
17

Comparative Performance of COBOL programs on Mini vs. Large Computer Systems

Paul J. Jalics
Cleveland State University

Abstract

The comparative performance characteristics of
COBOL programs in a small versus large computer
systems are investigated. The vehicle consists of
a set of synthetic benchmark COBOL programs, each
measuring a particular aspects of COBOL programs;
and in addition a large actual COBOL program.
Measurement of the CPU execution time and the

elapsed clock time for various COBOL computations,
data manipulation, and input/output is made on
both a large scale computer (IBM 370/158) and a
minicomputer (Texas Instruments TI980). Results

of a number of such experiments are presented and
comparisons made between results gotten from the
two systems.

Introduction

The performance aspects of business programs
have, to a considerable extent, been ignored. The
author has sought to explore this area (see [i],
[2]) and gain some insights into the performance
characteristics of business programs, the majority
of which are written in the COBOL programming
language.

The original domain of COBOL is in large
scale computers but now an increasing number of
minicomputers also include COBOL compilers, al-
though typically only a subset of COBOL is sup-
ported. Thus an opportunity was seen for gain-
ing an insight into the comparative performance
of mini vs. large scale computers executing
identical COBOL programs. The particular
large computer available was an IBM 370/158
running with OS/VSI and VS/COBOL (release 1.2)
and the minicomputer available was a Texas In
struments T1980 with 64K words of memory
running with DX980 *D operating system and COBOL/
980 (level 1.0).

First, a set of existing synthetic bench-
mark COBOL programs (see [2]) were run on the
mini and then compared with results of the same
programs run on the IBM 370. In addition, a large
COBOL program called ASM990 consisting of 2530
source lines, the purpose of which was to assemble
T1990 programs (i.e. a cross-assembler originally

executing on IBM370) was compiled and executed on
both machines. Thus ASM990 was used as a test
vehicle for comparing compilation and execution
speeds on the two machines.

1.0 Machine characteristics

Most essential in evaluating the experiments
in this paper are the physical characteristics of
the two computers involved. No introduction to
the IBM 370 system is necessary but a few words
are required to give a general idea of the Texas
Instruments TI 980 minicomputer.

The T1980 is a general purpose 16-bit word
oriented minicomputer with a dedicated register
architecture including 8 registers. The machine
has a rich variety of addressing modes with one
and two word instructions (word = 16 bits). No-
tably missing in the instruction set are byte load/
store and other byte manipulation instructions-

all such manipulation is done via load word and
shift instructions. The T1980 DS31 disk is made
by Diablo and is typical of disk devices connected
to minicomputers. The disk is attached to the
T1980 via a direct memory access port.

Some typical instruction execution times for
the two machines and relevant disk device charac-
teristics are listed below in Table I.

Characteristic IBM 370/158 T1980

16-bit load register .933 microseconds 1.75 microseconds
32-bit load register .588 microseconds 2.75 microseconds
16-bit add 1.16 microseconds 1.75 microseconds
32-bit add .933 microseconds 2.75 microseconds
16-bit multiply 1.41 microseconds 2.25 to 6.25 microseconds

disk type IBM 3350 DS31 (one fixed, one remov.)
disk transfer rate 1.2 megabytes/sec 0.i megabytes/sec
max disk latency 16.7 milliseconds 40 milliseconds
arm positioning i0 to 50 milliseconds 15 to 135 milliseconds
track capacity 19,069 bytes 5632 bytes
of tracks per cyl 30 2

TABLE I. Computer Device Characteristics

i°i Th___ee Synthetic COBOL Benchmarks

i°i.i Data Field Types and Sizes

The first experiment was concerned with the
amount of compute time used in executing typical
arithmetic statements. The statement ADD A TO C.
was chosen and the CPU time measured for 50,000
executions of the statement with both A and C
being numeric data-items of the same size. The
experiment was repeated for every numeric field

