BRUWIN: An Adaptable Design Strategy
for Window Manager/Virtual Terminal Systems

Norman Meyrowitz
Margaret Moser

Department of Computer Science
Brown University
Box 1910
Providence, Rhode isiand 02812

ABSTRACT

With only one process viewable and operational at any moment, the
standard terminal forces the user to contlnually switch between contexts.
Yet this Is unnatural and counter-intultive to the norma!l working environment
of a desk where the worker Is able to view and base subsequent actions on
multiple pleces of information.

The window manager s an emerging computing paradigm which
aflows the user to create multiple terminals on the same viewlng surface
and tc display and act upon these simultaneous processes without loss of
context. Though several research efforts in the past decade have Intro-
duced window managers, they have heen based on the design or major
overhaut of a language or operating system; the window manager becomes
a focus of -- rather than a tool of -- the system. While many of the exlst-
Ing Implementations provide wide functionalilty, most implementations and
their assoclated designs are not readlly available for common use; extensi-
bllity is minimal.

This paper describes the deslgn and implementation of BRUWIN, the
BRown Unlversity WINdow manager, stressing how such a deslgn can be
adapted to a varlety of computer systems and output devices, ranging from
alphanumeric terminals to high-resolution raster graphics disptays, The
paper first gives a brief overview of the general window manager paradigm
and existing examples. Next we present an explanation of the user-level
functions we have chosen to include In our general design. We then
describe the structure and design of a window manager, outlining the flve
important parts in detall. Finally, we describe our current Implementation
and provide a sample session to highiight important features.

1. INTRODUCTION

Normal computer terminals provide a two-dimensional
window into the computing environment. Typleally, the com-
puter system, whather it be a personal computer or a main-
frame, offers some command interpreter as part of its
operating system. From this command interpreter, the user
is able to "converse" with the system using functions sup-
plied by the command interpreter: querying the number of
users, sending messages, checking the time, compiling pro-
grams, etc. Some functions of the command interpreter give
entrance Into sub-environments like the editor, the symbolic
debugger, and the mail system. in addition, the command
interpreter usually provides both a special command parsing
to pick out specially defined characters (e.g character
delate) and keywords, and an interface to the file system,

Authors' present address: Bolt Beranek and Newman, 10 Moulton
Stre ot, Cambridge, MA 02238

This work was sponsored In part by a grant from the Digital Equipment
Corporation and In part by the Office of Naval Research, under contract No.
NOQO 14~78-C~0396.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 ACM 0-89791-062-1-12/81-0180 $00.75

The single terminal model requires that the user only
view one context at any moment; either the editor or the
compiler's error messages or the mailbox, etc. Yet, like an
executive at a desk, the computer user should be able to
view multiple sources of information; the clock and the adi-~
tor and the error messages and the mailbox should be both
viewable and accessible without any change in contaxt. In
essence, the system should provide an arbitrary number of
full-fledged virtual (non-hardware) terminals with which the
user can switch back and forth at will without any loss of
information or context. The user should be able to bury such
windows at the bottom of the "desk” and bring them on top
without a loss of state. Additionally, processes should be
able to operate and update the display in parallel. Thus, the
new paradigm requires that the following conditions be met:

(1) The user should have compfete control of the size and
location of windows.

(2) The user should be capable of creating and running
parallel processes,

(3) The user should be guaranteed that the state of a win~
dow remains alive regardless as to whether that win-
dow is being used at the present time.

(4) The user should have to make no changes to existing
software when a window manager/virtual terminal sys-
tem is introduced to the computer system.

1.1. Terminology

Many of the terms used throughout this article are
common to several areas of computer science, though unfor-
tunately, the definitions of these terms often differ. A win-
dow indicates a rectangular arcza of an actual display sur-
face which holds the contents of a simulated terminal. A vir=
tual terminal is a software emulation of a hardware terminal.
Typically this virtual terminal is designed to alleviate device
dependencies. A standard communication method or protocol
is used by programs that need to write to a display device;
the virtual terminal emulator maintains a virtual image of the
display screen and performs the mapping of this virtual
screen to the variety of physical display devices available
in a given system,

1.2. Existing systems

Several highly successful attempts at window
manager/virtual terminal systems have been made. in
XEROX Palo Alto Research Center's Smalltalk, [LRG78,
GOLD79, TESL81], the window is a primitive of the environ-
ment. The XEROX Interlisp Programmer's Assistant [TEIT77,
TEIT81] allows the user of the ALTO minicomputer to create
and manipulate windows into the MAXC computer system at
PARC. The RIG network [LANT79, LANT80] at the University
of Rochester is an important work in the generalization of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800216.806607&domain=pdf&date_stamp=1981-12-01

windows and virtual terminals. RIG's Virtual Terminal
Management System (VIMS) is a major and highly-
integrated component of the RIG distributed operating sys-
tem. [MCCR78], [APPO81], and [SYMB81] provide several
other examples of existing systems.

1.3. Qur System

Though many of the above systems provide wide func-
tionality, most are specific to particular computers,
machines, or operating systems, and require the applications
programs to have some a priori knowledge of the existence
of the window manager/virtual terminal system. Computer
users often have huge amounts of effort and time invested
Iin their software; an aim of the BRUWIN project has been to
create a useful tool within the structure and constraints of
the existing computing facilities while requiring no modifica-
tion of existing applications programs. The product is a
general system- and device-independent window
manager/virtual terminal system design supplemented by
modular systam- and device-dependent routines only at the
lowest level. We describe the functionality, structure,
implementation and use in the following sections.

