
Language Constructs and Support Systems
for Distributed Computing

C.S. Ellis, J.A. Feldman, and J.E. Heliotis
Computer Science Department

University of Rochester
May 1982

1. Introduction

This paper describes programlning CO~IStIucts alld
system support fimctions that are intended to facilitate the
programlning of reliable distributed systems. The systems
considered include very different kinds of computers
communicating thTough a network. Such a heterogeneous
network offers a number of advantages to designers of
applications software, l)ifferent machines emphasize
different capabilities and many problems naturally break
down into subproblems that are best solved, with
specialized resources. There is clearly a need for
programming tools that will allow users to exploit this kind
of environment.

Distributed systems and application programs
employing heterogeneous networks have been studied at
Rochester for some thne and many of our early insights
were encapsulated in a proposed programming system,
P H T S [l'eldman79]. The general approach of expressing
principles of distributed computing as primitives of a
programming system has proved successfill in the past and
is continued in this paper.

The idea behind the PI,ITS effort has been to
identify a small number of constructs that can be added to
standard programming languages to facilitate message-
based computing. These include self-contained and self-
governing module~, shared symbolic slomames as the basis
for communication, asynchronous message passing, and
transaction keys. The PLITS constructs do appear to
provide a reasonable level of programming constructs for
distributed computing, but do not provide any help for
task management and this has turned out to be a major
bottleneck. Our experience suggests that registration

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-081 -8 /82 /008 /0001 $00.75

facilities and emergency message handling should have a
more well-defined role in the programming system. More
fimdamentally, some additional structuring mechanism is
needed to express associations between modules. For
example, the user may view a problem as two loosely
related subproblems each requiring several communicating
modules. When the solution is written in PLITS (or other
recent high level languges for distributed computing
[Brinch Hansen78, Hoare78, Cook80]), a "flat" collection
of loosely coupled objects results. It is very difficult to
discern the relationships that may exist between some
objects and not others. However, it is those relationships
that greatly influence the effectiveness of various failure
recovery strategies, debugging techniques, or other
management policies. A hierarhical structure of modnles
will not suffice, because each module may be involved in
several activities.

There appear to be very few research efforts aimed at
providing structuring tools for programming large
distributed applications with an emphasis on reliability.
One major project is being carried out by Barbara l.iskov
e! al. at MIT. This is in the form of a programming system
named Argus [l.iskov79, 81, 82]. The focus is on
applications ill which the maintenance of on-line
distributed data is of primary importance. Consequently,
atomic actions serve as the cornerstone of the language
design. The implementation is based on a simplification of
two-phase locking and a two-phase commit protocol, both
concepts transferred from database research [Gray78], The
underlying system maintains data structures holding the
recent action history. Although the content and
organization of this data have not yet been presented,
there are probably some similarities with the information
to be registered in our approach. The notion of nested
Argus actions is developed in some detail [Moss81]. The
interactions between the parent action and its subactions
with respect to locking and updating objects are specified.
There are language constructs for explicitly starting and
stoppiug top-level actions and subactions. Because of the
emphasis on atomicity, the semantics available for dealing
with functions that should not be recoverable (e.g.
recording statistics) seem awkward.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800220.806675&domain=pdf&date_stamp=1982-08-18

The structuring unit is called a guardian aud it can be
viewed by the user as a logical node eucapsulatitlg various
resources. Operations on the resources or objects managed
by a guardian are called handlers, are invoked by remote
procedure call, and are executed as subactions of the
calling action. Each guardian resides at one physical
machine. Recovery is on a per-guardian basis. After a
crash, the stable objects are automatically restored to the
values they had at the latest top-level cotntnil involving
their guardian and a process is started to restore volatile
state. This programming system relies heavily on recovery
that can be done automatically using atomic actions. It
does not appear that the language provides any constructs
to facilitate coding user-defined recovery steps. The
guardian, as an abstraction of a reliable network machine,
is not meant to capture the logical relationships that may
span the network during a distributed computation.

