
A TRANSPORTABLE SYSTEM FOR ~NAGEMEN~ AND EXCHANGE
OF PROGR~[S AND OTHER TEXT

W. V. Snyder

Jet Propulslon Laboratory
4800 Oak Grove Drive

Pasadena, California 91103

ABSTRACT

Computer software is usually exchanged between
different computer facilities via punched cards or
magnetic tape. For up to about I000 images, cards
are cheaper and probably easier to deal with than
tape. The primary problem with cards is the variety
of punch codes. Frequently, one also has the minor
nuisance of repunchlng cards damaged in transit.
For larger amounts of data, tape is cheaper, but
there are so many tape formats in use that the re-
cipient frequently has trouble reading a tape, even
if the format is simple and well defined. Occasion-
ally, one has the problem of parity errors, which
make a tape essentially worthless. K~en test data,
modules In several languages, computer output or
documentation are included, the lack of organization
in the material can cause a substantial amount of
unnecessary human labor.

This paper presents a system for exchanging
information on tape, that allows information about
the data to be included with the data. The system
is designed for portability, but requires a few
slmplemachlne dependent modules. These modules
are available for a varlety of machines, and a
bootstrapping procedure is provided. The system
allows content selected reading of the tape, and a
simple text editing facility is provided. Although
the system recognizes 30 commands, information may
be extracted from the tape by using as few as three
commands. In addition to its use for information
exchange, we expect the system to find use in
maintaining large libraries of text.

THE MOTIVE FOR DEVELOPING THIS PROGRAM was the ex-
perience of receiving tapes from many correspondents.
We dealt with most correspondents only once or twice.
We received tapes written in every possible density,
both parity modes, several character codes, and
having a variety of block and record lengths. We
see three solutions to this problem. Most computer
centers have access to a program that can handle
fixed length records, written in fixed length
blocks, using a popular code such as ASCII or
EBCDIC. When the characteristics of the medium
were correctly provided, we had good success with a
program of this type*. Unfortunately, this infor-
mation was not always provided, and was sometimes
incorrect. Another solution is for some organl-

*We used two programs, known as BLOCK and UNBLOCK,
written in Unlvac-llO0 assembler language at the
University of Maryland Computer Science Center.

ration to promulgate a standard for record lengths,
block lengths, codes and parity modes. Then If
such information is not provided, the standard is a
reasonable guess. Neither approach can cope with
disorganization of the data, or with parity errors.
We chose therefore to write a transportable program
to enforce a standard recording format, organize
the data and provide for error recovery. This
relieves the sender of the responsibility for
sending information about character codes, record
lengths and block lengths with the tape. He must,
of course, still t e l l the receiver the tape density,
and whether it is a seven- or nlne-track tape.
Since-some binary numeric information Is recorded,
only odd parity tapes may be used with this program.

RECORDING FOR~T

Most computer systems can d e a l with ASCII iofor-
mation in a natural way. In order to use nine-
track tape conveniently, we represent the seven-blt
ASCII code using eight bits, with the hlgh-order
bit zero. The program does not, however, enforce
this convention rigidly. Certain information must
be encoded in thls way, but the textual information
may be encoded in any way that may be represented
by s string of eight-blt units. It is preferable
that all information be encoded in some standard
form, and we hope that all implementations of the
program will use ASCII code for the textual
information.

Some computers can read or write tapes con-
taining blocks consisting of an integral number of
words, and can read tape blocks of arbitrary length
only with difficulty. For example, a tape con-
talnlng blocks consisting of ten 80-character
records could be read only with difficulty on a
Univac-llO0, which expects nine-track tapes to
contain blocks consisting of a multiple of nine
characters, and could no t be written on a Univac-
ii00. We therefore selected a block size having
factors of nine (for 36-blt words), fifteen (for
60-blt words) and four (for 32-blt words). These
factors also guarantee that the block will be an
integral number of words if it is written on a
seven-track tape. The program uses data the same
for seven- and nlne-track tapes.

Since information may be recorded on magnetic
tape in blocks of arbitrary length, separated by
gaps of fixed length, one can use less space on the
tape to record a given amount of data by writing
longer, and therefore fewer blocks. We chose to
write information in blocks of 7200 characters.
This block size allows efficient use of space on
cape, and usually fits into a minicomputer memory.
A 180-character label is the first block written on
every tape. Information in the label includes the
block size. If the program does not fit in
available memory, smaller blocks may he written.
The program can read the smaller blocks automati-
cally. This was required in one minicomputer

90

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800208.806440&domain=pdf&date_stamp=1978-10-01

implementation of the program. We recommend that
all implementations retain the capability to read
7200 character blocks. Further conservation of
space on the tape is achieved by compressing the
data. To compress the data, consecutive
occurrences of blanks (or another character if
desired) are removed, and replaced with an encoded
representation requiring less space. A compressed
Fortran program usuallyoccupies about one third
the space otherwise required.