2. FUNCTIONALITY

BRUWIN allows the user to create on the viewing sur-
face (desk) any number of arbitrarily-sized, arbitrarily-
positionad rectangular windows (pieces of paper), each of
which behaves exactly like a standard hardware terminal. A
window can overlap other windows, complietely cover other
windows, or be completely disjoint from other windows.
Each has its own private command interpreter subsequently
called the shell (using UNIX* terniinology). Each shell
operates in parallel with the others; likewise, each window is
updated in parallel with the others. When switching from one
window to another, the processes running in all the windows
retain their respective states. Because of this, processes
generating terminal output will continue to generate output;
processes walting for terminal input will continue to wait for
terminal input.

BRUWIN gives the user two modes in which to operate,
command mode and process mode. Command mode allows
the user to select display manager functions and viewing
conditions, while process mode simply allows a user to use a
particular window as the current window. The concept of a
current window is very important; though an arbitrary
number of windows may be available and active at the same
time, the user (due to human limitations) can only be typing
into one window, the current window, at any given time.

Associated with a window is a pen color and a paper
color. The window is depicted as a sheet of paper in the
paper color with characters printed in a complimentary pen
color. On a monochrome dispfay device, the pen color is the
foreground color and the paper color is the background color.
The window is topped by a ribbon (banner) which contains
the user-assigned window title. This name aids the user in
quickly distinguishing between windows; it has no meaning
other than that attached to it by the user.

2.1. Command Mode

The BRUWIN user interface is based on the following
minimum set of commands:

Cancel

Create

Change

Move

Destroy

Quit
We praesume only that the user has a keyboard and some
method of driving a tracking cursor used minimally to pick
window coordinates and optionally for menu-picking and
light-button handling.

XUNIX |s a Trademark of Bell Laboratorles

181

The cancel command allows a user to terminate the
currently picked BRUWIN command. This only works in non-
critical sections of the command, so that important steps in
display management (e.g. updating a linked list) are not
halted in the middle.

Create allows the user to define a new window. The
system picks the next standard paper/pen combination (for
monochrome screens this is black and white) and prompts
the user to pick two points designating the diagonal of the
window. The window outline is drawn, and a window name is
prompted for and typed, the shell is started, the window is
made the current window, and process mode is entered.

The user may create windows anywhere. Just as
papers can overlap one another on a desk, so can windows
overiap one another on the display surface. This is essen-
tial, as the power of a window manager system lies in the
abllity to bury and subsequently retrieve windows like
pleces of paper with the guarantee that the associated
processes are still running.

Change allows the user to change the size of an exist-
ing window. After picking the change menu entry, the user
is prompted to pick an existing window by either pointing to
it in the window space or pointing to its name in the title
menu. (Containing the names of all the windows, the title
menu exists to take care of the possibility of completely
covered windows. Any time a window is prompted for, the
user may pick either the window itself or its name from the
titte menu). Next, the user is prompted to pick the two new
diagonal points of the window. The window is redrawn, the
window is made the current window, and process mode is
entered.

Move is a degenerate case of the change command;
the window maintains the same proportion but is simply
translated to another point on the screen. The user is
prompted to pick an existing window as in the change com-
mand. Next, the user picks the new left corner of the win-
dow. The window is redrawn, the window is made the
current window, and process mode is entered.

Destroy effectively "logs out" of a window; it causes
the picked window to be erased and the corresponding shell
and shell processes terminated.

In addition, if the user picks a point on an existing win-
dow, the system performs the current command. This takes
the picked window (which may be partially covered), brings
it on top of the pile of windows, and enters process mode.

2.2. Process Mode

Process mode is simply the mode in which a user can
type into the current window. All windows and their associ-~
ated shells stay active during process mode; after an inter-
nally defined time lapse, any pending output for any existing
window is written to that window's virtual terminal buffer
and (if the window is visible) updated in the appropriate
window on the display surface. This continual update
allows, for example, the ability to have constantly changing
processes like clocks updated without a loss of accuracy.

2.3. Mode Switching

In general, the user will want to move from the current
window into command mode to quickly choose a new current
window. Thus, BRUWIN must provide a quick method with
which to switch from process mode to command mode. For
example, to execute, a quick change from the "editor’ win-
dow to the 'compiler" window while the 'editor" window is
the current window in process mode, the user simply
returns to command mode, moves the cursor to the compiler
window and performs a current command (perhaps by simply
picking a point in that window with the cursor device). The
user is now in process mode in the "compiler’ window.

A typical BRUWIN session is found in Appendix A.

3. STRUCTURE

The BRUWIN design is broken into five major parts:
three main modules (display manager, virtua! terminal emula-
tor, tasking controller), and two interface modules
(display /vte interface, vte/task interface), as shown in Fig.
1. The three main modules have no knowledge of each
other's existence; interaction between the three are com-
pletely governed by the two interface modules. This struc-
ture enables a major module to be replaced with a different
(improved) version with no change to the other modules.
This is especially important for the sake of adaptability.

Display /VTE VTE/Task
interface Interface
Virtuat o from task
Display Terminal Tasking
Emulator
Controller
<w“. ot (v.rE) wout 1o task
Creats, change, move, Create, ond
curent, cancel, deatroy: feeut Output mediate
communication

Fig. 1 -- Structure of BRUWIN

3.1. Display Manager

The display manager is a module which controls the
mapping of windows to the physical device screen, performs
the actual display update, and allows the user to manipulate
the screen image. From a systems point of view, this can be
broken into three parts: the command interface, the manipu-
lation of the information associated with each window, and
the graphical operations.