Other related work on reliablity has been done at
Newcastle upon Tyne [Randel175, Shrivastava78,
Shrivastavafl]. The most recent of the papers addresses
problems of providing backward error recovery in a
distributed system. It is based on an object-oriented
multilevel model of colnputation and describes a design
for object managers and for underlying low-level facilities
that offers atomic actions as the central tool for dealing
with node crashes and other exceptional conditions. What
is proposed, in our terminology, is a particular scheme for
registration of objects affected by a particular process (i.e.
for each process, a table of recovery data and a remote
worker list) and automatic notification to the object
managers involved when a process establishes or discards a
recovery point or when recovery to an existing recovery
point is required. Recovery regions within a single process
serve as the structuring mechanism. The worker list
associated with a process identifies the agents created to
represent that process at remote sites and is used in
sending appropriate notifications to them. An action is
committed once the outermost recovery point (of nested
recovery regions) has been discarded. There is the notion
of default exception handling; but for certain
unrecoverable objects, such as those dealing with the
external environment, state restoration must be explicitly
done within exceptioll handlers. This approach stresses
support for atomicity. It does not address associations
between processes or high-level language constructs.
Earlier work focused on recovery in the multilevel model
within a single machine and on recovery block structure in
which there is spare code standing by to be used when the
main code fails. Some aspects of both the MIT and
Newcastle efforts are captured in our task management
model but the emphasis is more general than atomicity
and recovery.

2. Activities and Objects

The one new concept added recently in our work is the
notion of all activity that serves as a structuring tool for

objects. Objects Call be viewed in a traditional sense as
abstractions of resources [Jones79] and can be realized by
PI,ITS modules (among other things). An activity involves
a collection of managed objects that are related to each
other by their role in accomplishing some logical task. The
activity Call be defined as an abstraction of a set of actions
which gives various objects some form of semantic
coherence with respect to the user's problem. A single
object may participate in several different activities. Thus
activities impose an orthogonai structure on a computation
crossing the physical boundaries of machine or module.
An activity has some aspects in common with the notions
of job (The principles of distributed job management were
outlined in [l,antz80]. [Wulffl] described Hydra job
objects.) and transaction (in the database sense, see
[Gray79]). As an analogy from the 'real' world, consider
the paint, brushes, walls, dropcloths, and human helpers as
the objects involved in an activity like painting a room
while protecting the floor. Some of the objects (e.g. the
paint) will be dedicated to the painting activity but others
may participate in other activities as well. For an example
o f an activity in a programming environment, consider
compiling in a network where the compiler resides on a
shared computer, the source file has been prepared and
stored at a personal workstation and error messages are to
be printed at a remote printer. This activity involves a
number of server processes at different machines that may
be shared among several activities. Notice that the names
used for these activites (i.e. painting and compili~lg) are
verbs describing actions.

One of the early goals of this work has been to develop
a terminology for describing the actual or intended
behavior of loosely coupled processes working together on
a distributed job. For example, it would be useful to trace
selectively all interprocess communication related to one
activity. A number of other capabilities are made possible
by having a structuring mechanism that captures the
relationships among objects participating in a task as well
as the potential interference within shaued objects.
Characterizing processes either as shared servers or as
dedicated processes appears to be vital for understanding.
A major motivation for this approach is the need to specify
how a failure of one object affects the rest of the
distributed computation. In many cases, one would like the
computation to adjust to certain failures and continue,
possibly with degraded performance. However, if essential
objects are lost and there is no point in continuing, it
should be possible to identify which other objects should
be cleaned up as a result. When the application dictates
that data at a crashed site should eventually be made
consistent with related data at continuing sites,
mechanisms for recovery must be available. Each of these
scenarios can be formulated ill terms of the activity-object
framework.

One of the requirements we impose is that a reasonable
degree of parallelism be achievable. In particular, a

multiplexed server process may at any point in time be
dealing with a number of transactions in various stages of
completion. It may set up a certain amount of internal
state for each request it is processing. This presents the
problem of how to selectively clean up this internal state
when the server then receives notification that one of the
requesting processes has aborted. Activity tags can provide
a handle on managing internal state in a meaningful way.

One objective is to make the abstract activity structt~re
visible in the design of a distributed computation. The
intention is to provide language constructs for establishing
an activity hierarchy and manipulating its components
independent of how they may be distributed among
objects and machines. The language should also hide from
the user the functioning of the underlying support system
and its registration tables. Registration of objects is
automatic and based on activity affiliation. This contrasts
with our previous registration schemes where processes
explicitly expressed interest in each other and notifications
for events that affected an entire task might have to work
their way through a chain of dying processes [l.antz80].

