Check for
Updates

ARCHITECTURE OF A REAL TIME OPERATING SYSTEM#*

J. L. Pruitt

W. W, Case
M&S Computing, Inc.
Huntsville, Alabama

Architecture is receiving increasing recognition as a major design factor for
operating systems development which contributes to the clarity, and modifiability of

the completed system.

The MOSS Operating System uses an architecture based on

hierarchical levels of system functions overlayed dynamically by asynchronous cooper-
ating processes carrying out the system activities.

Since efficient operation in a real time environment requires that the number of
processes and process switches be kept to a minimum, the MOSS system uses pro-
cesses only where a truly asynchronous activity is identified. The layers of the MOSS
Operating System do not represent a hierarchical structure of virtual machine pro-
cesses, but rather a hierarchy of functions used to create the processes.

This paper describes the layering concepts and process concepts defining the

system architecture.
cesses of the MOSS Operating System.

Key words and phrases:

It also presents an overview of the specific functions and pro-

operating system design, real time operating system,

layered operating system, software architecture, and process communication.

CR Categories: 3.80, 3,83, 4,35,

1. INTRODUCTION

The Modular Operating System for SUMC
(MOSS) is a general purpose real time operating
system for the RCA developed Space Ultrareli-
able Modular Computer (SUMC). MOSS is cur-
rently being implemented at M&S Computing,
In¢., in Huntsville, Alabama, and is scheduled
to be fully operational in the first quarter of
1977.

MOSS attempts to merge recent develop-
ments in operating system design to create a
real time operating system which is more mod-
ifiable than ad hoc systems developed with pre-
vious design policies. Since MOSS is to be used
as an experimental base to test various real
time processing concepts, modifiability has been
a major design consideration. The architecture

*This work was supported by NASA Contract No.
NAS8-31222, managed by the Marshall Space
Flight Center.

51

has been selected to provide a basic framework
into which relatively independent subsystems fit
and interact in a well-defined manner., These
subsystems can be modified or exchanged in
response to changing user requirements.

Since MOSS is a real time operating
system, performance has been considered
throughout the system definition and design.
Continual tradeoffs have been made between the
conflicting performance and modifiability ob-
jectives. A major architectural decision was
the separation of the static and dynamic struc-
tures of the system. The static structure, con-
sisting of a hierarchy of functions, defines the
basic framework of the subsystems and their
interaction. The dynamic structure, consisting
of cooperating processes representing user
applications and asynchronous system activities,
is superposed on the static framework. Thus,
the frequent process switching and associated
overhead of deeply layered processes has been
avoided. Inefficiencies due to frequent hand-
shaking between the static layers of functions

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1067629.806521&domain=pdf&date_stamp=1975-11-01

have been tolerated to aid modifiability.

The remainder of this paper is devoted
to a description of the actual MOSS architecture
and the concepts on which it is based. A brief
description of the SUMC hardware is also in-
cluded to aid reader understanding of the MOSS
architecture.

2. SUMC HARDWARE

The SUMC is a microcoded processing
unit organized around the basic System 360 in-
struction set. The major features of the hard-
ware include:

) A multiple level interrupt struc-
ture with a separate set of regis-
ters in scratchpad memory for
each interrupt level.

o Address translation hardware
and microcode to support virtual
memory,

o Memory protection microcode

which provides access protection
(read, write, execute) on a page
basis,

o Memory units which provide a
data lock capability to prevent
simultaneous multiple access to
locked data [6].

3. MOSS LAYER CONCEPTS

The MOSS architecture is based on
hierarchical layers of partitions corresponding
to levels of abstractions [2,3,4]. A layer de-
fines a level in the hierarchical structure of the
system and contains one or more partitions
whose interaction is limited and well understood.
A partition is a group of functions which are re-
lated in their effects and share common re-
sources (data structures and/or hardware fea-
tures).

