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1. Introduction 

This paper describes programlning CO~IStIucts alld 
system support fimctions that are intended to facilitate the 
programlning of reliable distributed systems. The systems 
considered include very different kinds of computers 
communicating thTough a network. Such a heterogeneous 
network offers a number of  advantages to designers of 
applications software, l)ifferent machines emphasize 
different capabilities and many problems naturally break 
down into subproblems that are best solved, with 
specialized resources. There is clearly a need for 
programming tools that will allow users to exploit this kind 
of environment. 

Distributed systems and application programs 
employing heterogeneous networks have been studied at 
Rochester for some thne and many of our early insights 
were encapsulated in a proposed programming system, 
P H T S  [l'eldman79]. The general approach of expressing 
principles of  distributed computing as primitives of a 
programming system has proved successfill in the past and 
is continued in this paper. 

The idea behind the PI,ITS effort has been to 
identify a small number of  constructs that can be added to 
standard programming languages to facilitate message- 
based computing. These include self-contained and self- 
governing module~, shared symbolic slomames as the basis 
for communication, asynchronous message passing, and 
transaction keys. The PLITS constructs do appear to 
provide a reasonable level of  programming constructs for 
distributed computing, but do not provide any help for 
task management and this has turned out to be a major 
bottleneck. Our experience suggests that registration 
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facilities and emergency message handling should have a 
more well-defined role in the programming system. More 
fimdamentally, some additional structuring mechanism is 
needed to express associations between modules. For 
example, the user may view a problem as two loosely 
related subproblems each requiring several communicating 
modules. When the solution is written in PLITS (or other 
recent high level languges for distributed computing 
[Brinch Hansen78, Hoare78, Cook80]), a "flat" collection 
of loosely coupled objects results. It is very difficult to 
discern the relationships that may exist between some 
objects and not others. However, it is those relationships 
that greatly influence the effectiveness of  various failure 
recovery strategies, debugging techniques, or other 
management policies. A hierarhical structure of modnles 
will not suffice, because each module may be involved in 
several activities. 

There appear to be very few research efforts aimed at 
providing structuring tools for programming large 
distributed applications with an emphasis on reliability. 
One major project is being carried out by Barbara l.iskov 
e! al. at MIT. This is in the form of a programming system 
named Argus [l.iskov79, 81, 82].  The focus is on 
applications ill which the maintenance of on-line 
distributed data is of primary importance. Consequently, 
atomic actions serve as the cornerstone of the language 
design. The implementation is based on a simplification of 
two-phase locking and a two-phase commit protocol, both 
concepts transferred from database research [Gray78], The 
underlying system maintains data structures holding the 
recent action history. Although the content and 
organization of  this data have not yet been presented, 
there are probably some similarities with the information 
to be registered in our approach. The notion of nested 
Argus actions is developed in some detail [Moss81]. The 
interactions between the parent action and its subactions 
with respect to locking and updating objects are specified. 
There are language constructs for explicitly starting and 
stoppiug top-level actions and subactions. Because of the 
emphasis on atomicity, the semantics available for dealing 
with functions that should not be recoverable (e.g. 
recording statistics) seem awkward. 
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The structuring unit is called a guardian aud it can be 
viewed by the user as a logical node eucapsulatitlg various 
resources. Operations on the resources or objects managed 
by a guardian are called handlers, are invoked by remote 
procedure call, and are executed as subactions of the 
calling action. Each guardian resides at one physical 
machine. Recovery is on a per-guardian basis. After a 
crash, the stable objects are automatically restored to the 
values they had at the latest top-level cotntnil involving 
their guardian and a process is started to restore volatile 
state. This programming system relies heavily on recovery 
that can be done automatically using atomic actions. It 
does not appear that the language provides any constructs 
to facilitate coding user-defined recovery steps. The 
guardian, as an abstraction of a reliable network machine, 
is not meant to capture the logical relationships that may 
span the network during a distributed computation. 