The notion of activity is represented in part by the
incorporation of an activity tag in messages and data
structures. Each object "knows" a set of activity tags that
includes the tag of the activity within which the object was
created. These tags are the primary handle available to
application code for exploiting the activity strl,cture. If one
could take a snapshot of an activity-based distributed
system, the activities in existence could be discerned by
scanning objects for activity tags. One of the uses of tags is
to separate the internal data structures that a shared server
process keeps for each activity it participates in. When an
activity ends, tagged data allows the server to selectively
clean up its state. Messages also carry an activity tag thus
making selective suspension, tracing, and debugging easier
to implement.

Conceptually, the activity structure is a tree of
activities. A subactivity can be created whenever there is a
subproblem which has different requirements with regard
to failure handling, access to data, etc. A parent activity
cau respond to events affecting its children through a mix
of automatic and user-defined actions. An important
aspect o f our model is the list of properties defined on
activity-subactivity relationships and on (sub)activity-
object relationships. The kinds of events that can be
handled correspond to the properties assigned.

One aspect of activity-subactivity behavior can be
characterized in terms of atomicity and inheritance
(primarily, lock compatibility). In particular, activities may
be nonatomic, atomic, or subatomic. It is anticipated that
nonatomic activities will be appropriate for many
applications such as on-going tasks. Atomic and subatomic
are categories for activities whose effects should appear
indivisibly. The offspring of an atomic (sub)activity must
be classified as subatomic. The term "atomic" is somewhat

misleading since the conventional meanings apply only
when default event handling is relied upon. The general
description of this nesting relationship is that the highest
atomic ancestor o f a subatomic subactivity is responsible
for its actual commit. The det:ault says this takes place
when the top-level atomic activity itself commits. This
default relationship is similar to the !~ested atomic actions
of I.iskov with respect to visibility and the true commit
point. However, the user should be able to supply
alternative actions that may lead the top-level atomic
activity to prematurely commit some of its subactivities. In
that case, the changes made by those subactivities become
permanent regardless of a subsequent abort by their
"atomic" ancestor,

There are also properties describing activity-object
relationships attached to the objects involved. All objects
participating in an atomic activity must have the atomic
property; that is, the operations commit activity and abort
activity are defined for the object so that it is able to ~
respond to such requests. Atomic objects are provided with
mechanisms for managing versions of selected data
structures and default actions for synchronization and
recoverability. Again we allow the designer to specify
alternative actions (e.g., locking protocols tailored to the
application) at the risk of not fitting the all-or-none
semantics implied by the atomic property. Thus this
property actually signifies conservative defaults and
obedience of a particular protocol. Another property
describing activity-object behavior is whether an object can
be shared by more than one activity. Sharable objects must
be able to respond to termination, suspension and
resumption events for any activity that has arranged to
share it. Nonsharable objects are restricted to participating
in only one activity during their lifetime.

As an example of using this model to organize a
distributed computation, consider the problem of
providing a database system as a service for user
applications. It might be structured in the following way:
All o f the modules involved with providing this service
belong to (some level of) an on-going database activity.
One of these modules may be a B-tree, offering search and

update operations. This object would be sharable (by
various user activities) and atomic (i.e. usable from within
an atomic activity). Since it is desirable that an update
operation have the "all or none" feature, an atomic
subactivity would be created for the task of modifying the
tree. In addition, to ensure repeatable reads from within an
atomic activity, each search operation should also create an
atomic subactivity (subatomic if the parent activity is itself
atomic) for accessing the desired element. It may also be
desirable to al low a reasonable de.gree of concurrency,
possibly by exploiting specialized locking protocols as in
[Ellis80]. This flexibility is possible within the framework
of the model. The atomic property on the B-tree object
says that it must respond to commit and abort activity
events with the all-or-none semantics assumed, but it puts

no restrictions on the designer's internal implementation
(such as requiring a two-phase locking protocol).