The command interface encompasses both a mechanism
for receiving and interpreting user commands and the capa-
bility of displaying messages to the user.

User messages include both prompts for user input,
instructions, and error messages. One way to provide the
user messages is to reserve static screen space for a sys-
tem window. Alternatively, user messages could be written
into a dynamic system window, which is only drawn (typi-
cally at or near the cursor) when there is a message to be
displayed and erased as soon as that message is no longer
needed.

The display manager can receive commands in severa!
lexical forms: as function key interrupts, as coordinates
picked from a graphical menu, or as tokens of a command
language; the method is a function of the peripherals avail-
able. With a data tablet and puck, user commands and their
parameters (except textual input) can be specified using a
cursor tracking device. Alternately, the display manager
could read user commands from function keys, a command
language, or from a program interface.

Maintenance of the display necessitates the ability to
manipulate information to decide when and where to draw
the windows. Decisions on the appearance of the windows
will determine the amount of information to necessary to

182

maintain the display. A simplistic display manager with dis-
Joint windows might have a small number of predefined view-
ing areas. In this scheme, a window is described by the
viewing area assighed to it. At the other extreme, a window
description might contain the window boundaries (indicating
the size and position), a title, pen and ink colors, and an
array of flags indicating which windows overlap this one.
This requires more fields in the description data structure
and a method for resolving space conflicts which will be dis-
cussad below. Since a window is updated only when it is
visible, the display manager provides a means for determin-
ing if a window is covered by another,

Finally, the range of graphic operations necessary is
minimal. Primitives are needed to draw lines, boxes, and
characters. Assuming these, the graphic routines needed by
the display manager inciude ones to draw the initial screen
configuration, draw a window, display a user message, and
enter a window title. When it is decided that a window is to
be updated, the task of actually redrawing that window
belongs to the display manager. The capability to draw por-
tions of windows is useful. However, this requires the com~
putation of the portions of windows which should be visible
in a screen area, the determination of which part of the vir-
tual terminal screen is in a window portion, and the calcula-
tion of where characters should be clipped, a resource-
intensive set of calculations which may be slower than
redrawing the entire window with no computation for inter-
sections.

3.2. The Virtual Terminal Emulator

A process's 'interactive” input (output) in a standard
operating system is normally directed from (to) a terminal.
The process normally should have nho knowledge about the
terminal from (to) which it is reading (writing), though unfor-
tunately, this is often not the case. Terminals provide an
array of hardware functions which are invoked by writing
special terminal-dependent control sequences. One higher-
level technique is the use of a terminal database [JOY81],
which allows programs to be written with device indepen-
dence. Common terminal functions such as scroll, insert char,
delete line, are looked up in the database with a generic
name; programs need only know these generic names and
not the specific terminal codes. Most of the screen manipu-
lation and update (scrolling, deletion, etc.), are done in ter-
minal hardware. The viewing surface is only updated by
writes to that terminal or typing at the keyboard; the only
storage of the displayed text is in the terminal's hardware
character buffer. The viewer simply sees a one to one map-
ping of this buffer onto the display surface.

Currently, much work is being done in the area of vir-
tual terminals and network virtual terminal protocols
[LANT79, BAUW78, DAY80, SCHI78]. Here, perhaps using
some defined protocol, an operating system's low level
operating system write (read) primitive does not send
(receive) characters directly to (from) the terminal
hardware, but rather sends to (receives from} a virtual ter-
minal emulator (vte). The virtual terminal emulator is a
universal terminal -~ all writes (reads) occur to (from) the
same ''brand" of virtual terminal. At the process level, then,
the complexity of terminal i/o is greatly reduced, as input
(output) need not be translated modulo specific devices --
every process does its reads (writes) from (to) the same
universal terminal.

Of course, the device-independent to device~
dependent translation must be done at some level; this is
the job of the virtual terminal mapper. This software must
be capable of accepting arbitrary input (output) and format-
ting it on actual device screens. Since the input (output) is
not coming from (going to) a device which has the hardware
to perform screen manipulation operations, the virtual termi-
nal emulator performs these screen manipulation operations
in software, operating on the virtual terminal data structure.

In Rochester's instantiation of the virtual terminal
[LANT79], the virtual terminal data structures are the line,
the pad, and the window. The line Is a queue of characters

(or theoretically other events) that are stored when input
by the user. The pad is a stable storage data structure
which holds the entire contents of a virtual terminal session.
The pad is a two-dimensional, ragged right array of lines,
accessible by line number and character position within that
line. Only a particular portion of the pad is displayed on the
actual hardware screen at any time. The user has the abii-
ity of traveling through ali previous output in any pad at will.
Additionally, the pad provides editing capabilities: cursor
movement; character; word, line, and page deletion; charac-
ter insertion; string location and substitution; text selection;
etc. One pad may be viewed in several different windows on
one or more terminals. Thus the pad offers far more than the
simple virtual terminal -- it offers editing facilities normally
reserved for application-level editors.

The more conservative BRUWIN strategy is to build
upon existing facilities rather than molding a particular
operating system extensively for the virtual terminal capa-
bility. Thus, the BRUWIN design uses a map, a two-
dimensional array of characters with a private cursor, similar
to the pad. Unlike the pad, the map has no extraneous
capabilities such as editing; it simply is a replacement for
the hardware terminal's character buffer. That this is less
powerful than the pad concept is unquestionable; but with
the existence of numerous application-level text editing
programs, the decision was made to use the simpler, more
conventional, and easier to implement map. Input is typed
directly into the current window's map at the current cursor
position; line-correction facilities normally provided by the
hardware terminal device (such as backspace, character
delete and line delete) are emulated by the vte.