Other related work on reliablity has been done at 
Newcastle upon Tyne [Randel175, Shrivastava78, 
Shrivastavafl]. The most recent of the papers addresses 
problems of  providing backward error recovery in a 
distributed system. It is based on an object-oriented 
multilevel model of  colnputation and describes a design 
for object managers and for underlying low-level facilities 
that offers atomic actions as the central tool for dealing 
with node crashes and other exceptional conditions. What 
is proposed, in our terminology, is a particular scheme for 
registration of  objects affected by a particular process (i.e. 
for each process, a table of recovery data and a remote 
worker list) and automatic notification to the object 
managers involved when a process establishes or discards a 
recovery point or when recovery to an existing recovery 
point is required. Recovery regions within a single process 
serve as the structuring mechanism. The worker list 
associated with a process identifies the agents created to 
represent that process at remote sites and is used in 
sending appropriate notifications to them. An action is 
committed once the outermost recovery point (of nested 
recovery regions) has been discarded. There is the notion 
of  default exception handling; but for certain 
unrecoverable objects, such as those dealing with the 
external environment, state restoration must be explicitly 
done within exceptioll handlers. This approach stresses 
support for atomicity. It does not address associations 
between processes or high-level language constructs. 
Earlier work focused on recovery in the multilevel model 
within a single machine and on recovery block structure in 
which there is spare code standing by to be used when the 
main code fails. Some aspects of both the MIT and 
Newcastle efforts are captured in our task management 
model but the emphasis is more general than atomicity 
and recovery. 

2. Activities and Objects 

The one new concept added recently in our work is the 
notion of  all activity that serves as a structuring tool for 

objects. Objects Call be viewed in a traditional sense as 
abstractions of  resources [Jones79] and can be realized by 
PI,ITS modules (among other things). An activity involves 
a collection of  managed objects that are related to each 
other by their role in accomplishing some logical task. The 
activity Call be defined as an abstraction of a set of actions 
which gives various objects some form of semantic 
coherence with respect to the user's problem. A single 
object may participate in several different activities. Thus 
activities impose an orthogonai structure on a computation 
crossing the physical boundaries of  machine or module. 
An activity has some aspects in common with the notions 
of job (The principles of distributed job management were 
outlined in [l,antz80]. [Wulffl] described Hydra job 
objects.) and transaction (in the database sense, see 
[Gray79]). As an analogy from the 'real' world, consider 
the paint, brushes, walls, dropcloths, and human helpers as 
the objects involved in an activity like painting a room 
while protecting the floor. Some of the objects (e.g. the 
paint) will be dedicated to the painting activity but others 
may participate in other activities as well. For an example 
o f  an activity in a programming environment, consider 
compiling in a network where the compiler resides on a 
shared computer, the source file has been prepared and 
stored at a personal workstation and error messages are to 
be printed at a remote printer. This activity involves a 
number of  server processes at different machines that may 
be shared among several activities. Notice that the names 
used for these activites (i.e. painting and compili~lg) are 
verbs describing actions. 

One of  the early goals of this work has been to develop 
a terminology for describing the actual or intended 
behavior of  loosely coupled processes working together on 
a distributed job. For example, it would be useful to trace 
selectively all interprocess communication related to one 
activity. A number of other capabilities are made possible 
by having a structuring mechanism that captures the 
relationships among objects participating in a task as well 
as the potential interference within shaued objects. 
Characterizing processes either as shared servers or as 
dedicated processes appears to be vital for understanding. 
A major motivation for this approach is the need to specify 
how a failure of one object affects the rest of the 
distributed computation. In many cases, one would like the 
computation to adjust to certain failures and continue, 
possibly with degraded performance. However, if essential 
objects are lost and there is no point in continuing, it 
should be possible to identify which other objects should 
be cleaned up as a result. When the application dictates 
that data at a crashed site should eventually be made 
consistent with related data at continuing sites, 
mechanisms for recovery must be available. Each of these 
scenarios can be formulated ill terms of the activity-object 
framework. 

One of  the requirements we impose is that a reasonable 
degree of  parallelism be achievable. In particular, a 



multiplexed server process may at any point in time be 
dealing with a number of  transactions in various stages of 
completion. It may set up a certain amount of internal 
state for each request it is processing. This presents the 
problem of  how to selectively clean up this internal state 
when the server then receives notification that one of the 
requesting processes has aborted. Activity tags can provide 
a handle on managing internal state in a meaningful way. 

One objective is to make the abstract activity structt~re 
visible in the design of a distributed computation. The 
intention is to provide language constructs for establishing 
an activity hierarchy and manipulating its components 
independent of  how they may be distributed among 
objects and machines. The language should also hide from 
the user the functioning of the underlying support system 
and its registration tables. Registration of objects is 
automatic and based on activity affiliation. This contrasts 
with our previous registration schemes where processes 
explicitly expressed interest in each other and notifications 
for events that affected an entire task might have to work 
their way through a chain of  dying processes [l.antz80]. 