Within each partition there are internal
and external functions. External functions may
be invoked directly by functions of another parti-
tion. The external functions of a partition pro-
vide the primitive operations of the partition to
other partitions in the system. Internal functions
are used only within a partition and cannot be
referenced from other partitions. The internal
functions are derived from the decomposition of
the partition into modules which support "infor-
mation hiding [5]". :

3.1 Partition Interaction Rules

Interaction between partitions on the

52

‘individual layers must conform to the following
rules:

1. Each partition owns certain re-
sources which other partitions
are not permitted to access, The
resources owned by a partition
consist of the system functions
and data structures used to sup-
port the partition.

2. Each layer in the hierarchy is not
aware of the existence of any
layers above it and cannot invoke
any partition of a higher layer.

Partitions of higher layers may invoke the ex-
ternal functions of a partition of a lower layer or
the same layer to utilize the resources of that
partition. The invocation hierarchy of layers is
not restricted to references only one level below
the requesting layer. Rather, layers may di-
rectly reference any lower layer in the hierarchy.
The enforcement of the layer interaction rules
and the knowledge of external functions available
to higher layers has been maintained as a design
management responsibility, not a function of the
executing software.

3.2 Partition Selection Criteria

Partitions are selected to supportab-
stractions of system capabilities. Each abstrac-
tion is supported by a set of software functions
which map the characteristics of hardware
capabilities and/or elementary logical struc-
tures into higher level logical structures which
present a simple, consistent view of the hard-
ware or software represented, Partitions are
provided to hide the actual implementation of
complex mechanisms from higher layers of the
system.

Partitions are placed on layers based on
the nature of their abstraction. The lowest
layers contain partitions which are closest to
the actual machine and provide basic services.
Succeedingly higher layers are selected based
on services required from lower layers and
services provided for higher layers. Section 5
identifies and describes the partitions selected
for MOSS.

3.3 Hardware Structure Versus Software
Structure

The SUMC hardware and MOSS software
are being developed concurrently, allowing
hardware/software tradeoffs to be made during
the design phases. The hardware interrupt
structure has been matched to the software
structure, thus, eliminating the restrictions on
the MOSS design which would have resulted if

the design had to match an existing interrupt
structure

The hierarchy of the layers reflects the
hierarchy of the hardware interrupt structure.
Since an interrupt results in a change of execu-
tion sequence, much the same as a direct call in
software, an interrupt generated during the ex-
ecution of a layer function which is processed
by a higher layer represents a violation of the
layer interaction rules. For example, since
the MOSS partition responsible for handling
I/0 interrupts is in layer 2, the partitions of
layer 1 would not be allowed to receive I/0O in-
terrupts during their execution and could not use
the I/0O facilities. However, partitions in layer
3 and above would be allowed to receive I/O in-
terrupts and to use the I/O facilities of layer 2,

4, MOSS PROCESS CONCEPTS

The static structure of MOSS is over-
layed by a dynamic structure of asynchronous,
cooperating processes carrying out the system
activities. Processes do not have hierarchical
relationships. Instead, a process is the inde-
pendent, asynchronous execution of one or more
of the system partitions under control of the
static structure. Several processes may execute
a partition simultaneously since the functions of
the partitions contain the facilities which coor-
dinate the multiple requests for their resources.

The MOSS process concept is based on
the following definitions:

1, A processor is an entity which
performs transformations of
data. In the MOSS environment,
a processor is the Central
Processing Unit (CPU).

2, A program is an ordered se-
quence of tranformations pre-
sented for execution to the proc-
essor,

3. A process is the actual or poten-
tial execution of an ordered
sequence of transformations on a
set of data [7].

A process is a logical entity which exists
independently from a processor, but requires a
processor to advance in state. More than one
process, each representing some collection of
programs and resources, can execute concur-
rently sharing available resources, especially
the processor.

