
BRUWIN: An Adaptable Design S t r a t e g y
for Window M a n a g e r / V i r t u a l Terminal Systems

Norman Meyrowitz
Margaret Moser

Depar tmen t o f Computer Sc ience
Brown Un ive rs i t y

Box 1 9 1 0
Prov idence , Rhode Is land 0 2 9 1 2

ABSTRACT
Wlth only one process vlewsble and operational at any moment, the

atandard terminal forces the user to continually switch between contexts.
Yet this Is unnatural and counter-Intuitive to the normal working environment
of a desk where the worker Is able to VieW and base subsequent actions on
multiple pieces of Information.

The window manager is an emerging computing paradigm which
allows the user to create multiple terminals on the same viewing surface
and tc display and act upon these simultaneous prbcesses without loss of
context, Though several research efforts in the past decade have intro-
duced window managers, they have been based on the design or major
overhaul of a language or operating system; the window manager becomes
a focus of -- rather than a tool of -- the system. V~/nlle many of the exist-
Ing Implementations provide wide functionality, most implementations and
their associated designs are not readily available for common use; extensi-
blllty is minimal.

This paper describes the design and implementation of BRUWlN, the
BRown University WiNdow manager, stressing how such a design can be
adapted to a variety of computer systems and output devices, ranging from
alphanumeric terminals to high-resolution raster graphics displays. The
paper first gives a brief overview of the general window manager paradigm
and existing examples. Next we present an explanation of the user-level
functions we have chosen to include In our general design. We then
describe the structure and design of a Window manager, outlining the five
Important parts In detail. Finally, we describe our current Implementation
and provide a sample session to highlight important features.

1 . I N T R O D U C T I O N

Normal computer terminals p rov ide a two-d imens iona l
w indow into t h e comput ing env i ronment . Typ ica l l y , t h e com-
pu te r sys tem, w h e t h e r i t be a personal compute r or a main-
frame, o f f e r s some c o m m a n d i n t e r p r e t e r as par t o f i ts
opera t ing sys tem. From th is command in te rp re te r , t he user
is able to " c o n v e r s e " w i th t h e s y s t e m using f unc t i ons sup -
pl ied by t he command in te rp re te r : query ing t h e number o f
users, send ing messages, check ing t he t ime, compil ing pro-
grams, e tc . Some func t i ons o f t h e command i n te rp re te r g ive
en t rance into sub -env i ronmen ts l ike t he ed i tor , t he symbol ic
debugger , and t he mail sys tem. In addi t ion, t he command
in te rp re te r usua l ly p rov ides bo th a spec ia l command pars ing
to p ick ou t spec ia l l y de f i ned cha rac te r s (e.g c h a r a c t e r
de le te) and k e y w o r d s , and an i n t e r f a c e to the f i le sys tem.

Authors ~ present address= Bolt Beranek and Newman, 10 Moulton
3tr~ at, Cambridge, MA 02238

This work was sponsored In part by a grant from the Digital Equipment
Corporation and In part by the Office of Naval Research, under contract No.
NO0014-7E-C-0396.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 A C M 0 - 8 9 7 9 1 - 0 6 2 - 1 - 1 2 / 8 1 - 0 1 8 0 $ 0 0 . 7 5

The s ingle terminal model requi res t ha t t he user only
v i ew one c o n t e x t a t any moment; e i ther t he ed i to r or t he
compi ler 's error messages o r t he mai lbox, e tc . Yet , l ike an
e x e c u t i v e a t a desk, t he compute r user should be able to
v i ew mult iple sources o f informat ion; t he c lock and t h e ed i -
tor and t he error messages and t he mai lbox should be bo th
v i ewab le and access ib le w i t h o u t any change in c o n t e x t . In
essence , t he sys tem should p rov ide an a rb i t ra ry number o f
f u l l - f l edged v i r tua l (non -ha rdware) terminals w i th which t he
user can sw i t ch back and fo r th a t will w i t hou t any loss o f
informat ion or c o n t e x t . The user should be able to bury such
w i n d o w s at t h e bo t tom o f t he " d e s k " and bring them on top
w i t hou t a loss o f s t a t e . Addi t ional ly , p rocesses should be
able to o p e r a t e and upda te t he d isp lay In paral lel. Thus, t h e
new paradigm requi res t h a t t he fo l lowing condi t ions be met:

(1) The user should have comple te contro l o f t h e s ize and
locat ion o f w indows,

(2) The user should be capab le of c rea t ing and running
paral lel p rocesses ,

(3) The user should be gua ran teed t h a t t h e s t a t e o f a w in -
dow remains al ive regard less as to w h e t h e r t h a t w in -
dow is being used a t t he p resen t t ime.

The user should have t o make no changes to ex i s t i ng
s o f t w a r e when a w indow manager / v i r t ua l terminal s y s -
tem is in t roduced to t he computer sys tem.

(4)

1.1. T e r m i n o l o g y

Many o f t h e terms used t h roughou t th is ar t ic le are
common t o seve ra l areas of computer sc ience , though un fo r -
t una te l y , t he def in i t ions o f t hese terms o f t e n d i f fe r . A w i n -
d o w ind ica tes a rec tangu la r area o f an ac tua l d i sp lay su r -
f a c e which holds t h e c o n t e n t s o f a s imulated terminal. A v i r -
t ua l t e rm ina l is a s o f t w a r e emulat ion o f a ha rdwa re terminal.
Typ ica l l y th is v i r tua l terminal is des igned t o a l l ev ia te d e v i c e
dependenc ies . A s tanda rd communicat ion method or p ro toco l
is used by programs t h a t need to wr i te to a d isp lay dev i ce ;
t he v i r tua l terminal emulator maintains a v i r tua l image o f t h e
d isp lay sc reen and per forms t he mapping o f th is v i r t ua l
sc reen t o t he v a r i e t y of phys ica l d i sp lay dev i ces ava i lab le
in a g iven sys tem.

1 . 2 . Ex is t i ng systems
Severa l highly success fu l a t t e m p t s a t w indow

manager / v i r t ua l terminal s ys tems have been made. in
XEROX Palo Alto Research Center's Smalltalk, [LRG76,
GOLD79, TESL81] , t he w indow is a pr imi t ive o f t h e env i ron -
ment. The XEROX Inter l isp Programmer 's Ass i s t an t [TE IT77 ,
TE IT81] al lows t h e user o f t he ALTO min icomputer t o c r e a t e
and manipulate w indows into t h e MAXC computer s y s t e m a t
PARC. The RIG n e t w o r k [LANT79, LANT80] a t t h e Un ive rs i t y
o f Roches te r is an impor tant work in t h e genera l i za t ion o f

180

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800216.806607&domain=pdf&date_stamp=1981-12-01

windows and vir tual terminals. RIG's Virtual Terminal
Management System (VTMS) is a major and highly-
in tegrated component of the RIG distr ibuted operat ing sys -
tem. [MCCR78], lAPP081], and [SYMB81] provide severa l
o ther examples of ex is t ing systems.