The notion of activity is represented in part by the 
incorporation of  an activity tag in messages and data 
structures. Each object "knows" a set of  activity tags that 
includes the tag of the activity within which the object was 
created. These tags are the primary handle available to 
application code for exploiting the activity strl,cture. If  one 
could take a snapshot of  an activity-based distributed 
system, the activities in existence could be discerned by 
scanning objects for activity tags. One of  the uses of tags is 
to separate the internal data structures that a shared server 
process keeps for each activity it participates in. When an 
activity ends, tagged data allows the server to selectively 
clean up its state. Messages also carry an activity tag thus 
making selective suspension, tracing, and debugging easier 
to implement. 

Conceptually, the activity structure is a tree of 
activities. A subactivity can be created whenever there is a 
subproblem which has different requirements with regard 
to failure handling, access to data, etc. A parent activity 
cau respond to events affecting its children through a mix 
of  automatic and user-defined actions. An important 
aspect o f  our model is the list of  properties defined on 
activity-subactivity relationships and on (sub)activity- 
object relationships. The kinds of events that can be 
handled correspond to the properties assigned. 

One aspect of  activity-subactivity behavior can be 
characterized in terms of atomicity and inheritance 
(primarily, lock compatibility). In particular, activities may 
be nonatomic, atomic, or subatomic. It is anticipated that 
nonatomic activities will be appropriate for many 
applications such as on-going tasks. Atomic and subatomic 
are categories for activities whose effects should appear 
indivisibly. The offspring of an atomic (sub)activity must 
be classified as subatomic. The term "atomic" is somewhat 

misleading since the conventional meanings apply only 
when default event handling is relied upon. The general 
description of  this nesting relationship is that the highest 
atomic ancestor o f  a subatomic subactivity is responsible 
for its actual commit. The det:ault says this takes place 
when the top-level atomic activity itself commits. This 
default relationship is similar to the !~ested atomic actions 
of  I.iskov with respect to visibility and the true commit 
point. However, the user should be able to supply 
alternative actions that may lead the top-level atomic 
activity to prematurely commit some of its subactivities. In 
that case, the changes made by those subactivities become 
permanent regardless of  a subsequent abort by their 
"atomic" ancestor, 

There are also properties describing activity-object 
relationships attached to the objects involved. All objects 
participating in an atomic activity must have the atomic 
property; that is, the operations commit activity and abort 
activity are defined for the object so that it is able to ~ 
respond to such requests. Atomic objects are provided with 
mechanisms for managing versions of selected data 
structures and default actions for synchronization and 
recoverability. Again we allow the designer to specify 
alternative actions (e.g., locking protocols tailored to the 
application) at the risk of  not fitting the all-or-none 
semantics implied by the atomic property. Thus this 
property actually signifies conservative defaults and 
obedience of  a particular protocol. Another property 
describing activity-object behavior is whether an object can 
be shared by more than one activity. Sharable objects must 
be able to respond to termination, suspension and 
resumption events for any activity that has arranged to 
share it. Nonsharable objects are restricted to participating 
in only one activity during their lifetime. 

As an example of  using this model to organize a 
distributed computation, consider the problem of 
providing a database system as a service for user 
applications. It might be structured in the following way: 
All o f  the modules involved with providing this service 
belong to (some level of) an on-going database activity. 
One of  these modules may be a B-tree, offering search and 

update operations. This object would be sharable (by 
various user activities) and atomic (i.e. usable from within 
an atomic activity). Since it is desirable that an update 
operation have the "all or none" feature, an atomic 
subactivity would be created for the task of modifying the 
tree. In addition, to ensure repeatable reads from within an 
atomic activity, each search operation should also create an 
atomic subactivity (subatomic if the parent activity is itself 
atomic) for accessing the desired element. It may also be 
desirable to al low a reasonable de.gree of  concurrency, 
possibly by exploiting specialized locking protocols as in 
[Ellis80]. This flexibility is possible within the framework 
of  the model. The atomic property on the B-tree object 
says that it must respond to commit and abort activity 
events with the all-or-none semantics assumed, but it puts 



no restrictions on the designer's internal implementation 
(such as requiring a two-phase locking protocol). 