There are two significant extensions to
the basic process concept which have been used
in MOSS. The first, the subprocess concept,

depends on the distinction between external and
internal interrupts. An external interrupt is an
interrupt which signals an occurrence which is
not directly related to the currently executing in-
struction in the processor -- for example, an
I/0 completion interrupt. * An internal interrupt,
on the other hand, results directly from the ex-
ecution of the current instruction ~- for example,
a supervisor, call (SVC) or a page trap interrupt.
A subprocess is used to denote the processing of
an internal interrupt. The internal interrupt
performs a service directly supporting the active
process and, as such, is treated as a continua-
tion of the process. The subprocess is similar
to a subroutine invoked via a direct transfer and
uses the process state information as parameters,

The other extension of the process con-
cept is the task process. A task is the imple-
mentation of a user program on MOSS. The task
process represents the execution of the user
program and all subprocesses associated with it.
The subprocesses provide the synchronous oper-
ating system services invoked to support the user
program including explicit supervisor calls,
implicit paging requests, and implicit error han-
dling. The state information for a task process
includes user supplied resource and real time
control parameters in addition to the hardware
state information used for all processes.

4,1 Process Selection Criteria

Processes are selected to control the
asynchronous execution af independent sequences
of activities. Independent is used in the sense
that the activities do not directly communicate
(i.e., via direct call) and their execution is not
dependent on the state information of another
process. The following criteria are used to
identify processes in MOSS:

1. A separate process is used to
represent each user task,

2. A separate process is used to

represent each MOSS function
which:

o Performs a service which
does not directly support
another.process or task; or

o Performs a service which
directly supports another
process or task, but which
is executed asynchronously.

3. A separate process is used to
represent each external interrupt.

Section 6 identifies and describes each of
the processes selected for MOSS. '

4.2 Process Coordination

MOSS mechanism to insure the pairing of locks

and unlocks within a function; this has been

Since the processes within the MOSS en-
vironment cannot communicate directly, process ity.
coordination mechanisms are provided which
allow processes to exchange data and synchron-
ize their activities. MOSS provides three dis-
tinct mechanisms for process coordination
which have been chosen to restrict the process.
interactions to a minimal, yet, sufficient set.
These mechanisms are:

process.

o The data lock; mutually exclusive

access to shared data.

maintained as a design management responsibil-

4,2.2 Software Interrupts

The software interrupt (SINT) mechanism
provides the capability for process to be queued
for service in much the same manner that a
hardware interrupt queues an interrupt handling
Each process contains a SINT count
as part of its state information. The value of
the SINT count, ranging from zero'to an arbi-

trary positive integer, indicates the number of

o The software interrupt (SINT);
queuing requests for service.

the queued requests for the process. A SINT
driven process is able to service a queue of re-

quests serially and suspend itself when finished

o The block/unblock; awaiting com-
pletion of a requested service.

(when the SINT count becomes zero). Other
processes in the system may queue the SINT

driven process by incrementing its SINT count.

These functions could have been implemented
with a general mechanism such as Dijkstra's
semaphores, but only at the risk of increased
complexity in process interactions, 1.

MOSS processes are not hierarchically
related and thus, not limited in their interactions
by the static structure of the system. The MOSS
process coordination mechanisms limit process
interactions aiding the reliability and testability
of not only this design, but also future changes.

4,2,1 Data Locks

Processes accessing shared data must 2,
be coordinated to insure the integrity of the
data. This coordination is provided by a hard-
ware assisted lock mechanism which guaran-
tees mutually exclusive access to shared data.
The hardware provides lock and unlock instruc-
tions which address a lockword in memory. The
lock instruction stores a process identification
code in the lockword. The unlock instruction
requires a matching code to effect the unlock
(zeroing the lockword). These instructions pro-
vide protection against accidentally issued un-
locks.

process.

There are two basic primitives associated with
the SINT mechanism:

Wait allows a service process to

decrement its SINT count indica-
ting completion of the current
service request. If the value of
the SINT count goes to zero, the
process is suspended until the
SINT count is incremented by
another process. A wait request
applies only to the process making
the request.