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1014031.806627&domain=pdf&date_stamp=1978-08-01

size from PIC 9 to PIC 9(18) and individual se-
quences of 18 experiments for each of the three
data types, namely USAGE DISPLAY, USAGE COMP-3,
and finally USAGE COMP. Figures I and II show the
results of this set of experiments on the IBM/370
VS/COBOL and the T1980 COBOL, respectively. A
number of observations can be made about the data
shown in Figures I and II:

a. On the IBM/370 VS/COBOL one can see that:
(i) usage of COMP is by far the most efficient
for fields up to and including PIC 9(9) (or PIC
$9(8), in general about twice as fast as the next
competitor which is COMP-3; (2) usage of COMP for
fields greater than PIC 9(9) is incredibly in-
efficient being in general about ten times slower
than the other data types, this is due to the in-
efficient nature of the library subroutine called
for arithmetic in this size range; (3) USAGE of
COMP-3 has the most uniform performance over
different field sizes, it is in general about
twice as fast as DISPLAY and one half as fast as
COMP for smaller field sizes. COMP-3 is supported
by the decimal business instructions on the 370;
(4) Odd field sizes are preferred for COMP-3 since
an extra instruction needs to be executed for even
size fields to zero out the unused uppermost digit
in the highest order byte.

18 hardware instructions, and is 20 to 32 times slower
than COMP for field sizes greater than PIC 9(9)
where both COMP and DISPLAY are using library sub-
routines.

c. In comparing the COMP arithmetic on the
two machines, one sees that computations on the
minicomputer T1980 are only 1.4 to 2.5 times
slower than on the IBM 370. This ratio is in line
with the execution speeds of the two machines in-
volved and is the only easy area of comparison
since both machines have hardware instructions for
this da£a type (even for fields over 32 bits
there is considerable hardware support by using a
number of smaller binary fields).

a u , . g ~ ~. DIsP~Y

Data-field size in digits (Pic 9 to Pic 9(18))

11.!

Figure 2.
TI980 COBOL CPU Execution Time vs Data Field Size
for ADD A to C (50,000 Executions)

o Usage l ~ DISPLAY

o ~ k~L ~ C,I~HI ~

Number of digits in data- dig ~ in data-fields (Pic 9 to Pic 9(18))

Figure 1.
IBM370 VS/COBOL CPU Execution Time vs Data Field
Size for ADD A to C (50,000 Executions)

d. In comparing the DISPLAY arithmetic on the
two machines, one finds that execution on the mini-
computer is i00 to 360 times slower than on the
370. The reason for this factor of i00 difference
between COMP and DISPLAY is due to the poor hard-
ware support for character arithmetic and charac-
ter manipulation as opposed to the considerable
hardware support for both character manipulation
and character arithmetic to be found on the IBM/
370. Note that on the 370 DISPLAY fields are con-
verted to packed decimal fields via the PACK hard-
ware instructions and the result is converted back
to DISPLAY character format via the UNPACK hard-
ware instruction. The T1980, like most minicompu-
ters, has no packed arithmetic instructions, nor
PACK and UNPACK instructions, nor even good char-
acter manipulating instructions.

b° On the TI 980 COBOL one can see that: (i)
COMP fields are most efficient since they are backed
by hardware instructions: up to PIC 9(4) by 16-bit
arithmetic, from PIC 9(5) to PIC 9(9) by 32-bit
arithmetic instructions, and for larger fields by
software library routines; (2) COMP-3 fields are
not supported by the hardware, nor the COBOL com-
piler; (3) DISPLAY arithmetic is handled via
library subroutines and are phenomenonally slower
than COMP, in general 150 to 400 times slower than
COMP for field sizes PIC 9(9) and smaller where
DISPLAY compute time increases linearly for DISPLAY
and stays essentially constant for COMP using the

e. The set of experiments run are, of course,
only a sampling of the performance of arithmetic
statements with some deviations to be expected.
For example, on the 370 a similar set of experi-
ments were run using the statement ADD A, B
GIVING C which specifies almost the same computa-
tion and the results were identical except that
for the COMP-3 fields, the execution time just
about doubled, this due to some strange code gener-
ation for COMP-3 fields in connection with GIVING
clauses. Interestingly, the same GIVING experi-
ments run on the T1980 gave execution times 25%
less than for ADD TO for DISPLAY fields and
slightly less for COMP fields.