Implementation of the activity-object model assumes a 
division of labor among a number of components. The 
management functions can be classified along two 
dimensions: First, there is the distinction between what 
can be done automatically, independent of the particular 
problem being solved, and what requires application- 
specific policies. Previous work by others has emphasized 
the atttomatic without providing mechanisms for 
incorporating user-defined management. Second, there is 
the duality between activity management and object 
management. This leads naturally to a structure in which 
there are four kinds of components: user-provided 
processes tbr activity and object manipulation (activity 
controllers executing controlling modules and objects 
executing process modules, respectively) and system 
processes (activity coordinators and object managers). The 
user-defined modules must be able to respond effectively 
to a range of commands and notifications such as suspend 
activity or object death (with appropriate default actions 
supplied by the programming system). The underlying 
system processes must monitor the changing status of the 
activities or objects registered with them and react 
appropriately (e.g., sending notifications, modifying 
registration tables, creating or destroying processes), 
Specifically, the job of the activity coordinator is to keep 
track of the activity hierarchy, the status of each n~ember 
(e.g., suspended, committed), and which objects are 
participating in each (sub)activity. It must service requests 
to change the activity structure (e.g., creating a 
subactivity), to register new objects within existing 
activities and to notify all the objects involved when 
activity-related events occur. The object manager is 
responsible for detecting the failure of managed objects 
and notifying "affected activities (through their activity 
controller processes). This implies the need for a data 
structure that allows a mapping from objects to interested 
activity controllers and a specification of the information 
they expect to receive when the object dies. The object 
manager gets involved in the creation, destruction, crash 
recovery, and location of objects so that the appropriate 
registrations get made. All of this assumed structure has 
been specified in detail for an implementation based on 
UNIX-IPC [Rashid80] and prototypes for some parts have 
been completed [Hrechanyk81]. Of course, one would like 
to hide as much of this as possible from the user with 
appropriately chosen language constructs. 

3. High Level Language and System Support 

Given the assumption of cooperating proceses tbr 
activity and object management, the language 
requirements for the activity-object model become fairly 
simple. The focus of the language design is on constructs 
for specifying the application - dependent control actions. 
The basic requirements are tagged variables (and 

structures) and a clean interface into the underlying 
system. Our approach is to propose constructs that could 
be added to an existing language and would encourage 
users to think in terms of activities. The base language for 
this project is PI~ITS which itself is a set of constructs 
incorporated into various sequential languages. The 
examples later in this paper are written in a MESA-PI JTS 
[Mitchell79] pseudocode with a preliminary set of activity - 
related extensions. 

A tagged variable allows access to the desired data by 
using the activity tag as an index. The simplest use of 
tagged structures is to make the code of shared processes 
easier to read and write. Any data that is needed for every 
activity currently being served can be declared as a tagged 
variable and then individual instances can be allocated and 
deallocated as activities come and go. A constrtict for 
establishing the activity context of a section of code (e.g. 
W~TH activity tag DO) can be used to suppress the explicit 
tag in variable references and message construction. The 
example developed in the next section offers an illustration 
of the convenience of tagged variables. Consider a process 
that represents a thermometer object whose temperature 
readings are used for various purposes (encoded as 
different activites). Since each activity may be interested in 
a different subset of readings (e.g. at regularly spaced time 
intervals or when the value lies in a "danger zone" of too 
hot or too cold), the shared process keeps a tagged record 
per activity describing the temperature readings of interest: 

Cond i t i ons :  TAGGED RECORD 

[upperbound, Iowerbound: temperature, 
lastreport: time, 
delta t: INTEGER]; 

Au extremely useful tagged variable for sharable objects 
would be 

status: TAGGED {alive, suspended, aborted, 
committed}. 

The simplest response in a shared process to an activity 
command would update the appropriate component of 
status. One can imagine high level contructs based on 
status such as 

FOR EACH t: TAG SUCH THAT status[t] = alive DO 

which would execute the following statement for all known 
tags whose status was alive or 

RECEIVE-ACTIVE 

which could ignore messages if the status of the activity tag 
carried with the message was not alive. Locked and atomic 
variables add more capabilities. For a locked data item, a 
lock and a waitqueue of tagged messages would 
automatically be provided along with primitives to set and 
release the locks. Similarly, atomic variables would provide 
the ability to do tentative-write, undo (abort), and update 
(commit) without the ability to explicitly unlock. 