3.3. The Tasking Mediator

Multiprocessing is rightfully a support task of the
operating system. Often, however, this support has severe
restrictions. Some operating systems prohibit more than one
process from receiving input from the same terminal or from
sending output to more than one terminal. Others "toss a
coin” in accepting input, leaving the user confused as to
what process is actually going to receive the typed charac-
ters. Similarly, for output, these operating systems allow all
processes to write to the terminal whenever necessary,
creating a screen of haphazard text.

A prime function of a window manager is to manage the
input/output contention of multiple processes in a tran-
sparent and logical way. To support a window manager, an
operating system itself must either have built-in ability to
distinguish between the input and output of multiple win-
dows mapped to the same screen, or alternatively, must
have built on top of it a tasking manager to do the same. It
is this second alternative, the less operating system inten-
sive of the two, which we address below.

In the general BRUWIN design, one process acts as the
mediator, accepting and routing all input(output) from(to) a
screen's windows. Each window's system shell is instructed
to receive input from the shared mediator and send output
to the mediator as opposed to normal terminal input and oute~
put. (See Fig. 2). We will call these input and output routes
paths.

Tne mediator may work either actively or passively. An
active mediator constantly polls the input paths of existing
windows, reading any pending output and sending it to the
vte/task interface to update the virtual terminal. The
pseudocode for such a mediator would resemble;

loop forever
loop for each window
if pending output in out_path(window) then
read (out_buffer) from out_path(window)
write (out_buffer) to vte_task_interface(window)
endif
endloop
endloop

183

Vte output

Fig. 2 -- The Tasking Mediator

Note that this active polling requires the existence of a
non-blocking read primitive or a method of determining
whether a path has data to read; since a she! may never
send output until given some input, using a blocking read to
read that shell's output path invites the possibility of
deadlock.

Because of the wasted time looping to check for output
on a path, the above method is less desired than the pas-
sive method. Rather than performing a busy wait, a passive
mediator would simply sleep, waiting for a shell to send a
wakeup signal or wekeup message containing the shell out-
put. Such a mediator in Ada, an experimental language with
support for such passive waiting, would resemble the follow-
ing:

if {(mode = PROCESS) then

select

accept WINDOW1 (in out_buffer)
or

accept WINDOW2 (in out_buffer)
or

or
accept WINDOWn (in out_buffer)
or
accept OUT_PATH(CUR_WIN) (in in_buffer)
or
delay TIME
end select

endif

Here the mediator sleeps for TIME seconds before timing
out, waiting for a rendezvous with an output buffer from any
open entryname (port) or the input buffer connected with
the current window's input path. Note that the Ada tasking
facilities provide total synchronization and contention sup-
port for the window manager. Note also that the SELECT
statement is powerful enough to handle both the input and
output paths of the shells at the same time; Ada runtime
routines "randomly” choose which of the open SELECT alter-
natives should be accepted. This randomness assures that
one window's output will not glut the system.

3.4. Vte/Task Interface

Given a tasking facility to mediate between the input
and output of multiple (shell) processes and a vte facility to
emulate the universal terminal, the BRUWIN design strategy
needs a method by which to implement the aforementioned
paths, which link the tasking mediator with the vte.

Many different strategies may be used to implement

these paths. In the UNIX operating system, processes,
rather than writing to (reading from) standard output (input)
files (usually the terminal), the shell would substitute pipes,
special two-ended, synchronized files read by one process
and written by another. DEC's VMS operating system, has a
similar convention, the mailbox, to which many processes
may write messages and from which one process may read
these messages.

Another approach, most appropriate for a network net-
work window manager (in which different virtual terminals
may be maintained on completely different processors but
may be displayed on the same physical screen) is the
message-based transfer of input and output. instead of
reading from (writing to) the physical terminal, a process
would send a message to (read a message from) a port. This
message-based transaction methodology requires a
handshaking-type synchronization or a more elaborate mes-
sage protocol between the mediator and the shells.

A simpler variation is the use of a higher-level language
with built-in, message-based, transparently synchronized
input and output. The Ada example shown above describes
such a system. Other languages [see HANS78] offer similar
high-level support, while most languages will allow for such
primitives to be constructed [TREN81, RASH80, JOY81,
FELD79].

3.5. Display Manager /Vte Interface

With a display manager to control the placement and
drawing of windows, and a virtual terminal emulator to '"for-
mat" and hold the input and output of each window's shell,
the BRUWIN design strategy calls for a display manager/vte
interface which correlates the map of each vte to the
proper window on the screen. This interface is broken into
several parts. First, the vte needs to find out the location of
the window. In a network, this might mean the location of
both the hardware device and the location of the window on
the device's screen. On other systems, the output device
may be predefined; only the location of the window on the
screen need be found. Secondly, the interface needs to
correlate a line in the window data structure a location on
the physical device screen. Finally, the interface offers a
routine to actually transfer the text from the vte to the
hardware screen. This module is the virtual terminal mapper
described earlier.