f. On the 370 it is always more efficient to

use signed fields rather than unsigned ones for all
usages with a I0 to 28% savings in CPU time when
compared to unsigned fields. This happens because
the code generated by the COBOL compiler will after
each arithmetic operation zero out the sign of any
unsigned numeric field. On the other hand, the
execution time of signed and unsigned fields is
identical on the TI980 COBOL.

g. A sequence of computations equivalent to
COMPUTE F = A * B + C / D - E. was executed 50,000
times on both machines with each data-field being
PIC 9(8). This sequence contains all the arith-
metic operators and executed in about 5.5 CPU
seconds on the IBM370 and in 830 CPU seconds on
the TI980 making the minicomputer 150 times slower
than the large computer. Thus the range of 100 to
360 difference for DISPLAY fields mentioned ear-
lier is seen as a reasonable estimate.

1.1.2 Data MOVEs and Alisnment Characteristics

Data alignment should play a significant
role in execution speed of programs. For example,
on the IBM 370 the main memory organization is
such that half-word alignment (address even), full-
word alignment (address divisible by 4), and
double-word alignment (address divisible by 8) are
important. Since all 01 level data-fields start
at the double-word alignment, the COBOL user has
complete control over the alignment of all data-
fields. On the ~1980 minicomputer, the only
alignment of interest is word alignment (data
starts on a word boundary) and in COBOL all 01
data-fields start word aligned. The following
measurements of alignment performance were con-
ducted:

a. The complete set of ADD A TO Co was orig-
inally run with A and C both completely aligned
since each was declared at the Ol level. The de-
clarations were changed so that both A and C
started as the second character of an 01 record and
thereby having no alignment. The set of experi-
ments was rerun on the IBM 370 and very sur-
prisingly the results were identical to those
withthe aligned fields done earlier. After some
looking at the functional characteristics of the
370/158, it was found that a cache memory of 8 K
bytes exists between the CPU and main memory
and thus the very first of the 50,000 executions
of ADD A TO C. caused A and C to be brought to
the cache and thus the succeeding 49,999 execu-
tions caused no memory access. It seems that
the performance of unaligned fields used repeated-
ly is thus not measurably different from aligned
fields. A number of other experiments were run
to show the effects of unaligned fields versus
aligned ones and were unsuccessful. The author
still feels that alignment of da~a-fields plays
a role in performance but the measurement tech-
niques used were unable to show quantitative
evidence of the differences.

b. The alignment measurements on the TI980
COBOL were very simple. The ADD A TO C. were re-
peated with A and C being not word aligned and the
results are as follows: (i) for DISPLAY fields,
unaligned fields are slightly slower and the
difference is constant over the range of field
sizes being 1.3 CPU secs where the total CPU times
ranges from 57.1 CPU seconds for PIC 9 to 339.5

19
seconds for PIC 9(18); (2) for COMP fields up to
PIC 9(9) the unaligned field arithmetic is about
20% slower, mostly because additional instructions
have to be executed to pick out parts of the COMP
field from different words and put them together
via shift instructions; (3) for COMP fields over
PIC 9(9) the unaligned fields are 4% slower, the
effect of unalignment being less important than
the overhead of the generalized library routine
doing the arithmetic.

c. A number of experiments were run with
MOVEs of various fields, aligned and unaligned of
various lengths. These experiments showed no
appreciable difference in performance on the IBM
370 probably for the reasons desribed above. On
the TI980 minicomputer, however, the differences
were dramatic. A MOVE X TO Y. was executed 50,000
times with X and Y being PIC X(4). The word a-
ligned X and Y experiment executed in 0.5 CPU
seconds and the one with unaligned X and Y executed
in 30.9 CPU seconds. The difference here is that
whenever the length of the sending and receiving
fields is even and starts on a word boundary a
loop of word load and stores is generated by COBOL,
whereas if the fields are not aligned, then the
generalized library subroutine is called thereby
incurring tremendous overhead with character by
character moves on a word machine without load
byte/store byte instructions. The experiment was
repeated with X and Y being declared PIC X(6) and
the execution times were 1.4 seconds for aligned
versus 44.2 seconds for unaligned fields. Thus
the performance of unaligned fields in MOVE state-
ments is likely to be 30 to 60 times slower than
for aligned fields.