The extended control features were a major motivation 
for adding the notion of  activity to the conceptual 
apparatus of  PI,ITS. One would like a natural way of 
expressing the control dependencies of a coherent 
distributed task and invoking actions that translate into 
network-wide realizations of  primitives like suspend, trace, 
or commit. Much of  the required structure can be 
specified declaratively, but some explicit code by the user 
appears to be required. 

The user-defined entities in the activity model tor 
activities and objects are presented by two types of code 
modules, CONTROLLING MODULE and PROCESS MODULE, 

respectively. Processes controlling top-level activities, 
subactivities, and their re,note agents execute 
CONTROLLING MODULES. The CONIROLLING MODULE 

supplies the inIbrmation needed to start up the activity 
and to respond to subsequent events. The heading 
provides a name and properties such as whether the 
activity is to be ArOMJC or NONArOMIC. Each managed 

object initially participating in the activity can be decla~ed 
with its type, any type-dependent arguments and 
associated notices for death or other events. Sharable 
objects that are created within this activity may be given 
an asserted name. Additional objects may be dynamically 
introduced into the activity. The local declarations must 
include procedure definitions for each distinct objecl 
notice. The body of the module should be limited to 
application-specific management functions and set up code 
such as 

STAIR[ object ON codemodule (instantiation 
parameters) 

which starts up an object that has beeu created and 
registered in the activity associated with this CONTROLLING 
MODULE or 

OPEN activity tag TO asserted name ] ObleCt id 

which locates a shared object, notifies that object about 
this activity, and completes the necessary registrations. 

PROCESS MODULES are essentially extensions of PI,ITS 
modules. In particular, interprocess communication is by 
message-passing. The heading specifies the properties 
associated with the process executing the code: ATOMIC or 
NONATOMIC and SHARABLE or PRIVATE. The syntactic 
structure consists of the delinition of public slotnames, 
declaration of  local variables (the tagged ones are of 
interest here), the exception handlers for activity events, 
and finally the code body. 

The activity structure has a major influence on the 
exception handling strategy. Some of the activity related 
events that objects naust respond to are "normal" rather 
than error conditions which should be dealt with as soon 
as possible and then execution of the process should 
resume where it was interrupted. In the current version of 

the language design, the asynchronous arrival of an 
activity-related message call raise an exception only at 
well-defined clean points. These can be characterized as 
calls of  IPC or activity primitives excluding those which 
occur within designated critical regions such as the body of 
a notice catcher or the block of code after an explicit 
setting of  activity context. Other approaches" are being 
investigated. 

4. An F, xample: Coutrolling a Solar Greenhouse 

The application chosen to illustrate these ideas is that 
of  monitoring and contxolling an experimental solar 
greenhouse. Imagine that this is to be an ambitious effort 
in which all of  the following demands have been made: 
The greenhouse is to be fully automated with a high 
degree of  reliability. Data is to be collected for evaluating 
its heating capabilities. It is to serve as a testbed for 
various policies and for the use of AI techniques to 
manage heat storage, with an additional constraint that the 
greenhouse location cannot house a large general purpose 
computer. These diverse requirements point to a 
heterogeneous network environment. A physical 
configuration that matches the needs of the problem with 
appropriate hardware might involve a number of devices 
and sensors in the greenhouse (e.g. motors to open and 
close vents and insulating shades, fans, thermometers, 
pyranometers with simple interfaces assumed) aud a user's 
terminal, all driven by a personal computer that is 
connected via a network to a file server/database computer 
where historical weather data for the region, current 
weather forecasts, and recorded measurements for the 
greenhouse are stored and to a "compute engine" for 
statistical analysis and generation of  plans for achieving the 
heating goals. The files are available from a multiplexed 
server that is not designed by the user and is widely 
shared. The user views the problem in the following way: 
Operating the greenhouse is an on-going task that should 
continue even if various devices, computers, or 
communication links fail. Between the worst case (i.e. fully 
manual operation because the controlling computer is 
down) and the normal case, there should be a whole range 
of  partially degraded performance. The vent and shade 
devices bring about external "irrevokable" actions 
(opening a vent loses hot air so that merely closing it again 
does not restore the original state) with time constraints 
that are important. Recording of measurements taken 
within the greenhouse is an example of file update that 
need not be part of  an atomic action since an unfinished 
recording session is still valuable. The planning process 
must be brought up on the remote machine from the 
controlling site in the greenhouse and the file server must 
be located. Database manipulations by the planner may 
involve atomic transactions, It should be possible for the 
user to temporarily suspend the planning or the recording 
operations and take direct control of the greenhouse or to 
trace the interactions leading to a plan. 