3.6. Summary of Structure

To summarize, a BRUWIN-based window manager

requires the following:

(1) an input device (normally a keyboard)

(2) a cursor tracking device (cursor keys, data tablet and
puck, mouse, lightpen)

(3) a command interface (command language, function
keys, graphical menu-picking)

(4) a screen manipulation scheme which tracks relative

positioning and eliminates unnecessary redrawing dur-
ing window movement

a path facility to divert normal termina! input and output
to the appropriate virtual terminal

a system command interpreter (shell) which is able to
read from (write to) the aforementioned paths rather
than a standard terminal device and may be invoked
multiple times (once for each window).

a virtual terminal emulator which accepts input and out-
put from the appropriate paths and manipulates it per
instructions specified for a universal terminal, storing
each screen in a map

a facility to map the contents of a virtual terminal to
the corresponding window surface.

a facility to mediate multiple parailel processes, reading
input from the current virtual terminal "keyboard" and

(8)

(6)

N

(8)

(9)

184

sending output to the appropriate virtual terminal
screens. (This implies of course, that any system sup~
porting a BRUWIN-type window manager must allow mut-
tiprocessing).

3.7. Typical operation pipeline

The functioning of the display manager can best be
llustrated by outlining the implementation of a user com-
mand. The user enters a command, say create, through some
user interface. The display manager obtains the boundaries
of and title of the window, generating prompts requesting
these parameters. The returned information is entered into
the description data structure for that window. Depending
upon the implementation, some more information is computed
as part of the data manipulation aspect of the display
manager. Graphics routines are next called by the display
manager to draw the new window.

As another example, consider the change command. To
perform this, the user interface and the graphics routines
perform the same functions as in create: reading user input,
displaying user prompts, and drawing the window in its new
size and position. In addition, the window in its old position is
erased. Assuming the windows may compete for screen
space, all windows which overlap the window's old position
will now have portions erased and therefore must be
redrawn. Furthermore, windows which intersect these newly
redrawn windows may need to be redrawn (see Fig. 8). The
BRUWIN strategy for minimizing the number of ‘indows
redrawn is discussed in a later section of this paper.

Window D
Window C
Window B
Window A Redrawing Chain
Fig. 3 ~- Redrawing Chain
Notice that redrawing Window B necessitates

redrawing Window C and Window D, even though
Window D does not intersect Window B. Window A
need not be redrawn because it is underneath Win-
dow B.

4. IMPLEMENTATION OVERVIEW
4.1. Hardware/Software Configuration

BRUWIN is a C language program running on a Digital
Equipment VAX 11/780 under the 4.1 release of the UNIX
operating system distributed by University of California at
Berkeley and on a Bolt Beranek and Newman C/70 running
Version 7 UNIX. Two versions exist: one uses a Ramtek
color graphics systems as the display device, the other
uses any terminal device with a description available in the
UNIX termcap database [JOY81], a program accessible data-
base containing descriptions of the features and control
codes of particular terminals.

Hooked to the VAX through a UNIBUS connection, the
Ramtek 9400 Graphic Display System is a graphics proces-
sor coupled with a high resolution 1024 x 1280 pixel color

window_information

title [window title (array of characters)
limits [1 window boundaries

intersect_fla which other windows overla
vte_information

window_length number of text lines in the wind%
window_width number of characters in a line
current_line line number of terminal cursor
current_char cursor char postion in current line
char_ma character ma|

task_information

proc_id _process number of terminal's sheil
to_read_path descr. for path-to-shell read file
to_write_path descr. for path-to-shell write file
from_read_path descr. for path-from-shell read file
from_write_path descr. for path-from-shell write filej

Fig. 4 -- BRUWN Data Structures

monitor. Driven by a Z-80 microprocessor, Brown's Ramtek,
has eight 1024 x 1280 bit planes which are accessible only
through the Ramtek instruction set. A color lookup table
allows user definition of up to 28 colors from the 4G96 color
range of the Ramtek. The Ramtek is equipped with its own
keyboard and a Summagraphics BIT PAD data tablet and
puck which maps one-to-one with the physical screen.
When a hit is sensed on the data tablet (the button on the
puck is pressed) an interrupt is generated on the VAX. The
terminal version runs both on the VAX and the BBN C/70.

The temminals are generally low resolution devices
(approximately 24 x 80 characters), with optional graphics
character sets facilitating the drawing of boxes. Cursor
tracking is provided by cursor keys; interrupts are gen-
erated by sending UNIX signals.

4.2. Global Data Structures

All information relevant to a window and associated vir-
tual terminal is entered in three data structures as
described in Fig. 4.

These data structures are collected in an array, of a
size determined by system constraints on the maximum
number of concurrent windows. Each window is identified by
its index into this array. Since this index also indicates the
position of the window's title in the title menu, it is called
the menu position.

In order to handle screen space conflicts, each window
is given a priority number. A window's priority is analogous to
its coordinate on a z-plane. The higher a window's priority,
(its 2-coordinate), the closer it is to the top of the stack of
windows, occupying any screen space which overlaps the
x-y boundaries of lower priority windows. Windows which
are at least partially obscured by some other window with a
higher priority are considered covered. The window of the
carrent terminal always has the highest priority; it is closest
in the z-plane and is therefore totally uncovered.

A window's priority is by no means constant throughout
its life. Any time the current terminal is changed, the window
of the new current terminal must be moved to the front of
the z-plane and the priorities of the other windows decre-
mented (z-coordinates moved further back in the z-plane).
To do this, two arrays are maintained. When indexed with a
window's identifying number (menu position), the value of
priority [menu_pos] will be that window's priority. Inversely,
when indexed with a window's priority, the value of
menu_position [pr] will be that window's menu position.
These two arrays, then are simply different representations

185

of the same information. A value of -1 in the priority array
indicates that the menu position and data structure with
that index are currently unused. Fig. § graphicaily
represents these relationships.

Pen and paper colors are standard combinations which
are indexad by a window's menu position. There are two
constant global arrays, pen[] and paper[] which contain
the index into the color table of the colors in the standard
combination. These of course degenerate to a binary choice
in a monochrome display.