1.3. Our System
Though many o f the above systems provide wide func-

t ionali ty, most are spec i f ic to part icular computers,
machines, or operat ing systems, and require the appl icat ions
programs to have some a pr ior i knowledge of the ex i s tence
of the window manager/v i r tual terminal system. Computer
users o f ten have huge amounts of e f fo r t and time invested
in their so f tware ; an aim o f the BRUWIN pro ject has been to
c reate a useful tool within the s t ructure and constraints of
the ex is t ing computing faci l i t ies while requiring no modif ica-
tion of ex is t ing appl icat ions programs. The product is a
general system- and dev ice- independent window
manager/v i r tual terminal system design supplemented by
modular sys tsm- and dev ice-dependent routines only at the
lowest level. We descr ibe the funct ional i ty, st ructure,
implementation and use in the fol lowing sect ions.

2 . F U N C T I O N A L I T Y

BRUWIN allows the user to c reate on the viewing sur-
face (desk) any number of arbi trar i ly-sized, arbi t rar i ly-
posit ioned rectangular windows (pieces of paper), each of
which behaves exac t l y like a s tandard hardware terminal. A
window can overlap other windows, completely cover o ther
windows, or be completely disjoint from other windows.
Each has its own pr ivate command in terpreter subsequent ly
cal led the shel l (using UNIX* tern~inology). Each shell
opera tes in parallel with the others; l ikewise, each window is
updated in parallel with the others. When switching from one
window to another, the processes running in all the windows
retain their respect ive s ta tes. Because of this, processes
generat ing terminal output will continue to generate output;
processes wait ing for terminal input will continue to wai t fo r
terminal input.

BRUWIN gives the user two modes in which to operate,
command mode and process mode. Command mode allows
the user to se lec t display manager funct ions and viewing
conditions, while process mode simply allows a user to use a
part icular window as the cu r ren t w indow. The concept o f a
current window is very important; though an arbi trary
number of windows may be avai lable and ac t ive at the same
time, the user (due to human limitations) can only be typing
Into one window, the current window, at any given time.

Associated with a window is a pen color and a paper
color. The window is depic ted as a shee t of paper in the
paper color with characters printed in a complimentary pen
color. On a monochrome display device, the pen color is the
foreground color and the paper color is the background color.
The window is topped by a ribbon (banner) which contains
the user-assigned w i n d o w t i t le. This name aids the user in
quickly distinguishing be tween windows; it has no meaning
other than that a t tached to it by the user.

2 .1 . Command M o d e

The BRUWIN user in ter face is based on the fol lowing
minimum set of commands:

Cancel
Create
Change
Move
Destroy
Quit

We presume only that the user has a keyboard and some
method of driving a tracking cursor used minimally to pick
window coordinates and optional ly for menu-picking and
l ight-but ton handling.

~UNIX Is a Trademark of Bell Laboratories

The cance l command allows a user to terminate the
current ly picked BRUWIN command. This only works in non-
cri t ical sect ions o f the command, so tha t important s teps in
display management (e.g. updat ing a linked l ist) are not
hal ted in the middle.

Crea te allows the user to def ine a new window. The
system picks the nex t s tandard paper /pen combination (fo r
monochrome screens this is black and whi te) and prompts
the user to pick two points designat ing the diagonal o f the
window. The window outl ine is drawn, and a window name is
prompted for and typed, the shell is s tar ted, the window is
made the current window, and process mode is entered.

The user may c rea te windows anywhere. Just as
papers can over lap one another on a desk, so can windows
overlap one another on the display sur face. This is essen-
tial, as the power of a window manager system lies in the
abi l i ty to bury and subsequent ly re t r ieve windows like
pieces of paper with the guarantee that the assoc ia ted
processes are sti l l running.

Change allows the user to change the size o f an ex i s t -
ing window. Af ter picking the change menu entry, the user
is prompted to pick an ex is t ing window by ei ther pointing to
it in the window space or pointing to its name in the title
menu. (Containing the names o f all the windows, the t i t le
menu ex i s t s to take care of the possibi l i ty of completely
covered windows. Any time a window is prompted for, the
user may pick ei ther the window i tse l f or its name from the
t i t le menu). Next, the user is prompted to pick the two new
diagonal points of the window. The window is redrawn, the
window is made the current window, and process mode is
entered.

Move is a degenera te case of the change command;
the window maintains the same proport ion but is simply
t rans la ted to another point on the screen. The user is
prompted to pick an ex is t ing window as in the change com-
mand. Next, the user picks the new le f t corner of the win-
dow. The window is redrawn, the window is made the
current window, and process mode is entered.

Destroy e f fec t i ve l y "logs out" o f a window; it causes
the picked window to be erased and the corresponding Shell
and shell processes terminated.

In addit ion, i f the user picks a point on an ex is t ing win-
dow, the system performs the cur ren t command. This takes
the p icked window (which may be part ial ly covered) , brings
it on top o f the pile o f windows, and enters process mode.

2 . 2 . Process M o d e

Process mode is simply the mode in which a user can
type into the current window. All windows and their associ -
a ted shells s tay ac t ive during process mode; a f te r an inter-
nally def ined time lapse, any pending output fo r any ex is t ing
window is wr i t ten to that window's vir tual terminal bu f fe r
and (i f the window is visible) updated in the appropr iate
window on the display sur face. This continual update
allows, for example, the abi l i ty to have constant ly changinq
processes like clocks updated wi thout a loss of accuracy,

2 .3 . M o d e S w i t c h i n g

In general, the user will want to move from the current
window into command mode to quickly choose a new current
window. Thus, BRUVIN must provide a quick method with
which to swi tch from process mode to command mode. For
example, to execu te , a quick change from the "edi tor" win-
dow to the "compiler" window while the "edi tor" window is
the cu r ren t w i n d o w in p rocess mode, the user simply
returns to command mode, moves the cursor to the compiler
window and performs a cu r ren t command (perhaps by simply
picking a point in tha t window with the cursor device). The
user is now in p rocess mode in the "compiler" window.

A typical BRUWIN session is found in Appendix A.