1.1.3 Subroutine Ca!lin ~ Overhead

The CPU time spent in entering a subprogram
and exiting a subprogram are important factors in
the design of programs. COBOL has internal sub-
routines (PERFORM verb) with no parameter passing
and external subroutines with parameter passing.
A number of measurements were made to determine
the overhead of the various subroutine calling and
looping mechanisms in COBOL:

a. Internal subroutines via PERFORM state-
ments are relatively fast and take about 4 micro-
seconds on the 370/158 in a PERFORM ... TIMES
statement. To accomplish the same via PERFORM
... UNTIL ... appears to be significantly less
overhead where the experiment consisted simply of
performing an arithmetic statement 10,000 times.
Slightly faster still is a simple PERFORM with
testing and a conditional GO TO to the beginning
of the performed paragraph. This strange form had
to be resorted to in COBOL code to be run on both
the IBM370 and the TI980 since the TI980 COBOL does
not implement the PERFORM ... UNTIL (this being the
only major shortcoming seen in TI980 COBOL features).

b. Internal subroutines via PERFORM ... TIMES
take about 30 microseconds on the TI980 COBOL this
being 7.5 times as long as that on the IBM370. The
simple PERFORM with the test and looping within the
performed paragraph is exactly as fast on the
TI980 as the PERFORM ...TIMES.

c. External subroutines via CALL statements
take about 85 microseconds on the 370/158 and are

thus 21 times slower than internal subroutines.
Note also that the external subroutine calling
does not include the looping included in the
timing of the internal subroutines. The slowness
of the external subroutine mechanism is due main-
ly to the lengthy prologue and epilogue routines
that are executed upon entry and exit of a sub-
program. Accessing passed parameters from the
main program appears to have little or no over-
head associated with it as all that needs to be
done is a base register load.

d. External subroutines via CALL state-
ments on the TI980 take approximately 40
microseconds which is only 33% more than the
PERFORM ... TIMES mechanism. Thus in contrast
to the 370 subroutine calling overhead which is
21 times as large for external routines, the over-
head here is only slightly greater for external
subroutines (a factor of 1 to 2). This fact is
very important in making the TI980 COBOL a
viable product because, as will be discussed later,
the compile speeds for large COBOL programs on the
TI980 are prohibitive, and structuring a program
into small subroutines is essential. Note also
that the external subroutine call overhead for
the TI980 is less than half that for the 370/158,
one of the few experiments where the TI980 COBOL
was actually faster than the 370. This is due to
the lack of extensive prologue and epilogue rou-
tines in the TI980 COBOL.

1.1.4 Input/Output Speeds

In order to gain some insight into the work-
ings of the COBOL I/O systems, a program was
written which writes 1,000 records to a temporary
disk file, then closes the file, reopens it for
input, and reads the file in. There are some
difficulties in one-to-one comparisons of timings
on the IBM 370 versus the TI980 because: (i) the
difference in disk devices used by each; (2) the
370 was not, in general, available on a stand-
alone basis-but rather only via multiprogramming
with the system load an unknown variable whereas
the TI980 whereas it is capable of multipro-
gramming was standalone at the times of the
measurements; (3) finally, the CPU execution
time is not really available to the program on
the TI980 (although the clock time is available
and is an accurate measure of CPU execution time
for segments of code containing no I/0 on an
otherwise idle system such as all of the ex-
periments above). The I/0 experiments are
detailed below:

20

15!