DATA MANAGEMENT FACILITY

Although the problem of dealing with variable
and frequently uncertain physical characteristics
of the transmission medium was irritating, the
problem that consumed most of our time was the
uniform lack of organization of the information on
the tape. We received programs in several
languages, subprograms with several test drivers,
multiple versions of a program, test data, computer
output and documentation, with no indication of
what was to be done with the information. In such
situations, much effort was spent organizing the
information before it could be used. We therefore
developed not only a program to read and write tape,
but also a transportable data management system
for textual information.

Our data management scheme consists of re-
cording each program, subprogram, listing or data
group as a separate module of text. Helpful
information about the module is recorded with the
module. The minimum information required with each
module is a name. For more complete identification
of the module, one may record the data type
(language for modules that are programs), machine
type, authors' names and addresses, and biblio-
graphic references. To facilitate management of
programs consisting of several modules, one may
record the names of groups of which the module is a
member, and keywords related to the module. To
control changes to modules, a simple but flexible
updating mechanism is provided, and the updating
history is recorded. To record information that
does not fall into any of the specified categories,
one may include comments. We call this information
control information. All control information is
recorded with the text of the module. The text and
control information can be examined and updated
separately, but they remain together on the tape.

A data management system requires a command
language. In specifying the command language for
the Exchange Program, our goals were simplicity
and comprehensive flexibility. The use of the
program is oriented primarily toward the receiver
of the tape. Although the program acts on 30
commands, information may be extracted from the
tape with as few as three commands:

INTAPE = Fortran unit number of input tape
Ob~PUT = Fortran unit number of native format

file
COPY = List of module numbers.

To create a new tape requires, at a minimum, the
following commands:

TITLE = Title of tape
SITE = Site at which the tape is being

written
OUTAPE = Fortran unit number of the tape
DATE = Date written (YY~DD) [May be provided

automatically.]

Each module of the text must then be preeeeded by
INSERT = Name of module
TEXT

and followed by an end of text signal. If more in-
formation about the module than its name is to be
provided, more commands are required.

ERROR DETECTION AN~ CORRECTION

The program currently contains two error de-
tection mechanisms. First, it uses the error
detection mechanism of the supporting operating
system. Second, it records a sequence number in
each block, and checks it during reading. It also
records in each block the location of the first
record that starts in the block, the number of the
text module of which it is a member, and the lo-
cation of the first record of the first text module
that begins in the block, if any. We plan to use
this information for partial error recovery. We
also plan a more ambitious error control algorithm,
capable of detecting and correcting up to 72
consecutive erroneous characters, at up to four
different places in each block. It can be imple-
mented in a transportable way, requiring only a
machine sensitive exclusive-or primitive operation.
For the 7200 character block chosen as the standard
for the Exchange Program, only 113 characters of
error control information are required. The
design of the block format includes provision for
this information.

EXPERIENCE

The program has been used at JPL to manage the
collection of algorithms submitted to ACM TOMS, for
weekly exchange of data between a DEC PDP-ii/55 and
a Univac-ll08, and occasional exchange of data
between a Univac 1108, Sperry (formerly Varian) 72,
and a DEC PDP-ii/55. The program was used to
transmit the 3PL mathematics library to a DEC PDP-10
at the California Institute of Technology, and is
currently used there to retrieve modules of the JPL
mathematics library from the exchange tape. It was
also used to transmit information to a CDC-6600 at
Sandia Laboratories. Experience in implementing
the program on the DEC PDP-ii/55 and on the DEC
PDP-10 indicated that changes in the interface
between the portable and non-portable parts of the
program are desirable. In particular, the DEC
Fortran environment requires that data files be
explicitly opened (with a non-portable statement)
before they are used. Thus, a subprogram thought
to be portable does not work on DEC machines. We
expect to change the interface between the portable
and non-portable parts of the program to concentrate
potentially non-portable requirements in fewer
places. When we make that change, we will also add
a few commands.

SUGARY

We have developed a transportable program for
exchange of textual information that provides
several advantages over previous methods. The
program enforces the use of a standard tape format,
uses tape efficiently, organizes the information on
the tape, provides for simple retrieval of infor-
mation from the tape, and provides for error
recovery. Since the program is transportable, it
is used similarly on all computer systems. Thus,
once one learns to use the program, one may use the
program on many computer systems with little
additional effort.

91

ACK~O~,~EDG~MEETS

The author thanks the following (in alpha-
betical order) for their help: Julian Gomez of
JPL implemented the program on a DEC PDP-iI using
RSX-Ii. Jeff Grelf at the California Institute of
Technology implemented the program on a DEC PDP-10.
Dick Hanson and Karen Haskell at Sandia Laboratories
in Albuquerque wrote some of the IBM system 360
modules. Karen Haskell implemented the program on
a CDC-6600. Fred Krogh of JPL provided most of the
requirements and several ideas for the command
language. Robert MeEliece of JPL provided an error
detection code. West Coast University in Los
Angeles provided free computer time to implement
the program on a Varlan 72.

This paper presents the results of one phase of
research carried out at the Jet Propulsion
Laboratory, California Institute of Technology,
under contract No. NAS 7-100, sponsored by t h e
National Aeronautics and Space Administration.

92