181

3 . S T R U C T U R E

The BRUWlN design is broken into f ive major parts:
three main modules (display manager, vir tual terminal emula-
tor, task ing control ler), and two in te r face modules
(d i sp lay / v te in ter face, v t e / t a s k in ter face) , as shown in Fig.
1. The three main modules have no knowledge of each
other 's ex is tence ; interact ion between the three are com-
p lete ly governed by the two in te r face modules. This s t ruc-
ture enables a major module to be replaced with a d i f fe ren t
(improved) version with no change to the other modules.
This is especial ly important for the sake of adaptabi l i ty.

Dlspla

D toxt~ VIrtual Ou~ul rermlnal
[mulator

WN

Fig. 1 -- St ruc tu re o f BRUWIN

3.1. D /sp lay Manage r

The display manager is s modulo which controls the
mapping of windows to the physical dev ice screen, performs
the actual display update, and al lows the user to manipulate
the screen image. From a systems point of view, this can be
broken into three parts: the command in ter face, the manipu-
lation of the information assoc ia ted with each window, and
the graphical operat ions.

The command in te r face encompasses both a mechanism
for receiv ing and interpret ing user commands and the capa-
bil i ty o f displaying messages to the user.

User messages include both prompts for user input,
instruct ions, and error messages. One way to provide the
user messages is to reserve s ta t i c screen space for a sys-
tem window. Al ternat ively, user messages could be wr i t ten
into a dynamic system window, which is only drawn (t yp i -
cal ly at or near the cursor) when there is a message to be
displayed and erased as soon as tha t message is no longer
needed.

The display manager can receive commands in severa l
lex ical forms: as funct ion key interrupts, as coordinates
picked from a graphical menu, or as tokens o f a command
language; the method is a funct ion o f the peripherals avai l -
able. With a data tab le t and puck, user commands and thei r
parameters (e x c e p t t ex tua l input) can be spec i f ied using a
cursor t rack ing device. Al ternately, the display manager
could read user commands from funct ion keys~ a command
language, or from a program inter face.

Maintenance of the display necess i ta tes the abi l i ty to
manipulate information to decide when and where to draw
the windows. Decisions on the appearance o f the windows
will determine the amount o f information to necessary to

maintain the display. A simplistic display manager with d is-
jo int windows might have a small number of predef ined v iew-
ing areas. In this scheme, a window is descr ibed by the
viewing area assigned to it. At the other ext reme, a window
descript ion might contain the window boundaries (indicating
the size and posit ion), a t i t le, pen and ink colors, and an
array of f lags indicating which windows overlap this one.
This requires more f ie lds in the descr ipt ion data s t ruc ture
and a method for resolving space conf l ic ts which will be dis-
cussed below. Since s window is updated only when it is
visible, the display manager provides a means for determin-
ing if a window is covered by another.

Finally, the range of graphic operat ions necessary is
minimal. Primitives are needed to draw lines, boxes , and
characters. Assuming these, the graphic rout ines needed by
the display manager include ones to draw the initial screen
configuration, draw a window, display a user message, and
enter a window ti t le. When it is decided tha t a window is to
be updated, the task o f actual ly redrawing tha t window
belongs to the display manager. The capabi l i ty to draw por-
tions of windows is useful. However, this requires the com-
putat ion o f the port ions of windows which should be visible
in a screen area, the determination of which part o f the v i r -
tual terminal screen is in a window portion, and the calcula-
tion of where characters should be clipped, a resource-
intensive se t of calculat ions which may be s lower than
redrawing the ent i re window with no computat ion for in ter-
sect ions.

3.2 . The V i r tua l Termina l Emula to r
A process 's " in te rac t ive" input (output) in a s tandard

operat ing system is normally d i rected from (to) a terminal.
The process normally should have no knowledge about the
terminal from (to) which it is reading (writ ing), though unfor-
tunate ly , this is o f ten not the case. Terminals provide an
array o f hardware funct ions which are invoked by writ ing
special terminal -dependent control sequences. One higher-
level technique Is the use o f a terminal da tabase [JOY81],
which allows programs to be wr i t ten with dev ice indepen-
dence. Common terminal funct ions such as scroll, insert char,
delete line, are looked up in the da tabase with a generic
name; programs need only know these generic names and
not the spec i f ic terminal codes. Most o f the screen manipu-
lation and update (scroll ing, delet ion, etc.), are done in t e r -
minal hardware. The viewing sur face is only updated by
wr i tes to that terminal or typing at the keyboard; the only
s torage of the displayed t e x t is in the terminal 's hardware
character buf fer . The v iewer simply sees a one to one map-
ping of this bu f fe r onto the display sur face,

Currently, much work is being done in the area of v i r -
tua l terminals and n e t w o r k v i r tua l termina l protocols
[LANT70, BAUW78, DAYSO, SCHI78]. Here, perhaps using
some def ined protocol, an operat ing system's low level
operat ing system w r i t e (r ead) primitive does not send
(rece ive) characters d i rect ly to (from) the terminal
hardware, but rather sends to (rece ives from) a v i r tua l t e r -
minal emula to r (v te) . The vir tual terminal emulator is a
universal terminal - - all wr i tes (reads) occur to (from) the
same "brand" o f vir tual terminal. At the process level, then,
the complex i ty o f terminal i / o is great ly reduced, as input
(output) need not be t rans la ted modulo speci f ic dev ices - -
every process does i ts reads (wr i tes) from (to) the same
universal terminal.

Of course, the dev ice- independent to dev ice-
dependent t ranslat ion must be done at some level; this is
the job o f the v i r tua l termina l mapper. This so f twa re must
be capable of accept ing arb i t rary input (output) and format-
ting it on actual dev ice screens. Since the input (output) is
not coming from (going to) a dev ice which has the hardware
to perform screen manipulation operat ions, the vir tual termi-
nal emulator performs these screen manipulation operat ions
in so f tware , operat ing on the vir tual terminal data st ructure.

In Rochester 's instant iat ion o f the virtual terminal
I'LANTT9], the vir tual terminal data s t ruc tures are the line,
the pad, and the w indow. The line Is a queue o f character~

182

(or theoret ica l ly other even ts) that are s tored when input
by the user. The pad is a s tab le s torage data s t ruc ture
which holds the ent i re contents of a vir tual terminal session.
The pad is a two-dimensional, ragged right array o f lines,
accessible by line number and character posit ion within tha t
line. Only a part icular portion o f the pad is displayed on the
actual hardware screen at any time. The user has the abil-
i ty of t ravel ing through all previous output in any pad at will.
Additionally, the pad provides edit ing capabi l i t ies: cursor
movement; character ; word, line, and page deletion; charac-
te r insertion; str ing location and subst i tut ion; t e x t select ion;
etc. One pad may be v iewed in severa l d i f fe ren t windows on
one or more terminals. Thus the pad o f fe rs far more than the
simple vir tual terminal - - it o f f e r s edit ing faci l i t ies normally
reserved for appl icat ion- level editors.