Set SINT increments the SINT

count of a process, queuing the
specified process for service. If
the value of the SINT was zero
before the set SINT, the process
immediately becomes eligible for
activation. A process may not
set its own SINT.

Information passing to a SINT driven proc-
ess is through a known request queue for the
A SINT driven process performs a
single function associated with a layer in the

hierarchical structure. This layer contains the

A process requesting a data lock for a
currently locked lockword is suspended until the
lockword has been unlocked. Deadlocks are pre-
vented by an ordering scheme that is a natural
result of the hierarchical structure. All func-
tions accessing a specific data structure and the
data structure itself are on the same layer in the
hierarchy. Thus, each function is complete with
respect to the data structure, i.e., the lock and
unlock are contained within the function. Down-
ward calls can be made with a data structure
locked, but upward returns always leave the data
structure unlocked, thus, preventing circular
lock requests among processes. There is no 1,

54

request queue and the queue servicing routines.
Invoking the process requires placing the re-
quest in the queue and then performing the set
SINT operation,

4,2,3 Blocking and Unblocking Processes

The block/unblock mechanism is inde-
pendent of the SINT mechanism. A blocked pro-
cess is not released when its SINT counter is
incremented.
low are provided.

The two operations described be-

Block allows a process to suspend

itself unconditionally.

2. Unblock allows a process to reac-
tivate a blocked process. The un-
conditional block/unblock mechan-
ism allows a process to suspend
itself pending a request to be com-
pleted by another process., While
the process is suspended, it can
still have its SINT counter incre-
mented by other processes. Its
queue of requests is then handled
serially when the process is un-
blocked.

5. MOSS LAYER SPECIFICATIONS

MOSS is organized into eleven hierarchi-
cal layers, each containing one or more parti-
tions. This section describes each layer starting
with the lowest hierarchical layer and proceeding
to the highest (see Figure 1), Recall that mod-
ules within a given layer may not invoke modules
of higher layers,

5.1 Layer 1

Layer 1 consists of the timer manage-
ment, processor management, process manage-
ment, exception handler, and log queue manage-
ment partitions. These partitions provide basic
system services which can be requested by all
system partitions.

5.1.1 Timer Management Partition

This partition provides timing services
for the MOSS processes. The partition controls
the setting of an internal timer and the proces-
sing of the external interrupt generated when
this timer expires (see Section 6.2).

5.1.2 Processor Management Partition

This partition maintains the status of the
central processing'unit and allocates the proces-
sor to the highest priority ready process. Time
slicing of the processor is not utilized.

5.1.3 Process Management Partition

This partition controls the progress of
processes in the MOSS environment. The par-
tition creates processes, coordinates their ac-
tivities, and deletes them. Process coordina-
tion is accomplished via the SINT and uncondi-
tional blocking/unblocking mechanisms.

The functions of the processor manage-
ment and process management partitions produce
a multiprogramming environment,

55

5.1.4 Exception Handler Partition

This partition analyzes all detected er-
rors in MOSS. Hardware/firmware detected
errors are reported via the SUMC interrupt
structure while software detected errors are re-
ported via normal procedure invocation.

5.1.5 Log Queue Management Partition

This partition manages the in-core buff-
ers of the system log., All entries into the sys-
tem log are made via this partition. The parti-
tion activates the log management process when-
ever a log buffer becomes full in order to have
the full log buffer written to the system log data
set,

5.2 Layer 2
Layer 2 contains the channel management
partition. This partition centralizes the control

of the SUMC channel hardware. It is responsible
for scheduling the channels, processing I/O in-
terrupts, and maintaining the channels' logical
status.

The partition is placed at this hierarchi-
cal level to enable the memory management par-
tition to request paging I/O operations.