This problem embodies many of the important issues 
affecting distributed applications that activities are ,neant 
to resolve. "Io demonstrate the power of the activity-object 
model as a conceptual tool, we first describe the 
structuring of a solution in prose and later give samples of 
code modules that show how to express it in a 
programming system. 

The first step is to identify the essential tasks and to 
understand what dependency relationships exist among 
them. Evidently, the most basic task is that of running the 
greenhouse continuously (i.e. issuing commands to operate 
vents, fans, shades, and so on). All of  the other goals 
depend on this one fimction; therefore, this task is a 
candidate for the top-level activity. Because of its on-going 
nature and sensitivity to external changes, it is classified as 
nonatomic. The activity should continue as long as the 
greenhouse computer is up regardless of other failures in 
the network, it should also survive the breakdown of 
individual devices inside the greenhouse. A controlling 
module representing this activity executes on the local 
machine. It responds to the death of nonsessential devices 
by telling specific processes to revise their model of the 
greenhouse. This is indicated in the form of user-defined 
object notices (the default would have been to terminate 
the activity). In the particular network configuration 
assumed, a crash of the local computer leads to 
termination of the activity. Since manual operation of the 
greenhouse is required during the downtime and very 
different external conditions will likely be present when 
the computer eventually restarts, it is reasonable that this 
controlling module be neither replicated nor recoverable. 
The task of  storing sensor measurements is not necessary 
for operating of  the greenhouse and it may be desirable to 
exercise control over it separately; it could be a nonatomic 
subactivity. The planning function is independent of the 
recording subactivity and supplementary to the basic 
operation. It may be set up as a parallel second-level 
subactivity. Both of these subactivities have controlling 
modules with object notices that enable them to adapt to 
certain object faihtres. The files involved in the recording 
and planning subactivities belong to a distinct system 
activity that provides a file service. Thus, the solution can 
be organized as an activity with two subactivities that share 
objects of  a distinct file service activity. 

The actual work in an activity-based system is still 
being done by the objects much as it would be in a PI,ITS 
solution. Each physical device is controlled by a process 
which is the managed object representing that device in 
the activity world. There are two classes of devices in this 
example: sensors (e.g. thermometers) and motors (e.g. 
vents). Consider first a thermometer object as typical of 
the sensor processes. It has the activity-related properties 
of  being sharab[e and nonatomic. Sensors participate in 
the top-level activity (where they were created) and in 
both subactivities. The thermometer object periodically 
sends temperature readings to the user process (associated 

with the top-level activity), to a recording process to be 
formatted and written on a file and to a planning process 
for use in determining fi~ture motor commands. Tagged 
data structures are used to separate the information 
devoted to one of the activities sharing the thermometer 
from that of  another. We have already discussed the 
Condit ions record. The nonatomic property indicates that 
this object does not understand the commit protocol or 
require the extra mechanisms for recovery, in general, the 
properties determine the set of activity notices (primarily 
messages from the activity coordinator) to which the object 
is expected to respond, l 'or example, the suspend activity 
command can be handled in the thermometer by updating 
the tagged status variable and refraining from sending 
temperature readings to processes working on behalf of the 
suspended activity. A vent object is typical of motor device 
controllers. It too is sharable and nonatomic. The vent's 
job is to generate the proper signals to open or close the 

physical vent as specified by connnands received from the 
user or the planner. It participates both in the operating 
activity and the planning activity. In response to the same 
suspend activity notice, the vent might update status and 
ignore any commands arriving with the suspended activity 
tag. Other objects needed in the solution include the 
recorder, the planner, the user process, and various file 
objects. The recorder is a private nonatomic participant in 
the recording subactivity. It receives messages containing 
sensor readings from all of  the live sensor objects and 
constructs a record which it sends to the file server. The 
file server is a shared object owned by a system activity 
and participating in potentially many user activities. It 
should be capable of taking part in atomic activities 
(although the greenhouse example does not demand it) 
and so would have the atomic property. The planner is a 
private nonatomic member of the planning subactivity that 
communicates with sensors, some database servers, and the 
motors. Finally the user process, involved in the top-level 
activity, might serve as a command interpreter allowing the 
user to issue commands to the activity subsystem and to 
the motor devices. 