The more conserva t ive BRUWIN s t ra tegy is to build
upon ex is t ing faci l i t ies rather than molding a part icular
operat ing system ex tens i ve l y for the vir tual ~erminal capa-
bility. Thus, the BRUWlN design uses a map, a two -
dimensional array o f characters with a pr ivate cursor, similar
to the pad. Unlike the pad, the map has no ex t raneous
capabi l i t ies such as editing; it simply is a replacement for
the hardware terminal 's character buf fer . That this is less
powerful than the pad concept is unquestionable; but with
the ex i s tence of numerous appl icat ion- level t e x t edit ing
programs, the decision was made to use the simpler, more
conventional, and easier to implement map. Input is t yped
direct ly into the current window's map at the current cursor
position; l ine-correct ion faci l i t ies normally provided by the
hardware terminal device (such as backspace, charac ter
delete and line de le te) are emulated by the vte.

3 .3 . The Task ing M e d i a t o r

Mult iprocessing is r ightful ly a support t ask of the
operat ing system. Often, however, this suppor t has severe
restr ict ions. Some operat ing systems prohibit more than one
process from receiving input from the same terminal or from
sending output to more than one terminal. Others " toss a
coin" in accept ing input, leaving the user confused as to
what process is actual ly going to receive the typed charac-
ters. Similarly, for output, these operat ing syste=ms allow all
processes to wr i te to the terminal whenever necessary,
creat ing a screen of haphazard t ex t .

A prime funct ion of a window manager is to manage the
input /ou tpu t content ion o f multiple processes in a t ran-
sparent and logical way. To support a window manager, an
operat ing system i tse l f must ei ther have built-in abi l i ty to
distinguish between the input and output of multiple win-
dows mapped to the same screen, or a l ternat ively, must
have built on top of it a tasking manager to do the same. It
is this second al ternat ive, the less operat ing system inten-
s ive of the two, which we address below.

In the general BRUWIN design, one process acts as the
mediator , accept ing and routing all input(output) f rom(to) a
screen 's windows. Each window's system shell is inst ructed
to receive input from the shared mediator and send output
to the mediator as opposed to normal terminal input and ou t -
put. (See Fig. 2). We will call these input and output route~
paths.

The mediator may work ei ther ac t i ve l y or pass ive ly . An
ac t ive mediator constant ly polls the input paths of ex is t ing
windows, reading any pending output and sending it to the
vte / task interface to update the virtual terminal. The
pseudocode fo r such a mediator would resemble:

loop f o reve r
loop for each window

i f pending output in out_path(window) then
read (out_buf fer) f rom out_path(window)
w r i t e (out_buf fer) to v te_ task_ in te r face(w indow)

endif
endloop

endloop

Vte output
Dat

Fig. 2 -- The Task ing Med ia to r

Note that this ac t ive polling requires the ex i s tence of a
non-b lock ing read primitive or a method o f determining
whether a path has data to read; since a she;i may never
send output until given some input, using a b lock ing read to
read tha t shel l 's output path invi tes the possibi l i ty of
deadlock.

Because o f the was ted time looping to check for output
on a path, the above method is less desired than the pas-
s ive method. Rather than performing a busy wait, a pass ive
mediator would simply sleep, wait ing for a shell to send a
wakeup signal or w~keup message containing the shell ou t -
put. Such a mediator in Ada, an exper imental language with
support fo r such passive wait ing, would resemble the fo l low-
ing:

i f (mode = PROCESS) then

select
accep t WINDOW1 (in out_buffer)

or
accep t WINDOW2 (in out_buffer)

or

o r

accep t WINDOWn (in out__buffer)
o r

accep t OUT_PATH(CUR_WIN) (in in_buffer)
o r

delay TIME
end select

endif
Here the mediator s leeps fo r TIME seconds be fore timin£
out, wait ing for a rendezvous with an output bu f fe r from any
open entryname (por t) or the input bu f fe r connected with
the current window's input path. Note that the Ada tasking
faci l i t ies provide tota l synchronizat ion and content ion sup-
port for the window manager. Note also that the SELECT
s ta tement is powerful enough to handle both the input and
output paths of the shells at the same time; Ada runtime
routines "randomly" choose which o f the open SELECT a l ter -
nat ives should be accepted. This randomness assures that
one window's output will not glut the system.

3 .4 . V t e / T a s k I n t e r f a c e

Given a tasking fac i l i ty to mediate between the Input
and output o f multiple (shel l) processes and a v te fac i l i ty to
emulate the universal terminal, the BRUWlN design s t ra tegy
needs a method by which to implement the aforement ioned
paths, which link the tasking mediator with the vte.

Many d i f fe ren t s t ra teg ies may be used to implement

183

these paths. In the UNiX operat ing system, processes,
rather than writ ing to (reading from) standard output (input)
f i les (usually the terminal), the shell would subs t i tu te pipes,
special two-ended, synchronized f i les read by one process
and wr i t ten by another. DEC's VMS operat ing system, has a
similar convention, the mailbox, to which many processes
may wr i te messages and from which one process may read
these messages.

Another approach, most appropr iate for a network ne t -
work window manager (in which d i f fe ren t v ir tual terminals
may be maintained on completely d i f fe ren t processors but
may be displayed on the same physical screen) is the
message-based t rans fe r o f input and output. Instead o f
reading from (writ ing to) the physical terminal, a process
would send a message to (read a message from) a port . This
message-based t ransact ion methodology requires a
handshak ing- type synchronizat ion or a more e laborate mes-
sage protocol be tween the mediator and the shells.

A simpler var iat ion is the use of a higher- level language
with built-in, message-based, t ransparent ly synchronized
input and output. The Ada example shown above descr ibes
such a system. Other languages [see HANS7S] o f f e r similar
high- level support, while most languages will allow for such
primitives to be const ruc ted [TREN81, RASH80, JOY81,
FELD7g].