Implementation of the activity-object model assumes a
division of labor among a number of components. The
management functions can be classified along two
dimensions: First, there is the distinction between what
can be done automatically, independent of the particular
problem being solved, and what requires application-
specific policies. Previous work by others has emphasized
the atttomatic without providing mechanisms for
incorporating user-defined management. Second, there is
the duality between activity management and object
management. This leads naturally to a structure in which
there are four kinds of components: user-provided
processes tbr activity and object manipulation (activity
controllers executing controlling modules and objects
executing process modules, respectively) and system
processes (activity coordinators and object managers). The
user-defined modules must be able to respond effectively
to a range of commands and notifications such as suspend
activity or object death (with appropriate default actions
supplied by the programming system). The underlying
system processes must monitor the changing status of the
activities or objects registered with them and react
appropriately (e.g., sending notifications, modifying
registration tables, creating or destroying processes),
Specifically, the job of the activity coordinator is to keep
track of the activity hierarchy, the status of each n~ember
(e.g., suspended, committed), and which objects are
participating in each (sub)activity. It must service requests
to change the activity structure (e.g., creating a
subactivity), to register new objects within existing
activities and to notify all the objects involved when
activity-related events occur. The object manager is
responsible for detecting the failure of managed objects
and notifying "affected activities (through their activity
controller processes). This implies the need for a data
structure that allows a mapping from objects to interested
activity controllers and a specification of the information
they expect to receive when the object dies. The object
manager gets involved in the creation, destruction, crash
recovery, and location of objects so that the appropriate
registrations get made. All of this assumed structure has
been specified in detail for an implementation based on
UNIX-IPC [Rashid80] and prototypes for some parts have
been completed [Hrechanyk81]. Of course, one would like
to hide as much of this as possible from the user with
appropriately chosen language constructs.

3. High Level Language and System Support

Given the assumption of cooperating proceses tbr
activity and object management, the language
requirements for the activity-object model become fairly
simple. The focus of the language design is on constructs
for specifying the application - dependent control actions.
The basic requirements are tagged variables (and

structures) and a clean interface into the underlying
system. Our approach is to propose constructs that could
be added to an existing language and would encourage
users to think in terms of activities. The base language for
this project is PI~ITS which itself is a set of constructs
incorporated into various sequential languages. The
examples later in this paper are written in a MESA-PI JTS
[Mitchell79] pseudocode with a preliminary set of activity -
related extensions.

A tagged variable allows access to the desired data by
using the activity tag as an index. The simplest use of
tagged structures is to make the code of shared processes
easier to read and write. Any data that is needed for every
activity currently being served can be declared as a tagged
variable and then individual instances can be allocated and
deallocated as activities come and go. A constrtict for
establishing the activity context of a section of code (e.g.
W~TH activity tag DO) can be used to suppress the explicit
tag in variable references and message construction. The
example developed in the next section offers an illustration
of the convenience of tagged variables. Consider a process
that represents a thermometer object whose temperature
readings are used for various purposes (encoded as
different activites). Since each activity may be interested in
a different subset of readings (e.g. at regularly spaced time
intervals or when the value lies in a "danger zone" of too
hot or too cold), the shared process keeps a tagged record
per activity describing the temperature readings of interest:

Cond i t i ons : TAGGED RECORD

[upperbound, Iowerbound: temperature,
lastreport: time,
delta t: INTEGER];

Au extremely useful tagged variable for sharable objects
would be

status: TAGGED {alive, suspended, aborted,
committed}.

The simplest response in a shared process to an activity
command would update the appropriate component of
status. One can imagine high level contructs based on
status such as

FOR EACH t: TAG SUCH THAT status[t] = alive DO

which would execute the following statement for all known
tags whose status was alive or

RECEIVE-ACTIVE

which could ignore messages if the status of the activity tag
carried with the message was not alive. Locked and atomic
variables add more capabilities. For a locked data item, a
lock and a waitqueue of tagged messages would
automatically be provided along with primitives to set and
release the locks. Similarly, atomic variables would provide
the ability to do tentative-write, undo (abort), and update
(commit) without the ability to explicitly unlock.

The extended control features were a major motivation
for adding the notion of activity to the conceptual
apparatus of PI,ITS. One would like a natural way of
expressing the control dependencies of a coherent
distributed task and invoking actions that translate into
network-wide realizations of primitives like suspend, trace,
or commit. Much of the required structure can be
specified declaratively, but some explicit code by the user
appears to be required.