Figure 1 sulnmarizes the activities and some of the 
objects that might be set up. The top-level activity, 
denoted by Operating, deals with the basic operation of 
the greenhouse. It involves the processes (drawn as boxes) 
that control the sensors, the motors, and the user terminal. 
In addition, it spawns two subactivities, which are drawn 
as ovals and labelled Recording and Planning. 
Recording is concerned with data collection fimction. It 
shares the sensor processes with Operating and a file 
object with a separate server activity. Finally, the recorder 
process only participates in this subactivity and is therefore 
a private object. Planning deals with automatic operation 
of  the greenhouse based on a planning process. This 
subactivity shares the sensors and the motors with 
Opera t ing  arid a database object with the server activity. 



Given this oudine of a solution formulated using 
activities, one can now follow a concrete example of the 
management facilities. Suppose the user process died in 
such a way that it was detected by an object malinger in 
the system. The object manager would send a notification 
to the appropriate controlling module where the user may 
have specified how to handle the situation (e.g. 
substituting a different process), l.n this case however, the 
default applies and the activity coordinator terminates the 
activity by recursively terminating both subactivities and 
sending an activity notice to each object regisleredin the 
top-level activity. 

The greenhouse example could be fllrther elaixgrated 
upon to illustrate atomicity. Suppose that each request to 
write a record sent by the recorder to the file server 
requires it to perform an atomic action. The shared server 
could accomplish this by creating an atomic subactivity 
within the context of  the recording subactivity. Since the 
recording snbactivity is nonatomic, the new subactivity is 
registered and managed by the activity coordinator as 
atomic rather than subatomic. 

Figures 2 and 3 show representative components of tile 
solution translated into our proposed activity b~tsed 
language constructs. Figure 2 shows an application specific 
controlling module that could be used to establish the 
activity structure and respond to object failures. Figure 3 
gives a sample of  a process-module. 

5. Sun in la ry  

In this paper, we have proposed a new conceptual tool 
for organizing distributed software called an 'activity.' The 
structuring achieved by activities is orthogonal to that of 
objects. The model includes a set of  properties that 
characterize the relationships among activities, their 
subactivities, and objects. Mechanisms for managing 
distributed tasks can be based on this notion of an activity 
hierarchy. We have outlined our current design for a 
programming system and a preliminary set of high level 
language constructs. Our approach differs from similar 
research efforts by providing additional flexibility for 
application-specific failure handling and extended control 
features. Finally, we have presented an example of what 
we consider a typical application. 

Acknowledgements 

This work was supported in part by NSI.' grant No. 
IST-8025761 and in part by NSF Grant No. MCS- 
8 ] 04008. 

 Recordin l 
Subactivitty 

recorder 
[ ~Recording 

user 

Jl=Operaling Act 

sensor: 

Operating 

1 
~Operating 

file 
~System 

i .~Jsensor :  

thermometer 
,,r" 2 

dCOperaling 
Act. 

Activity 

motor : 
vent 

lll~per ating 
Act. 

motor: 
shade 

~Operaling 
Act 

* ownership 

Planning 
Subactivity 

planner 

,~lanmng 
Acl. 

database 1 
~Syslem 

Acl. 

Figure 1 

6. Bibliography 

[Ball76] J.L:. Ball, J.A. Feldman, J.R. Low, R.F. Rashid, and 
P.D. Rovner, 

"RIO: Rochester's Intelligent Gateway System 
Overview," 
IEEE Transactions on Software Engineering, vol. 2, 
No. 4, December 1976, 321-328. 

[Brinch Hansen78] P. Brinch Hansen, 
Distributed Processes: A Concurrent Programming 

Concept," 
Communications of the ACM, 21, 11, November 1978, 
934-941. 