3.5. Display Manager/t ire Interface
With a display manager to control the placement and

drawing of windows, and a vir tual terminal emulator to " fo r -
mat" and hold the input and output of each window's shell,
the BRUWIN design s t ra tegy calls fo r a display manager /v te
in te r face which cor re la tes the map of each v te to the
proper window on the screen. This in te r face is broken into
severa l parts. First, the v te needs to find out the locat ion of
the window. In a network, this might mean the locat ion of
both the hardware dev ice and the locat ion of the window on
the dev ice 's screen. On other systems, the output dev ice
may be predef ined; only the location of the window on the
screen need be found. Secondly, the in te r face needs to
corre late a line in the window data s t ructure a locat ion on
the physical dev ice screen. Finally, the in te r face o f fe rs a
routine to actual ly t rans fe r the t e x t from the v te to the
hardware screen. This module is the virtual terminal mapper
descr ibed earl ier.

3 . 6 . Summary of Structure
To summarize, a BRUWIN-based window manager

requires the fol lowing:

(1) an input dev ice (normally a keyboard)

(2) a cursor t racking dev ice (cursor keys, da ta tab le t and
puck, mouse, l ightpen)

(3) a command in te r face (command language, funct ion
keys, graphical menu-picking)

(4) a screen manipulation scheme which t racks re lat ive
posit ioning and eliminates unnecessary redrawing dur-
ing window movement

(,5) a path fac i l i ty to d iver t normal terminal input and output
to the appropr iate vir tual terminal

(6) a system command in terpre ter (shell) which is able to
read from (wr i te to) the aforement ioned paths rather
than a standard terminal dev ice and may be invoked
multiple times (once for each window).

(7) a vir tual terminal emulator which accepts input and out -
put from the appropr iate paths and manipulates it per
instruct ions spec i f ied for a universal terminal, stor ing
each screen in a map

(8) a fac i l i ty to map the contents o f a virtual terminal to
the corresponding window sur face.

(g) a fac i l i ty to mediate multiple parallel processes, reading
input from the current vir tual terminal "keyboard" and

sending output to the appropr iate vir tual terminal
screens. (This implies of course, tha t any system sup-
porting a BRUWlN-type window manager must allow mul-
t iprocessing).

3.7. Typical operation pipeline
The funct ioning o f the display manager can best be

i l lustrated by outlining the implementation of a user com-
mand. The user enters a command, say c rea te , through some
user i n t e r f a c e . The display manager obtains the boundaries
o f and t i t le of the window, generat ing prompts request ing
these parameters. The returned information is entered into
the descr ipt ion da ta s t ructure for tha t window. Depending
upon the implementation, some more information is computed
as par t of the data manipulation aspec t of the disptay
manager. Graphics rout ines are n e x t cal led by the display
manager to draw the new window.

As another example, consider the change command. To
perform this, the user in te r face and the graphics rout ines
perform the same funct ions as in c rea te : reading user input,
displaying user prompts, and drawing the window in its new
size and position. In addition, the window in i ts old posit ion is
erased. Assuming the windows may compete fo r screen
space, all windows which over lap the window's old posit ion
will now have port ions erased and the re fo re must be
redrawn. Furthermore, windows which in te rsec t these newly
redrawn windows may need to be redrawn (see Fig. 8). The
BRUWlN s t ra tegy for minimizing the number of -.qndows
redrawn is discussed in a la ter sect ion of this paper.

Window D

Window C I

Window A

Window m

R~lrawlng Chain

Fig. 3 -- R e d r a w i n g Chain

Notice tha t redrawing Window B necess i ta tes
redrawing Window C and Window D, even though
Window D does not In tersect Window B. Window A
need not be redrawn because it is underneath Win-
dow B.

4 . I M P L E M E N T A T I O N O V E R V I E W

4.1. Hardware/Software Configuration
BRUWIN is a C language program running on a Digital

Equipment VAX 1 1 / 7 8 0 under the 4.1 re lease of the UNIX
operat ing system distr ibuted by Universi ty of California at
Berkeley and on a Bolt Beranek and Newman C / 7 0 running
Version 7 UNIX. Two vers ions ex is t : one uses a Ramtek
color graphics systems as the display device, the o ther
uses any terminal dev ice with a descr ipt ion avai lable in the
UNIX termcap database [JOY81], a program access ib le da ta -
base containing descr ipt ions o f the fea tu res and control
codes of part icular terminals.

Hooked to the VAX through a UNIBUS connect ion, the
Ramtek g 4 0 0 Graphic Display System is a graphics proces-
sor coupled with a high resolut ion 1 0 2 4 x 1 2 8 0 pixel color

184

window_ in fo rma t i on

t i t le r]
limits r l

windo w Ut le (qr ray o f characters
window boundades

in tersect_ f lags []
v te_ in fo rma t l on

which o ther w indows over lap

number o f t e x t l ines in the window window_length
windew__width number o f charac ters ,in a l ine
current_l ine line number o f terminal cursor
current _cher
char_Bap [l r l

cursor char post ion in cur rent l ine
charac te r map

task_ in fo rma t ion
p r o c i d process number o f terminal 's shel l
to_read_path descr, fo r pa th - to -she l l read f i le
to_wri te_path des cr. fo r pa th - to -she l l wr i te f i le
from_read__path descr, f o r path- f rom-shel l read fee.
f rom_wri te_path descr, fo r path- f rom-shel l wr i te file

Fig. 4 -- BRU~VIN Da ta S t ruc tu res

monitor. Driven by a Z -80 microprocessor, Brown's Ramtek,
has eight 1 0 2 4 x 1280 bi t p lanes which are access ib le only
through the Ramtek instruct ion set. A color lookup tab le
allows user def in i t ion o f up to 28 colors from the 4G96 color
range o f the Ramtek. The Ramtek is equipped with i ts own
keyboard and a Summagraphics BIT PAD da ta tab le t and
puck which maps one - t o -one with the physical screen.
When a hit is sensed on the da ta tab le t (the button on the
puck is p ressed) an interrupt is genera ted on the VAX. The
terminal version runs both on the VAX and the BBN C/70.

The terminals are general ly low resolut ion dev ices
(approx imate ly 24 x 8 0 charac ters) , with opt ional graphics
character sets fac i l i ta t ing the drawing o f boxes . Cursor
t racking is provided by cursor keys; in terrupts are gen-
e ra ted by sending UNIX s ignals.

4.2. Global Data Structures
All information re levan t to a window and assoc ia ted v i r -

tual terminal is en te red in th ree da ta s t ruc tures as
descr ibed in Fig. 4.