i :

oElapsed ¢1ock ¢ 1 ~

OCPU ~ x e c ~ t i o n t ime

" ' ~ e ' ~ lock ingfac tor io

Figure 31 IBM370 VS/COBOL Time to Write 1,000 Records
vs Blocking Factor

Among the observations one can draw from Figure III
are: (i) the CPU time required decreases drama-
tically from 1.65 seconds for a blocking factor of
1 to about .15 CPU seconds for blocking factors
over 60. Thus the CPU time spent in the access
methods can be reduced by 90% if the file is
properly blocked; (2) The elapsed clock time also
shown in Figure III shows the same kind of pattern
with 50 seconds for Blocking factor of 1 then
being reduced to .9 seconds for a blocking factor
of 60.

b. The 1,000 WRITEs experiment was also
run on the TI980 COBOL where BLOCK CONTAINS is
ignored by COBOL but where blocking can be speci-
fied by job control. The results are shown in
Figure IV and as mentioned above, these experi-
ments were run on an otherwise idle system and the
CPU time is not shown because it is not available
to TI980 programs. The elapsed clock time starts
with blocking factor of 1 at 65.5 seconds and
goes down to 18 seconds for a blocking factor of
35 (large blocks are not allowed). Thus a
reasonable comparison for a sufficiently large
blocking factor might be the elapsed time of
2 seconds for a blocking factor of 30 on the
IBM 370 versus the elapsed time of 18 seconds on
the TI980 thus the minicomputer is 9 times as
slow as the 370 (this in the face of multipro-
gramming for the 370 and standalone on the
TI980). The device characteristics of the two
disks involved are themselves sufficient to
explain the factor of 9 difference (see Table I
for device characteristics). Other contributors
to the difference might be I/O and scheduling
overhead differences in the two operating sys-
tems involved.

a. The first experiments run on the IBM 370
measured the CPU time and elapsed clock time for
the execution of 1,000 WRITE statements. This
experiment was performed in normal multipro-
gramming so the elapsed clock time is merely an
indication as to how long the experiment
required under a "normal" system load. One big
variable in I/O processing is the blocking
factor so the experiment was repeated for various
block sizes starting with BLOCK CONTAINS 1 RECORDS
to BLOCK CONTAINS 140 RECORDS. The CPU time used
was of interest in order to find out the CPU
resources spent in the I/O access methods and also
to see what effect block size has on the CPU
resources required. Figure III shows the results.

=

' i'o ~o 4b ~ ~ ~6o ,~
Blocking factor

Figure 4. TI980 COBOL Elapsed Time vs Blocking Factor to
Write 1,000 Records (80 Characters each)

1.2 The ASM990 Benchmark

ASM990 is a cross-assembler for a T1990 micro-
computer and as such is not untypical of business
data processing programs. It inputs a T1990
Assembly language source file, creates a temporary
file containing partially assembled code, then
reads the temporary file, finishing the assembly
by generating an assembled listing and an object
file ready for the T1990 loader. ASM990 was
written to be as efficient as possible and still
be 100% in COBOL with no assembler subroutines.
Efficiency was designed into the data types
(COMP wherever possible), data-field sizes (as
short as possible), data-field alignments (all
alignments observed for both IBM370 and T1980),
table searching techniques (binary search for
op-code table, hashing plus binary trees for
symbol table), file blocking (blocking factor
15 for object output file and 20 for temporary
file).

Thus ASM990 was used to make measurements
that seek to: (1) compare COBOL compilation
speeds on the IBM370 versus that on the T1980; (2)
relate performance of ASM990 to other similar
products on both machines; (3) measure COMP
variables to DISPLAY.