Greenhouse: CONTROLLING MODULE 
NONATOMIC = 

PUBLIC 
-- The PI.ITS mcatfing of this kcywold is itltetlded 
type: DeviceName;  
which: Directions; 

MANAGED 
user: PROCESS 

DEATH NOTICE Kill; 

ThermometerModule:  TYPE : PROCESS 
TAGGED [ location: Directions ] 
DEATH NOTICE Reconfigure; 

thermometerSet: SET OF ThermometerModule; 

VentModule: TYPE = PROCESS 
TAGGED [ location: Directions ] 
DEATH NOTICE Reconfigure; 

-- Notice same death notice for 
-- therm's and vents 

ventSet: SET OF VentModule; 

recorderActivity: ACTIVITY; 
-- Death notice is left to be the default 

plannerActivity: ACTIVITY; 
-- Death notice is left to be the default 

VAR 
p: PROCESS; 

OBJECT NOTICES 
BEGIN 
Reconl igure (device: PROCESS) = ) 

VAR 
msg: MESSAGE; 
a: ACTIVITY; 
i: INTEGER; 

BEGIN 
-- Constltlct a fct.;{.)lii'lgtlraLioll lllu~age aild 
-- send it to intcrsted parties 

IF device IN thermometerSet 
THEN msg *- ( type-thermometer),  

(which ~ thermometerSet.location[device]) 
ELSE msg *- (type~vent), 

(which~ ventSet.location[device]) 

SEND msg TO user; 
SEND msg TO plannerActivity 

END; 
Kill (p: PROCESS) =- ) 

BEGIN 
not i f y  vent m o t o r s  to go  into manua l  tnodu 
TERMINATE plannerActivity 
END; 

END; 

BEGIN 

START PROCESS user ON UserTerm ( . . . ) ;  
p *- NEw[ThermometerModule]; 
PUT p IN thermometerSet; 
thermometerSet, locat ion[p] ,- south; 
START PROCESS p 

ON ThermometerCode ( HW-Address  ); 
... a n d  so on fo r  o the r  t h e r m o m e t e r s  

p ,- NEw[VentModule]; 
PUT p IN ventSet; 
ventSet. locat ion[p] *- south; 
START PROCESS p 

ON VentCode ( HW-Address  ); 
... a n d  so on fo r  o the r  vents 

-- Activate the subactivitics lot the recorder aIld plalHlcr 
START ACTIVITY recorderActivity 

ON Recording ( themometerSet ); 
START ACTIVITY plannerActivity 

ON Planning ( . . .  ) 
END. 

Figu re 2 

[Cook80] R. Cook 
"*Mod-A Language for Distributed Programming," 
IEEE Trans. on Software Engineering, vol. SE-6, No. 
6, November  1980, 563-571. 

[EllisB.0] C. Ellis, 
"Concurrent  Search & Insertion in 2-3 Trees," 
Acta lnformatica, 14, 1980, 63-86. 

[Feldman79] J.A. Feldman, 
"High Level Programming for Distributed 
Computing,"  
Communication of the ACM, 22, 6, June 1979, 353- 
368. 

[Gray79] ,I. Gray 
"Notes on Data Base Operating Systems," 
in Operating System~; An Advanced Course. Springer 
Verlag, 1979. 

[Hoare78] C.A,R. Hoare, 
"Communica t ing  Sequential Processes," 
Communications of the ACM, 21, 8, August 1978, 666- 
677. 

[Jones79]A.K. Jones, 
"The Object Model: A Conceptual Tool for 
.Structuring Software," 
m Operating Systems, art Advanced Course, Springer 
Verlag, 1979. 



T h e r m o m e t e r C o d e :  PROCESS MODULE 
(line: HWAddress )  SHARABLE NONA [OMIC = 

PUBLIC 
-- a slot tbr an activity name is auLomalJcally made public 
wantsOata: PROCESS; 

VAR 
s e n s o r m s g :  message ;  
c o n d i t i o n s :  TAGGED RECORD 

[ fields describing reading3 el mtute~t ]; 
s ta tus  : TAGGED {a l ive,  s u s p e n d e d } ;  
d a t a C o l l e c t o r :  TAGGED PROCESS; 

tag:  ACTIVITY TAG; 

ACTIVITY NOTICES 
BEGIN 
OPEN (msg -- contains tl~c "open activity" nlcsaagc ) = ) 

BEGIN 
-- New instances of tagged types arc automaucally generated 
tag <- msg.activity; 
conditions[tag] (- 

[fields are filled from slots in msg];  
status[tag] ,-- a l ive;  
d a t a C o l l e c t o r [ t a g ]  ~- msg .wan tsData ;  
REPLY (g ivesData~SELF)  TO msg .wan tsData  
END; 

-IERMINATE (msg) = > 
BEGIN 
-- Instances of tagged types arc automatically dcsll()ycd 
END; 

END; 

BEGIN 

DO 
take temperature reading & 

construct sensormsg 
FOR EACH t: TAG 
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