These da ta s t ruc tu res are cogected in an array, o f a
size determined by sys tem const ra in ts on the maximum
number o f concurrent windows. Each window is ident i f ied by
i ts index into th is array. Since th is index also indicates the
posit ion o f the window's t i t le in the t i t le menu, i t is cal led
the menu posiUon.

in order t o handle screen space conf l ic ts, each window
is g iven a pr ior i ty number. A window's pdor i ty is analogous to
i ts coord inate on a z-plane. The higher a window's priori ty,
(i ts z -coord inate) , the c loser i t is to the top o f the s tack o f
windows, occupying any screen space which over laps the
x - y boundaries o f lower pr ior i ty windows. Windows which
are a t leas t par t ia l ly obscured by some other window wi th a
higher pr ior i ty are considered covered . The window o f the
ckr rent terminal a lways has the highest priori ty; i t is c losest
in the z -p lane and is the re fo re to ta l l y uncovered.

A wisdow's pr iodty Is by no means cons tan t throughout
i ts l i fe. Any time the current terminal is changed, the window
o f the new current terminal must be moved to the f ron t o f
the z-p lane and the prior i t ies o f t he o ther windows decre -
mented (z -coord ina tes moved fu r the r back in the z-p lane) .
To do this, two arrays are maintained. When indexed with a
window's ident i fy ing number (menu posit ion), the value o f
priority [menu_pos] will be tha t window's priority. Inversely,
when indexed with a window's priori ty, the value o f
menu_position [p r] will be t ha t window's menu posit ion.
These two arrays, then are simply d i f f e ren t representa t ions

o f the same information. A value o f -1 in the pr ior i ty ar ray
indicates tha t the menu posi t ion and da ta s t ruc tu re with
tha t index are current ly unused. Fig. 6 graphical ly
represents t hese relat ionships.

Pan and paper colors are s tandard combinations which
are indexed by a window's menu posit ion. There ere two
cons tan t global arrays, pen[] and paper[] which contain
the index into the color tab le o f the colors in the s tandard
combination. These o f course degenera te to a binary choice
in a monochrome display.

4.3. Display Manager Implementation
On the highest level, the d isplay manager runs the user

command input loop. The execu t ion o f each command entai ls
enter ing information in the window da ta s t ruc ture and
updat ing the display per th is Information.

In order to save cos t ly computat ion o f the contents o f
a part ia l window, our implementaUon only redraws s window
in i ts ent i re ty . Our implementation also uses a s ta t i c sys tem
window. Consequent ly , only the minimum graphics rout ines
a l ready mentioned in the general design are def ined.

The user i n te r face rel ies heav i ly on the da ta tab le t as
a p i ck / l oca te r device. Each time a command is input or a
window speci f ied, a rouUne compares the coord inates
returned by a pick with those o f the command spaces and
the windows to determine which item was picked. The t r a c k -
ing locater ddven by the puck is a lso used to spec i f y w in-
dow boundaries. Besides invoking the user access ib le func -
Uons, the display manager also handles the display o f user
prompts.

Each command fgls in f ie lds o f the window da ta s t ruc -
tures, e i ther by computat ion or by user input. In addit ion, the
menu.position and priority arrays are used to change the
pr ior i ty ordering o f t he windows each Ume a command is
execu ted , making the window involved in the command the
current window.

The change, move, and d e s t r o y commands require the
old window be erased, moving it t o the back o f the z-p lane
and drawing it into the background. An erasure may lead to
the problem o f determining the minimal number o f windows
redrawn - - the redrawing chain. Initially, the window being
erased is t he prob lem rec tang le . The general s t r a t e g y fo r
minimizing redrawing chains is to f ind the c loses t window
which completely covers the problem rectangle, thus elim-
inating the need to be concerned wi th the problem rec tan -
gle. This window becomes the new problem rectangle, and
the algorithm recurses. The algorithm is exp la ined in deta i l
in Fig. 6.

H,l , l , l - , lol , l

Fig. 5 - - Pr io r i t y and menu_posi t ion con f i gu ra t i on

185

] r ocedu re mln.cedraw
(problem_Limits r] ~ boundaries o f problem rectangle
pr ior i ty - - pr ior i ty of problem rectangle
Intersect_f lag [] - - which windows In tersect problem.Omits
to_be_drawn I"1) - - which wIndows will have to be redrawn

- - Assume the problem rectangle Is to be redrawn until a wIndow Is found
- - which covers It.

answer := true

Loop through all windows wi th a higher prlorRy than the problem rectangle
- - start Ing with the highest prior i ty.

I := hum_of_wIndows
wh i le (I > pr ior i ty and answer = t rue) loop

Id= menu_position(i)
i f (I n t e r s e c t f l a g (k l) then

i f (boundaries of window(M) surround problem_grnlta) 1hen
- - Window[Id] boundaries contain the problem rectangle. Therefore,
- - redrawIng window[Id] will cover the problem rectangle.

- - The problem rectangle does not have to be redrawn.

answer := fa lse

The boundaries of wlndow[Id] are a new problem rectangle
- - Mkl.Xedraw 18 called recurs lve ly to deckle which of the
- - wIndows that overlap wIndow[k l] will have to be redrawn. (I f
- - f lag for this window Is set , then it was atraady computed.)

i f n o t (to_beJ: l rawn[Id]) t han
new-prob := boundaries of window(Id)
new_prty := I
new_Jntract := Intersect_f lag ar ray of window
m ln red raw (new_p rob J~ ew_prt y ~ ew_Jntrs c t ,t o_be.J:lrawn)
t o h e drawn(Id) := t rue

end i f

else
- - Wlndow(Id) boundaries do not contain the problem rectangle but
- - t hey do Intersect It.

- - Wlndow(Id) need not be redrawn If a window of higher
- - pr ior i ty contains the Intersection of the problem rectangle
- - and wlndow[Id] . Since this intersection Is a sub-area of the
- - problem rectangle, conskler It a now problem rectangle.

new_prob := intersect ion of problem_Umits, limits of windew(Id)
new_pr ty := I
new_Jntract := Intersect.J lag ar ray of new.4)rob

i f (min.zedraw (new-~orob~ew.,orty~lew_intrsct, to_be_drawn)) then

- - No windows cover the Intersect ion of window(M) and the
- - problem rectangle. Wlndow(Id) must be redrawn. The
- - ; h e boundarlas of window(Id) are a new problem rectangle.
- - MIn_cedraw Is called recurs lve ly to decide which of the
- - wli~dows that overlap window Od) will have to be redrawn.
- - (I f the flag for this window Is set , then It was a l ready
- - computed.)

i f n o t (t o_bedrawn(Id)) linen
new prob := boundaries of wlndow(Id)
new_pr ty := I
new_intrsct := Intersect_f lag array of window
mIn red raw (n ew_p rob ~n e w_p rt y ~n ew_Jn t r sct ,t o h e_d rawn)
to_be_drawn(Id) == true

end i f
end i f

end i f
end i f

endloqp

Fig 6 -- Algor i thm f o r minimizing r ed raw ing chtdns

4.4. Vir tual Terminal Emulator Implementat ion
In the BRUWIN Ramtak implementation and the BRUWIN

Terminal version, the v i r tual terminal emulator is ident ical.
The v i e is spl i t into two par ts : the v ie_ input routine, which
accep ts input and wr i tes it to the screen appropr iate ly , and
the v te_output routine, which accep ts the output from o ther
processes and updates the sc reen accordingly. Both the
input and output par ts are wd t ten to emulate a VT 5 2 - t y p e
terminal. On output , the specia l codes are t rapped, and the
appropr iate s o f t w a r e emulation updates the appropdate
map. On input, the v i e performs special l ine correct ion
acUons upon receiv ing backspace , ca r r i age re tu rn , l ine
feed , and tab. Other charac ters are simply echoed in the
appropr iate p lace in the window map and passed through to
the input path.

