are obtained by N [e~qpr]. Simplifications and
transformations are not made automatically unless the
results are very simple. The necessary formulae are
contained in an extensive library of "external files", and
given as replacements, to be applied selectively when
required. Thus, for example, S[espr, XTrig[2,G]]
applies the half-angle relations for trigonometric func-
tions in e~pr. The name XTr i g [2, S] of the set of rela-
tions to apply is found from the list of formulae in the
"SMP Reference Manual".

SMP incorporates a variety of facilities for effeeting
structural simplifications and modifications on expres-
sions, Parts in expressions may be reassigned to have
modified values. The parts may be identified using the
projection Poe which yields a list of positions of a partic-
ular pattern in an expression. The projection flap may
be used to apply a "template" to a "domain" or set of
parts in an expression. A template is an expression used
to specify an action on a set of expressions. Application
of the template f to for example x and g yields
f [x , g] . The template SxA(Ig+$x) has two "slots" indi-
cated by Sx and $g into which expressions are inserted:
application to x and g yields x^(x+g}. Other facilities
include Cb [eslo~',form3, which combines coefficients of
terms matching the pattern I.vvr~ in espr.

SMP incorporates projections for performing expan-
sions using distributivity. It also oontAin~ facilities for
factortzation of polynomials, for forming partial frac-
tions, and for other polynomial manipulations.

SMP performs derivatives, sums, products,
integrals, series expansions and solves equations. Assign-
ments may be made to define derivatives, integrals,
inverses and so o~ for new mathematical functions. For
example, D [f [$ x] , I S x , l , $ g I] : g [$ g] defines the f i le t
derivative of the "function" f Of one "argument" to be g.

Input and output in SMP conform as closely as possi-
ble to standard mathematical notation. Input syntax
may be modified and new forms introduced. Arbitrary
output forms may be defined. Numerical values of
expressions may be plotted.

22 SMP - A Symbol ic Manipu la t ion Program