5.3 Layer3

Layer 3 contains the memory manage-
ment partition. This partition supports the ab-
straction of virtual memory; i. e., the ability to
reference an address space which is relatively
independent of physical memory and whose con-
tents may actually be in main memory or in a
backing store called external paging memory
(EPM). This allows main memory to be shared
among programs whose individual or total mem-
ory requirements exceed the main memory size.

Under MOSS each task is assigned a
linear address space of 224 bytes. Each address
space is divided into four segments; task private,
job common, system common, and MOSS private,
There are not separate copies in memory of the
last three segments for each task. The hard-
ware permits the sharing of single copies of each
job's common area, the system common area,
and the MOSS private area.

Main memory is allocated on a job basis
and varies between a user-defined minimum and
optimum amount depending on the requirements
of other jobs. Paging for all tasks of a job is
done in the main memory allocated to the job.
This scheme contributes to the repeatability of
successive executions of a job; an important

MOSS STRUCTURE OVERVIEW

HARDWARE
INTERRUPT .
LEVEL LAYER PARTITIONS
User 11 1 User tasks
2 Systems tasks
1 SVC handler
10 2 External control
3 Log management
- 1 Sampling performance
9 monitoring
8 1 Program management
1 Logical I/O
svcC 7 2 Console management
6 1 I/0 resource management
5 1 Access management
4 1 Event management
Page Trap) 3 1 Memory management
1/0 2 1 Channel management
Timer 1 Timer management
1 2 Processor management
Exceptions 3 . Process management
4 Exception handler
5 Log queue management
Figure 1

56

real time performance consideration.

When a page is referenced which is not in
main memory, a page trap interrupt is gener-
ated. This internal interrupt is processed by the
memory management partition which brings the
required page into memory. However, the lay-
ering of MOSS prevents this interrupt from being
honored if it is incurred by modules at or below
the memory management partition. Therefore,
such modules must always be locked in main
memory.

Page swapping is performed on a page
group basis, i.e., one to four pages of 1K bytes
each. The SUMC virtual memory hardware
supports address translation and page traps at
the page group level.

5.4 Layer 4
Layer 4 contains the event management
partition. This partition provides the services

for communicating the occurrence of significant
conditions (called events) between processes.
The partition also provides the capability to sus-
pend a process pending the occurrence of a
logical combination of events.

Events do not exist in the MOSS environ-
ment until a process defines a condition to be an
event. Although the event management partition
maintains the status of events, it relies on other
partitions to detect the conditions which con-
stitute the event, That is, the reporting and
processing of events has been centralized while
event detection has been decentralized. This is
consistent with the principal of dedicated owner-
ship of resources discussed in Section 3. 1.

5.5 Layer 5
Layer 5 contains the access management
partition. This partition provides the services

for controlling the access rights to selected re-
sources in such a manner as to prevent deadlock
situations between processes. A requesting
process whose specified access request cannot
be satisfied is blocked until the required re-
sources become available.

To prevent deadlock situations, the parti-
tion requires that access requests for different
classes of resources be made in a specific or-
der and prohibits additional access requests for
any class of resources to which the process cur-
rently has access [1].

5.6 Layer 6
Layer 6 contains the device management
partition. This partition provides the services

for allocating, scheduling, and maintaining the

57

logical status of the SUMC I/O devices (except
for the paging device controlled by the memory
management partition).

The partition translates I/O requests into
channel programs and queues the requests until
the required device becomes available. The
channel management partition is subsequently in-
voked to schedule the associated channel for
execution of the channel program. The partition
also performs I/O error recovery if required.

An actual situation involving this partition
provides an example of the modifiability of
MOSS: Because device characteristics and con-
figurations are maintained by this partition and
hidden from the other MOSS partitions, the other -
partitions could be designed and coded even
though the device models and configurations were
still undefined.

5.7 Layer 7

Layer 7 contains the logical I/O and con-
sole management partitions.