4.5. Tasking Implementat ion
Both the Ramtek and Terminal Versions o f BRUWlN use

the same ac t i ve task ing mediator. Every n seconds in both
PROCESS mode and command mode, the mediator loops
through all o f t he open output paths (from_r_path), checking
to see i f anything needs to be read from the path. If so, the
path is read and the charac ters are sent to the v t e to be
updated.

4.6. Vie/Task Inter face Implementat ion
The paths descr ibed above are implemented in the

BRUWlN vers ions through the use o f UNIX pipes. For each
v te , there e x i s t two pipes, one which goes from the v i e to
the mediator and one which goes from the mediator to the
v ie . The v i e checks eve ry n seconds to see i f new charac -
te rs have arr ived a t the current window's keyboard. If so,
the v te wd tes on the to_w_j)ath, sending the charac te rs
down the pipe to be read by the shell. For the BBN Terminal
version, the pipes were rep laced wi th a pseudo-terminal
device driver (p l y) , which looks much the same as the
hardware terminal dr ivers wi thout the hardware in ter face.
Reads and wr i tes to ptys t ake p lace in e x a c t l y the same
way as reads and wd tes to t t ys .

4.7. Mg r /V te Implementat ion
in both the Ramtek and Terminal vers ions o f BRUWIN,

the v t e in te r faces with the display manager through the
x_map, y_map, and put text rout ines. X_map and y_map take
a v i r tual terminal cursor and cor re la te tha t point to a phys i -
cal dev ice coord inate on the screen. The put tex t rout ine
uses does the physical wr i te o f a p iece o f t e x t to the
screen a t the cor re la ted coordinate. For the Ramtek, this
rout ine cal ls a Ramtek graphics instruct ion which sends
down- loaded fon t s to the screen; fo r the Terminal version,
the rout ine simply does d i rect cursor addressing be fo re ca l -
ling the system wr i te rout ine.

5. C O N C L U S I O N S

The BRUWIN pro jec t has shown tha t a v iable window
manager sys tem can be buiR in conjunct ion with an ex is t ing
operat ing sys tem with no s t ructura l changes to tha t epe ra t -
ing system. Though users may sacr i f i ce some e f f i c i ency (as
the code is on a h igher- level than pure operat ing sys tem
primit ives), t hey gain the abi l i ty to use all prev ious ly wr i t ten
and compiled program with no changes. Moreover, with l i t t le
work, the design o f BRUWIN is adaptab le to a va r ie t y o f
dev ices and operat ing systems. The restructur ing o f the
RAMTEK vers ion o f BRLNVIN fo r the Terminal vers ion took less
than a day. The restructur ing o f this Terminal vers ion to run
under BBN's C/ZO UNIX took less than two hours, including
the replacement o f the pipe v t e / t a s k i n te r face wi th the p ty
v i e / t a s k in ter face.

5.1. Further work
Representat ion o f graphics in a window is common in

Xerox PARC's Smalltaik, where graphics images can be
s to red as bit maps and maneuvered. For high resolut ion
graphics, however, a general purpose computing sys tem
cannot a f fo rd to keep large bitmaps l ike the current

186

character maps for a terminal screen. Often, too, graphics
instructions, unlike textual data, are written directly to the
graphics device, making it impossible to intercept some
representation for storage in a virtual graphics terminal emu-
lator. Research needs to be done to develop a way in which
to conveniently store and manipulate graphics data in the
context of a window manager.

An important extension to a window manager is a pro-
gram (rather than user) interface, so that programs, rather
than users are able to access and manipulate windows and
associated virtual terminals.

A higher-level research consideration is the design of a
window manager-manager. This entity would allow one
supervisor program to determine the format of, send data to.
and receive data from specified users' screens. Such a
supervisor would allow, for example, lessons to be dynami-
cally broadcast and rearranged by a professor in a
computer-science equivalent of a language laboratory
[BROW803.

6. ACKNOWLEDGEMENTS
We wish to thank several people for their help on the

BRUWIN project: Andy van Dam, for his initial support of the
idea and subsequent encouragement through BRUWIN's many
iterations; Tom Doeppner, for spending countless hours as
our system sounding hoard; Steve Reiss, for his helpful
advice and expedient code changes; Steve Feiner, for his
often unsolicited but nevertheless extremely valuable
suggestions from BRUWIN's inception; Nicole Yankelovich, fore
careful reading of final drafts; Bill Smith, for his aid in the
formative days of the project; and Dave Johnson, for
several suggested improvement.~ t~ our basic algorithms.

REFERENCES

[Apo1813

[Bsuw78]

[Bdn78]

[BrowS0]

[Eng168]

[Feld7g]

[Fole82]

[GSPCZ9]

[Gold7g]

[HoarT8]

[HoneTg]

[Hone80]

[Joy81]

[LRGTe]

[Lant79]

Apollo Computers Inc., Apollo System Useras
Guide, 19 Alpha Road, Chelmsford, MA 01824,
July 1981.

Bauwens, E. and Magnee, F., "The virtual ter-
minal approach in the Belgian University Net-
work," Computer Networks 2, 4 / 5
(September/October 1978), 297-311.

Bdnch Hanson, Per, '~Distributed processes, a
concurrent programming concept," Comm.
ACM 21, 11 (November, 1978), 934-941.

Brown University Computer Science Depart-
ment, Brown University Instruction Computer
Environment, Brown University, Providence, RI
02912, 1980.

Englebart, Douglas C. and English, William K.,
"A research center for augmenting human
intellect," Proc. 1968 AFIPS FJCC 33, 1 (Fall,
1968), 395-410.

Feldman, Jerome A., "High Level Program for
Distdbuted Computing," Comm. of the ACM 22,
6 (June lg79) , 354-368.