4.3. Display Manager implementation

On the highest level, the display manager runs the user
command input loop. The execution of each command entails
entering information in the window data structure and
updating the display per this information.

In order to save costly computation of the contents of
a partial window, our implementation only redraws a window
in its entirety. Our implementation also uses a static system
window. Consequently, only the minimum graphics routines
already mentioned in the general design are defined.

The user interface relies heavily on the data tablet as
a pick/locator device. Each time a command is input or a
window specified, a routine compares the coordinates
returned by a pick with those of the command spaces and
the windows to determine which item was picked. The track-
ing locator driven by the puck is also used to specify win-
dow boundaries. Besides invoking the user accessible func-
tions, the display manager also handles the display of user
prompts.

Each command fills in fields of the window data struc-
tures, either by computation or by user input. In addition, the
menu_position and priority arrays are used to change the
priority ordering of the windows each time a command is
executed, making the window involved in the command the
current window.

The change, move, and destroy commands require the
old window be erased, moving it to the back of the z-plane
and drawing it into the background. An erasure may lead to
the problem of determining the minimal number of windows
redrawn -- the redrawing chain. Initially, the window being
erased is the problem rectangle. The general strategy for
minimizing redrawing chains is to find the closest window
which completely covers the problem rectangle, thus elim-
inating the need to be concerned with the problem rectan-
gle. This window becomes the new problem rectangle, and
the algorithm recurses. The algorithm is explained in detail
in Fig. 6.

riomy Window 1
[dfz]s]al{o]1])i
01234586 mﬁl idow 3
T [l
7
Prhrny./’!// 2
i7 \

Fig. 5 -- Priority and menu_position configuration

procedure min_redraw

(problem_timits [] -~ boundaries of problem rectangie

priority -~- priority of probiem rectangle

Intersect_fiag [] -~ which windows intersect problem_imits
to_be_drawn [1) -~ which windows will have to be redrawn

-~ Assume the problem rectangle Is to be redrawn until a window is found
-- which covers it.
answer := true

== Loop through all windows with a higher priority than the problem rectangle
— starting with the highest priority.

1 := num_of_windows
while (1 > priority and answer = true) loop

id = menu_position{l)
If (Intersect_flag(id) then

it (boundarles of window(id) surround problem_limits) then
-- Window[ld] boundaries contain the problem rectangle. Therefors]
--redrawing window[id] will cover the problem rectangle.

-- The problem rectangie does not have to be redrawn.
answer := false

-- The boundaries of window{id] are a new problem rectangle
~= Min_redraw is calied recursively to decide which of the

-- windows that overlap window{id] will have to be redrawn. (if
-~ flag for this window Is set, then It was alréady computed.)

if not (to_be_drawn[id]) then
new_prob := boundaries of window(id)
new_prty := 1

new_ntract := intersect_fiag amray of window
min_redraw (new_prob,new_prty .new_intrsct,to_be_grawn)
to_be_drawn(id) := true

ondif

olse
-~ Window(ld) boundarles do not contain the problem rectangle but
-- they do Intersect it.

-- Window(id) need not be redrawn If a window of higher

-- priority contains the intersection of the probjem rectangle
-- and window[Id]. Since this Intersection Is a sub-area of the
-~ probiem rectangfe, consider it a new problem rectangle.

new_prob := Intersection of problem_Uimits, Iimits of window(id)
new._prty := |
new_intrsct := intersect_flag array of new_prob

if (min_redraw (new_prob,new_prty,new_htrsct,to_be_drawn)) then

~- No windows cover the Intersection of window(id) and the
-~ probfem rectangle. Window(id) must he redrawn. The

~- The boundaries of window(id) are a new problem rectangle.
-- Min_gedraw Is called recursively to decide which of the

~- windows that overlap window (id) will have to be redrawn.
-- (If the flag for this window Is set, then it was akeady

-- computed.)

if not (to_be_drawn(id)) then
new_prob := boundaries of window(id)
new_prty :=1
new_intrsct := Intersoct_flag array of window
min_redraw (new_probnew_prty new_intrsct,to_be_drawn)
to_be_drawn(id) := true
endif
endif
ondif
endif
sndlogp

Fig 6 -- Algorithm for minimizing redrawing chains

186

4.4. Virtual Terminal Emulator Implementation

In the BRUWIN Ramtek implementation and the BRUWIN
Terminal version, the virtual terminal emulator is identical.
The vte is split into two parts: the vte_input routine, which
accepts input and writes it to the screen appropriately, and
the vte_output routine, which accepts the output from other
processes and updates the screen accordingly. Both the
input and output parts are written to emulate a VT §2-type
teminal. On output, the special codes are trapped, and the
appropriate software emulation updates the approprate
map. On input, the vte performs special line correction
actions upon receiving backspace, carriage return, line
feed, and tab. Other characters are simply echoed in the
appropriate place in the window map and passed through to
the input path.

4.5. Tasking Implementation

Both the Ramtek and Terminal Versions of BRUWIN use
the same active tasking mediator. Every n seconds in both
PROCESS mode and command mode, the mediator loops
through alf of the open output paths (from_r_path), checking
to see if anything needs to be read from the path. If so, the
path is read and the characters are sent to the vte to be
updated.