5.7.1 Logical I/0O Partition

This partition provides the services for
supporting I/O requests which are specified in
terms of logical units rather than physical units.
The partition performs two types of transforma-
tions; logical units are translated into their
associated physical device addresses and logical
I/0 functions are translated into one or more .
physical I/0O functions. The device management
partition is invoked to perform any required
device 1/0.

5.7.2 Console Management Partition

This partition coordinates the use of the
system console among the MOSS processes. The
partition supports the abstraction of a virtual
console for each process. This enables a process
to use its own virtual console without the neces-
sity of coordinating input or output with other
users.

5.8 Layer 8

Layer 8 contains the program manage-
ment partition. This partition provides services
for controlling the initiation, termination, and
status of jobs and tasks. A job is defined as a
unit of work which consists of one or more tasks.
A task is the basic unit of work processed by
MOSS and is the smallest entity competing for
system resources.

5.9 Layer 9

Layer 9 contains the sample performance

monitoring partition. This partition provides
services for collecting system performance data
at periodic time points.

The collected data indicates the current
utilization of the system resources. This data
is recorded and subsequently processed to pro-
vide a statistical report which indicates system
bottlenecks and poorly utilized resources.

5.10 Layer 10

Layer 10 contains the SVC handler, ex-
ternal control, and log management partition.
5.10.1 SVC Handler Partition

This partition provides the interface be-
tween MOSS and tasks executing at the user level.
All executing tasks must invoke this partition
whenever MOSS services are required. The par-
tition is invoked by an internal interrupt gener-
ated when a task executes a supervisor call
(SVC) instruction

5.10.2 External Control Partition

This partition provides services which
permit the control of MOSS operation from an
external source (e.g., the console typewriter).
The partition contains functions which allow the
system operator to obtain and/or modify the
current status of the system.

5.10.3 ILog Management Partition

This partition maintains the system log
data set. Its primary purpose is to output the
system log buffers which are filled by the log
queue management partition,

5.11 Layer 11

Layer 11 contains the user task and sys-
tem task partitions, These partitions may not
execute privileged instructions or access the
MOSS private segment of the address space.

5.11.1 TUser Task Partition

This partition contains all user programs.
5.11.2 System Task Partition

This partition provides various system
support programs. System tasks are processed
by MOSS in the same manner as user tasks. Sys-
tem tasks include linkers, loaders, reader/
interpreters, and output writers.

6. MOSS PROCESSES

As previously stated, the MOSS environ-

58

ment may be viewed as a set of cooperating
processes where each process is a unit of work
to which the processor may be allocated. MOSS
provides facilities for controlling the creation,
execution, and deletion of individual processes,
and also provides services for controlling com-
munication and synchronization between
processes.

In this section, each major MOSS process
is identified and its purpose explained.

6.1

I/0 Interrupt Handler Process

This process performs the initial inter-
pretation of the data furnished with I/O interrupts.
The process remains inactive until a hardware
I/0 interrupt signal is accepted by the processor.

If the 1/0O interrupt indicates that an active
1/O request has completed, the interrupt data is
passed to the process which requested the I/O
and that process is reactivated. Such processes
normally return to higher layer components
which perform device-dependent analysis of the
data. If the I/O interrupt is not associated with
an active I/O request, the process activates the
device attention process. In addition, if the I/O
interrupt indicates that a channel or device has
become available, the I/O interrupt handler
process attempts to restart the channel with a
request queued for that channel,

6.2 Timer Interval Expired Process

This process performs the functions
associated with the expiration of a predefined
time interval. These functions include the activa-
tion of any processes which have requested their
own suspension until the expiration of the time
interval and the resetting of the timer for the
next time interval. This process is activated by
the hardware interrupt generated when the
processor's interval timer expires.

6.3 Device Attention Process

This process performs detailed interpre-
tation of the data provided by I/O interrupts
which are not associated with an active I/O re-
quest. This process is activated by the I/O in-
terrupt handler process when an "unexpected'
I/0 interrupt is received.