Foley, James and van Dam, Andries, Funda-
mentals of Interactive Computer Graphics,
Addison-Wesley, 1982.

GSPC, "Status Report of the Graphic Stan-
dards Planning Committee," Computer Graph-
ics 13, 3 (August, 1979).

Goldberg, Adele and Robson, David, "A Meta-
phor for User Interface Design," Proceedings
of the Twelfth Hawaii International Conference
on System Sciences 6, 1 (1979), 148-157.

Hoare, C.A.R., "Communicating sequential
processes," Comm. ACM 21, 8 (August,
1978), 666-677.

Honeywell,, Rationale for the Design of the
Green Programming Language, Honeywell Sys-
tems and Research Center, Minneapolis,
MN 55413, March 16, 1979.

Honeywell,, Reference Manual for the Ads Pro-
gramming Language, Honeywell Systems and
Research Center, Minneapolis, MN 55413,
November, 1980.

Joy, William and Horton, Mark, "TERMCAP,"
UNIX Programmers Manual, Seventh Edition,
Berkeley Release 4.1 (June, 1981).

Learning Research Group, Personal Dynamic
Media, Xerox PsIo Alto Research Center, Palo
Alto, CA 94304, March 1976.

Lantz, Keith A. and Rashid, Richard F., "Virtual
terminal management in a multiple orocess

187

[L a n t 8 0]

l u s t ? 9]

[McCr78]

[Hew.To]

[n e s h 8 0]

[Sch i78]

[S h a w 7 6]

[Symb81]

[T a l t 7 7]

[Tei t81]

[Tesl81]

[Tren81]

[WegnSO]

envi rmlment , " Proceedings of the Seventh
Symposium on Operating Systems Principles
(December 10 -12 , 1979) , 66 -9? .

Lantz, Ke i th /~ , "Uniform Inter faces for Distr i -
buted Systems," TR63, PhJ). Thesis, Com-
puter Science Department, Univers i ty o f
Rochester, Rochester, NY 14627 , May 1960.

Lister, A.M., Fundamentals o f Operating Sys-
tems, Sp~nger-Verlag, New York, 1979 .

MeCrossin, J.M., O'Hara, R.P., and Kuster, L R ,
"A t ime-shar ing display terminal session
manager.," IBM System Journal 17, 3 (1 9 7 8) ,
2 6 0 - 2 7 6 .

Newman, William and Spreull, Robert, Pr inc i -
pies of Interactive Computer Graphics,
McGraw-Hill, 1979 .

Hashid, Richard F., "An Interprocess Communi-
cat ions Faci l i ty for UNIX," Technical Report,
Camegie-Mel lon Universi ty, Pit tsburgh, P~,
March 1980 .

Schicker, P. and Duenld, A., "The v i r tual termi-
nal def in i t ion," Computer Networks 2, 6
(December 1978) , 4 2 9 - 4 4 1 .

Shaw, Nan, Operating Systems Fundamentals,
Prentice-Hail , Englewood Cliffs, NJ, 1976 .

Symbolics, Inc., Symbolics Software, 2 1 1 5 0
Cali fa St reet , Woodland Hills, CA 0 1 3 6 7 ,
1961.

Teitelman, Warren, "A Display Oriented
Programmer's Assis tant , " Report CSL-77-3 ,
Xerox Pale Alto Research Center, Pale Alto,
CA 9 4 3 0 4 , March 1977.

Teitelman, Warren and Masinter, Larr / , "The
Interl isp Programming Environment," Computer
14, 4 (April 1961), 26 -33 .

Tusler, Larry, "The Smalltalk Environment,"
BYTE 6, 8 (August 1961) , 9 0 - 1 4 7 .

Trent, Barry A. and Meyrowi tz, Norman, ALTU:
An Aria-l ike Tasking Faci l i ty for UNIX, Brown
Universi ty, Providence, RI 0 2 9 1 2 , 1981 .

Wegner, Peter, Programming with /Ida: An
Introduction by Means of Graduated Examples,
Prentice-Hail, Englewood Cliffs, N J, 1980 .

Appendix A

- . - I

• j

i
a

I
- i

I
I

i

- I

i

• I

A v iew o f BRUWlN a t the s tar t . The user has the hardcopy,
create, move, change, destroy, and qui t commends to chose
from.

T ~ q e r 28 I I : a 1 S I t

• -j . .

1 :: : : /
! : n " I

am~w* I

i
mmJm~

m
I
i

I

!

Here, the user has c reated a w indow t i t led "c lock" by p ick-
ing t w o points on the w indow's diagonal, and has e x e c u t e d
a program whil=h updates a c lock once per minute.

: i n S : ~ i em mJ~ l l , ~ im
l i l 7l l i r 4 t i l l l - - l a l h l m w d
l i ~ 7= m J ~ t S , .
l i r a 71 m iw l t o l 6 - - l i i N

t im 7z u i " n i q t e l d - - fm immd
J * w i t 4 ~ © i i ~ t , m J ~ . 8

:

y ~ ~ 21l e l t l 7

: . , , , , - . . , , . f , • ! : : ;
" " i . :

MENU

Oms tB

k
¢ lmm

The user has c reated the s ta tus w indow end subsequent ly
buried i t w i th the ed i tor window. The ed i tor window is run-
ning a fu l l -screen UNIX edi tor. Note tha t the program in the
edi tor has been wr i t ten and saved away ; the user can leave
this w indow and en ter the compile window wi th assurances
tha t the s t a t e of t he ed i tor w indow will remain the same.
Note t ha t the compile window has severa l emor messages
concerning testpg.c - - which is st i l l v is ib le on the screen.

188

- j :
i :: i h

I

i
i

i

Here, some changes have been made to the program in the
editor window and the compile window has again been
entered. The program runs, but produces erroneous output.

m m m

l e e ~ o l ~ ~ 4 e

i W
Here, the s ta tus window is brought up on top. Note the
stripe in the t iUe menu which indicates the current window.
Note also tha t the window called buried is l isted in the t i t le
menu but is obscured.

..,~

z

J
The user corrects the mistakes, and again runs the program
in the compile window. This time, the program runs properly.
Note that throughout this session, the clock has been
updating steadily.

~ ;ml I~ , i l k l l l I~

m nw 211 e l 3o: l s ~

" 4 W - - " E
: :: i ' - . "

I " I ' J

rmam !

-m

m

m

m m m

Here by touching the buried entry on the t i t le menu, w e bring
the buried window on top. Next we pick the move command
and move the window to the lower left . We then touch the
change command and make the shape of compile short and
wide.

189