1.2.1 COBOL Compilation Speeds

In order to get an idea of compiling rates,
various subsets of ASM990 were compiled to yield
compilation times for programs of 295 lines, 600
lines, 730 lines, ii00 lines, 1500 lines, 2200
lines, and finally 2530 lines. Compilations were
carried out on both the IBM370 and the T1980 and
the results are shown in Figure V. The relation-
ship between the timing of the compilations on
the two machines is truly remarkable. The full
2530 line program takes 10,327 seconds elapsed
clock time on the T1980 as compared to about
60 seconds on the IBM370. CPU execution time
on the T1980 is 8442 seconds versus 33.2 seconds
on the 370 making the 370 254 times faster than
the T1980 although this factor gets smaller
with program size so that for a 295 line program
the factor is only 32. One can easily see from
looking at Figure V why it has become so cus-
tomary to develop software for minis via cross-
compilers running on large computers. One can
also see that in order to program effectively
on a mini such as the TI 980, one must develop
software in modules of not more than a few
hundred lines each.

1.2.2 ASM990. Execution Speeds

ASM990 was then compiled in its entirety
and a load module created on both computers.
The experiments on each computer are described
separately:

a. Input source decks were arti~icially
generated to provide sample input data for the
execution of ASM990. The input decks varying
in length from 500 to 2500 lines each contained
T1990 Assembly Language statements. Execution
times of ASM990 on the IBM370 with various
length input decks are shown in Figure VI. In
order to be able to compare ASM990 performance

21

A T1980 CO~L E~PS~ CLOCK T~E FOR C O ~ T I O N

• T1980 CO~L CPU TIME FOR CO~I~TION

o CPU TIME ~ R CO~I~TION IBM 370 VS/CO~L (3.3 SEC TO 33 SEC)

8000

6000

4000
o

2000

i 0
500 1000 1500 2000 2500

Number of Source Lines in COBOL Program

Figure 5.
Compilation Speed vs COBOL Program Size

with other similar products, another set of input
source decks was created for the IBM370 Assembler
and used as input data for the standard IBM370
Assembler. Results are depicted in Figure Viand
show that the 370 Assembler executes with 20 to
25% less CPU time than ASM990. This result is
encouraging since the IBM370 Assembler is written
in machine language and probably written with
some emphasis on performance in order to be able
to assemble large pieces of software like the
operating system reasonably. Also important is
that the execution time increases at about the
same rate for ASM990 and the IBM Assembler.
Finally, a third set of input decks was created
for a TI provided cross-assembler for the T1980
which was also written in COBOL. Figure VI also
shows the performance curve for this assembler
~ich is significantly less efficient than either
of the other two and in particular the slope of
the curve indicates a much faster degradation
in performance.

Thus, it is possible to write a large soft-
ware product in COBOL and ~ith appropriate atten-
tion to efficiency considerations get a product
with performance near to that of a well written
machine language written.

o. IBM 37O

=

o

5 ~ ~ 1500 2000 2500
N u m b e r o f s o u r c e l i n e s in program being assembled

Figure 6.
Assembler Execution Speeds vs Source Program Size
onlBM370

b. The ASM990 load module creaced earlier on
the T1980 was then executed with the same input
decks used on the 370. The resulting curve show-
ing execution times is shown in Figure Vll.

OLI,p~.-d t,=~ f,, .'.,'"~,~

i . :

loo0 lsoo ~ 2soo
Number of source l ines !n program being assembled

Figure 7.

Assembler Execut ion Speeds vs Source Program Size
on TI980

22 of 33% in CPU time had no difference on the e-
lapsed time. Note, however, that almost all pro-
grams are run in multiprogramming on the 370
so the 33% savings in the original ASM990 will
still be reflected in the computer accounitng
charges and a lessening of total system load.

b. On the TI980 "DISPLAY" Version of ASM990
execution times increased more dramatically: a
factor of 8.5 to 9.7 for CPU execution time, and a
factor of 4.9 to 6 in elapsed clock time. Thus
whereas ASM990 was reasonably efficient to use,
now one could notice a two to three second pause
between successive input cards being read (with
the CPU indicator being solidly active) and like-
wise a similar pause between every line printed.
Thus whereas degradation of performance on the 370
was restricted to 33%, the degradation on the
minicomputer was more like 600%, i.e. data types
are much more critical on the mini than on a large
computer. Also clear is that whereas ASM990 was
an I/O bound program on the 370, it is more CPU
bound on the TI980.