6.4 Data Bus Monitoring Process

This process examines the status of se-
lected real time data sensors (e.g., analog
inputs) at periodic time points. The data ob-
tained is used to maintain a representation of the
devices in main memory. These data values may
subsequently be used to satisfy requests to read
the real time data. This method expedites the

processing of requests for real time data and reduces

the request load on the channels associated with the
monitored devices.

The process is activated by the timer in-
terval expired process at the beginning of each
monitoring interval.

6.5 Job Process
MOSS creates a job process for each job.

The job process performs the functions required
for initiating and terminating a job.

Each job consists of one or more tasks.
The job process creates and activates the task
process for the initial task of a job. In addition,
the job process is activated whenever a task of
the job terminates. This permits the job process
to control sequential scheduling of tasks and to
determine when the job has completed.
6.6 Task Process
A task process is created for every task
which executes within the MOSS environment. A
task process is created when a request is re-
ceived by MOSS to execute a task and exists until
the task is terminated.

The task process is created and activated
by the job process if the task is the initial task
of the job or if the user requests sequential
scheduling of the tasks of his job. Otherwise,
task processes are created and activated in
response to a task scheduling request from
another task of the same job.

6.7 Sampling Performance Monitoring
Process

This process collects basic system per-
formance data and enters it into the system log.
The process is activated by the timer interval
expired process at each sampling time point.

6.8 External Control Process

This process carries out the cornmands
which are entered at the system console. The
process is activated by the device attention
process when an external control command is
read from the system console device.

6.9

Log Management Process

This process outputs a system log buffer
to the system log data set. The process is acti-
vated by a log queue management function when-
ever a system log buffer becomes full, This
function is a process because the writing of the
log buffer is asynchronous to the other processes
in the MOSS environment,

59

7. CONCLUSION

The architecture of MOSS has proven to
be successful in achieving the basic design goal
of modifiability. The hierarchical relationship
of the MOSS partitions has remained unchanged
since the early phases of the design while the
dynamic structure and partition interfaces have
been augmented to satisfy additional user re-
quirements.

The concepts of exclusive ownership of
resources by partitions and information hiding
within modules has permitted the internal design
of the partitions to be modified without affecting
the interfaces into the partition or the design of
other partitions.

The concepts of strictly controlling
process communication has permitted processes
to be modified and added without affecting other
MOSS processes. For example, the data bus
monitoring process has been added since the
original design,

8. ACKNOWLEDGEMENTS

As with many development efforts, the
architecture of MOSS was not wholly conceived
at one time. It was an evolutionary process of
the ideas and effort of several people over an
extended time. We especially wish to
recognize the work of T. T. Schansman, G. P.
Williams, L, C. Keller, J. R. Conway, and
J. R. Bounds.

9. REFERENCES

[1] Coffman, E. G., Jr., Elphick, M. J. and
Shoshani, A. System deadlocks. Comput-
ing Surveys 3, 2 (June, 1971), 67-78.

[2] Dijkstra, E. W. The structure of the "THE"

multiprogramming system. Comm. ACM 1],

5 (May, 1968), 341-346.

[3)

Liskov, B. H. A design methodology for
reliable software systems. AFIPS Confer-

ence Proceedings, Vol. 41 (1972), 191-199.

Liskov, B. H. The design of the Venus
operating system. Comm. ACM 15,3
(March, 1972), 144-149.

[4]

[5] Parnas, D. L. On the criteria to be used in
decomposing systems into modules. Comm.

ACM 15, 12 (December, 1972), 1053-1058.

[6] RCA Advanced Technology Laboratories.
Outline of Functional Description of Central
Processing Unit. Report No. SUMC-C-R-SP-
002, Vol. 1, CEI Specification, January, 1975,

[7] Watson, R. W. Timesharing System Design

Concepts, McGraw-Hill, 1970,