4.6. Vte/Task Interface Implementation

The paths described above are implemented in the
BRUWIN versions through the use of UNIX pipes. For each
vte, there exist two pipes, one which goes from the vte to
the mediator and one which goes from the mediator to the
vte. The vte checks every n seconds to see if new charac-
ters have arrived at the current window's keyboard. If so,
the vte writes on the to_w_path, sending the characters
down the pipe to be read by the shell. For the BBN Terminal
version, the pipes were replaced with a pseudo-terminal
device driver (pty), which looks much the same as the
hardware terminal drivers without the hardware interface.
Reads and writes to ptys take place in exactly the same
way as reads and writes to ttys.

4.7. Mgr/Vte implementation

In both the Ramtek and Terminal versions of BRUWIN,
the vte interfaces with the display manager through the
Xx_map, y_map, and puttext routines. X_map and y_map take
a virtual terminal cursor and correlate that point to a physi-
cal dovice coordinate on the screen. The puttext routine
uses does the physical write of a piece of text to the
screen at the correlated coordinate. For the Ramtek, this
routine calls a Ramtek graphics instruction which sends
down-loaded fonts to the screen; for the Terminal version,
the routine simply does direct cursor addressing before cal-
ling the system write routine.

5. CONCLUSIONS

The BRUWIN project has shown that a viabie window
manager system can be built in conjunction with an existing
operating system with no structural changes to that operat-
ing system. Though users may sacrifice some efficiency (as
the code is on a higher-level than pure operating system
primitives), they gain the ability to use all previously written
and compiled program with no changes. Moreover, with little
work, the design of BRUWIN is adaptable to a variety of
devices and operating systems. The restructuring of the
RAMTEK version of BRUWIN for the Terminal version took less
than a day. The restructuring of this Terminal version to run
under BBN's C/70 UNIX took less than two hours, including
the replacement of the pipe vte/task interface with the pty
vte/task interface.

5.1. Further work

Representation of graphics in a window is common in
Xerox PARC's Smalltalk, where graphics images can be
stored as bit maps and maneuvered. For high resolution
graphics, however, a general purpose computing system
cannot afford to keep targe bitmaps like the current

character maps for a terminal screen. Often, too, graphics
instructions, unlfike textual data, are written directly to the
graphics device, making it impossible to intercept some
representation for storage in a virtual graphics terminal emu-
lator. Research needs to be done to develop a way in which
to conveniently store and manipulate graphics data in the
context of a window manager.

An important extension to a window manager is a pro-
gram (rather than user) interface, so that programs, rather
than users are able to access and manipulate windows and
associated virtual terminals.

A higher-level research consideration is the design of a
window manager-manager. This entity would allow one
supervisor program to determine the format of, send data to.
and receive data from specified users’ screens. Such a
supervisor would allow, for example, lessons to be dynami-
cally broadcast and rearranged by a professor in a
computer-science equivalent of a language laboratory
[BROWSO].

6. ACKNOWLEDGEMENTS

We wish to thank several people for their help on the
BRUWIN project: Andy van Dam, for his initial support of the
idea and subsequent encouragement through BRUWIN's many
iterations; Tom Doeppner, for spending countless hours as
our system sounding board; Steve Reiss, for his helpful
advice and expedient code changes; Steve Feiner, for his
often unsolicited but nevertheless extremely valuable
suggestions from BRUWIN's inception; Nicole Yankelovich, for
careful reading of final drafts; Bill Smith, for his aid in the
formative days of the project; and Dave Johnson, for
several suggested improvements t» our basic algorithms.

187

REFERENCES

[Apol81]

[Bauw78]

[Brin78]

[Brow80]

[Engi68]

[Feld790]

[Fole82]

[GSPC79]

[Gold79]

[Hoar78]

[Hone79]

[Hone80]

[Joy81]

[LRG76]

[Lant79]

Apollo Computers Inc., Apollo System User's
Guide, 19 Alpha Road, Chelmsford, MA 01824,
July 1981.

Bauwens, E. and Magnee, F., *The virtual ter-
minal approach in the Belgian University Net-
work," Computer Networks 2, 4/5
(September/October 1978), 297-311.

Brinch Hansen, Per, '"Distributed processes, a
concurrent programming concept,'* Comm.
ACM 21, 11 (November, 1878), 934-041.

Brown University Computer Science Depart-
ment, Brown University Instruction Computer
Environment, Brown University, Providence, Rl
02912, 1980.

Englebart, Douglas C. and English, William K.,
YA research center for augmenting human
intellect,” Proc. 1968 AFIPS FJCC 33, 1 (Fall,
1968), 395-410.

Feldman, Jerome A., ""High Level Program for
Distributed Computing,'' Comm. of the ACM 22,
6 (June 1979), 354-368.

Foley, James and van Dam, Andries, Funda-
mentals of Interactive Computer Graphics,
Addison-Wesley, 1982.

GSPC, "Status Report of the Graphic Stan-
dards Planning Committee,'" Computer Graph-
ics 13, 3 (August, 1979).

Goldberg, Adele and Robson, David, *'A Meta-
phor for User Interface Design,'' Proceedings
of the Twelfth Hawaii International Conference
on System Sciences 6, 1 (1979), 148-157.

Hoare, C.A.R.,, !'""Communicating
processes,'' Comm. ACM 21,
1978), 666-677.

sequential
8 (August,

Honeywell,, Rationale for the Design of the
Green Programming Language, Honeywell Sys-
tems and Research Center, Minneapolis,
MN 55413, March 15, 1979.

Honeywell,, Reference Manual for the Ada Pro-
gramming Language, Honeywell Systems and
Research Center, Minneapolis, MN 55413,
November, 1980.

Joy, William and Horton, Mark, '""TERMCAP,"
UNIX Programmers Manual, Seventh Edition,
Berkeley Release 4.1 (June, 1981).