The CPU execution time is 13 to 16 times what is
was for the 370 ASM990 - not an unreasonable
figure. The ratio of elapsed clock time for a
program of 1500 lines is 12.5 longer on the TI980-
also a reasonable figure.

In order to compare the TI980 ASM990 perfor-
mance with other similar products on the TI980,
the same set of input decks used to drive the
370 TI Cross-assembler were now run on the
standard TI980 Assembler to produce the curve
shown in Figure VII. The results show that the
standard TI980 Assembler executes in 42% of the
CPU execution time required for the TI980
ASM990 (and similarly 43% of clock time). Thus
there is additional overhead in the COBOL
written Assembler (ASM990) but not disastrously
more than in the standard assembler. Note
also that the difference here is much greater
than the difference between IBM370 Assembler
and IBM370 ASM990.

1.2.3 ASM990 "DISPLAY" Version Execution Speeds

As a final experiment, all the variables,
tables, counters, etc. in ASM990 were changed
from COMP to the default DISPLAY. The new
slower ASM990 was then run again on both
machines and execution speeds are recorded in
Figure VI for the IBM 370 version and in
Figure VII for the TI980 version.

a. On the IBM370 "DISPLAY" Version of
ASM990, execution times increased consider-
ably by 33% and the rate of increase was faster
as program size increased. In order to be able
to compare the elapsed time of execution of the
original ASM990 vs. the "DISPLAY" version, both
were run on an otherwise idle 370 and interest-
ingly, the elapsed clock time was just about
identical for the two versions (for 1500 lines
to be assembled 42 for the original ASM990 vs.
43 seconds for the '~ISPLAY" version). This
led to the conclusion that ASM990 on the 370
was very much an I/O bound job since an increase

Also noteworthy is that the memory require-
ments for the ASM990 load module increased by 55%
when the "DISPLAY" version was created. This is
a very significant point because most minicomputers
do not have memory space to spare.

Finally, if the simple change of COMP to
DISPLAY caused such dramatic performance degrad-
ation, other aspects such as data-field sizes,
alignments, and blocking factors are also ex-
pected to have much more dramatic effects on
performance than may be expected on the large
computer.

Conclusion

A few of the trends and general conclusions
that can be drawn from the experiments performed
are summarized below:

i. Data types and sizes play an important
role in program performance. In particular, an
a~#areness of hardware supported data types and
sizes is very necessary. Performance effects of
data types and sizes are much more dramatic on
the minicomputer than on the large system.

2. Alignment of data-fields is definitely
significant on the minicomputer and much less
important on a large system, especially one with
a cache memory.

3. Subroutine calling overhead is relatively
small on the minicomputer and this contributes
greatly to the viability of the mini COBOL since
there is little performance penalty to pay for
modularization.

4. I/O is significantly slower on the mini-
computer and blocking is equally important on
both systems.

5. Large software products written in COBOL
are equally viable in both systems but an aware-
ness of efficiency characteristics is almost man-
datory on the mini COBOL whereas that is less so
on the large system.

6. COBOL compilation speeds are quite un-
reasonable on the mini for any programs over a few
hundred lines. This can be a problem if there are
extensive record descriptions and tables which are
required in several modules and may require several
different record descriptions each one detailing
only those data-fields accessed by that module
with the rest FILLER so as to reduce the size of
the DATA DIVISION entries to as few lines as poss-
ible.

7. The mini COBOL programs tend to be much
more CPU intensive and therefore attention to
arithmetic, data manipulation, and testing
efficiencies is much more important on the mini.

8. The efficiency of programs is seen as a
much more immediate problem on the minicomputer
involving minutes or hours of actual waiting
whereas such immediate feedback is often miss-
ing in the large computer OS batch systems.

[l]

[~]

P. J. Jalics "Improving Performance the Easy
Way," DATAMATION, April 1977.

P. J. Jalics "Benchmarks for Measuring Per-
formance of COBOL Implementations," ACM
Computer Science Conference, 1978,
Detroit, Michigan.

23