Learning Research Group, Personal Dynamic
Media, Xerox Palo Alto Research Center, Palo
Alto, CA 94304, March 1976.

Lantz, Keith A. and Rashid, Richard F., **Virtual
terminal management in a multiple process

[Lant80]

[List79]

[MccCr78]

[Newm79]

[Rash80]

[Schi78]

[Shaw76]

[Symb81]

[Teitz7]

[Teit81]

[Teslg81]

[Tren81]

[Wegn80]

environment,'" Proceedings of the Seventh
Symposium on Operating Systems Principles
(December 10-12, 1979), 86-97.

Lantz, Keith A., "Uniform Interfaces for Distri-
buted Systems," TR63, Ph.D. Thesis, Com-
puter Science Department, University of
Rochester, Rochester, NY 14627, May 1980,

Lister, A.M., Fundamentals of Operating Sys-
tems, Springer-Verlag, New York, 1979.

McCrossin, J.M., O'Hara, R.P., and Koster, L.R.,
"A time-sharing display terminal session
manager.,"" IBM System Journal 17, 3 (1978),
260-275.

Newman, William and Sproull, Robert, Princi-
ples of Interactive Computer Graphics,
McGraw-Hill, 1979.

Rashid, Richard F., ""An Interprocess Communi-
cations Facility for UNIX,'"" Technical Report,
Camegie-Mellon University, Pittsburgh, PA.,
March 1980.

Schicker, P. and Duenki, A., ''The virtual termi-
nal definition,'* Computer Networks 2, 6
{December 1978), 429-441.

Shaw, Alan, Operating Systems Fundamentals,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

Symbolics, Inc., Symbolics Software, 21150
Califa Street, Woodliand Hills, CA 01367,
1981.

Teitelman, Warren, '"A Display Oriented
Programmer's Assistant,'" Report CSL-77-3,
Xerox Palo Alto Research Center, Palo Alto,
CA 94304, March 1977.

Teitelman, Warren and Masinter, Larry, **The
Interlisp Programming Environment," Computer
14, 4 (April 1981), 25-33.

Tesler, Larry, *The Smalltalk Environment,"
BYTE 6, 8 (August 1981), 90-147.

Trent, Barry A. and Meyrowitz, Norman, ALTU:
An Ada-like Tasking Facility for UNIX, Brown
University, Providence, Rl 02912, 1981.

Wegner, Peter, Programming with Ada: An
Introduction by Means of Graduated Examples,
Prentice-Hall, Englewood Cliffs, N, 1980.

188

Appondix A

e

A view of BRUWIN at the start. The user has the hardcopy,
create, move, change, destroy, and quit commands to chose
from.

WENO
Commmeda
Hardcopy
T 20 1%t
e fpr - et
] 1
v T =
s 8 1 s 9 2
N =
"
¢ & 1 1w 8 8 2
s 8 1 s 82 Wendiows
L) 1 w ow 2
m e »n 22n

Here, the user has created a window titled "clock” by pick-
ing two points on the window's diagonal, and has executed
a program which updates a clock once per minute.

- Ev.
t]

€7y sgntax srver

~c™) Line 71 sarningt eld-foskioned
', Vine &1 nesiine in etring or ¢
T Vine §: syntax arver

-c"; 1ine %: werning: ald-tashioned

—
NNN~‘.‘N
-~

"w

inclule <xtdio.h>

int x,u,z
tor (s 8 x < 18 x30)
wrintf ("Ld 3¢ Id\n,x,q,2)

The user has created the status window and subsequently
buried it with the editor window. The editor window is run-
ning a full~screen UNIX editor. Note that the program in the
editor has been written and saved away; the user can leave
this window and enter the compile window with assurances
that the state of the editor window will remain the same.
Note that the compiie window has several error messages
conceming testpg.c ~- which is still visible on the screen.

Tue Gpr 28 81113 1981

7: warning: old-iashiensd

W0
Covmnds
Hadospy
Creats
7: suntax arrer ” 1 PR S
7: miemiog: ale-tamhioned s e 1 1)
: naselina in String o © v 1 o Chempe
wrrer
rning: olé-tashisned s o 1 1 B Destroy
s« 0 1 " 1 3 Gt
fc- tontpg.c ¢ & " 1 3
[iaatpy.c’, 1ine 18 nemtine in soring o LR 1y Wisdows
" festpg.c™, line 12 e areer
S - P m chuck
pe- tentpy-c states
E ».out
pa-ar s
- cougpile

ll

Here, some changes have been made to the program in the
editor window and the compile window has again been
entered. The program runs, but produces erroneous output.

"
k

T
JRO—
I..‘l.l.
LI T 2] ...

!
#lnﬂ:gm]][ﬁ

" RRERRges e
aezesv"‘"'l=

include <stdie.h>

:rhe user corrects the mistakes, and again runs the program
in the compile window. This time, the program runs properly.
Note that throughout this session, the clock has been
updating steadily.

189

BEARNESS-r
eeysed !

7064 for 28 W113

In real iife: B
Smil: Mviniceh
21 secends ldte

Birectery: /mnt/me

e since fpr 27 23:38:12 en t1y22
ans

You, T do windmm.

Here, the status window is brought up on top. Note the
stripe in the title menu which indicates the current window.
Note aiso that the window called buried is listed in the title
menu but is obscured. :

i
?
8
H
g
B

]
-

Here by touching the buried entry on the title menu, we bring
the buried window on top. Next we pick the move command
and move the window to the lower left. We then touch the

change command and make the shape of compile short and
wide.