The user-defined entities in the activity model tor
activities and objects are presented by two types of code
modules, CONTROLLING MODULE and PROCESS MODULE,

respectively. Processes controlling top-level activities,
subactivities, and their re,note agents execute
CONTROLLING MODULES. The CONIROLLING MODULE

supplies the inIbrmation needed to start up the activity
and to respond to subsequent events. The heading
provides a name and properties such as whether the
activity is to be ArOMJC or NONArOMIC. Each managed

object initially participating in the activity can be decla~ed
with its type, any type-dependent arguments and
associated notices for death or other events. Sharable
objects that are created within this activity may be given
an asserted name. Additional objects may be dynamically
introduced into the activity. The local declarations must
include procedure definitions for each distinct objecl
notice. The body of the module should be limited to
application-specific management functions and set up code
such as

STAIR[object ON codemodule (instantiation
parameters)

which starts up an object that has beeu created and
registered in the activity associated with this CONTROLLING
MODULE or

OPEN activity tag TO asserted name] ObleCt id

which locates a shared object, notifies that object about
this activity, and completes the necessary registrations.

PROCESS MODULES are essentially extensions of PI,ITS
modules. In particular, interprocess communication is by
message-passing. The heading specifies the properties
associated with the process executing the code: ATOMIC or
NONATOMIC and SHARABLE or PRIVATE. The syntactic
structure consists of the delinition of public slotnames,
declaration of local variables (the tagged ones are of
interest here), the exception handlers for activity events,
and finally the code body.

The activity structure has a major influence on the
exception handling strategy. Some of the activity related
events that objects naust respond to are "normal" rather
than error conditions which should be dealt with as soon
as possible and then execution of the process should
resume where it was interrupted. In the current version of

the language design, the asynchronous arrival of an
activity-related message call raise an exception only at
well-defined clean points. These can be characterized as
calls of IPC or activity primitives excluding those which
occur within designated critical regions such as the body of
a notice catcher or the block of code after an explicit
setting of activity context. Other approaches" are being
investigated.

4. An F, xample: Coutrolling a Solar Greenhouse

The application chosen to illustrate these ideas is that
of monitoring and contxolling an experimental solar
greenhouse. Imagine that this is to be an ambitious effort
in which all of the following demands have been made:
The greenhouse is to be fully automated with a high
degree of reliability. Data is to be collected for evaluating
its heating capabilities. It is to serve as a testbed for
various policies and for the use of AI techniques to
manage heat storage, with an additional constraint that the
greenhouse location cannot house a large general purpose
computer. These diverse requirements point to a
heterogeneous network environment. A physical
configuration that matches the needs of the problem with
appropriate hardware might involve a number of devices
and sensors in the greenhouse (e.g. motors to open and
close vents and insulating shades, fans, thermometers,
pyranometers with simple interfaces assumed) aud a user's
terminal, all driven by a personal computer that is
connected via a network to a file server/database computer
where historical weather data for the region, current
weather forecasts, and recorded measurements for the
greenhouse are stored and to a "compute engine" for
statistical analysis and generation of plans for achieving the
heating goals. The files are available from a multiplexed
server that is not designed by the user and is widely
shared. The user views the problem in the following way:
Operating the greenhouse is an on-going task that should
continue even if various devices, computers, or
communication links fail. Between the worst case (i.e. fully
manual operation because the controlling computer is
down) and the normal case, there should be a whole range
of partially degraded performance. The vent and shade
devices bring about external "irrevokable" actions
(opening a vent loses hot air so that merely closing it again
does not restore the original state) with time constraints
that are important. Recording of measurements taken
within the greenhouse is an example of file update that
need not be part of an atomic action since an unfinished
recording session is still valuable. The planning process
must be brought up on the remote machine from the
controlling site in the greenhouse and the file server must
be located. Database manipulations by the planner may
involve atomic transactions, It should be possible for the
user to temporarily suspend the planning or the recording
operations and take direct control of the greenhouse or to
trace the interactions leading to a plan.

This problem embodies many of the important issues
affecting distributed applications that activities are ,neant
to resolve. "Io demonstrate the power of the activity-object
model as a conceptual tool, we first describe the
structuring of a solution in prose and later give samples of
code modules that show how to express it in a
programming system.

The first step is to identify the essential tasks and to
understand what dependency relationships exist among
them. Evidently, the most basic task is that of running the
greenhouse continuously (i.e. issuing commands to operate
vents, fans, shades, and so on). All of the other goals
depend on this one fimction; therefore, this task is a
candidate for the top-level activity. Because of its on-going
nature and sensitivity to external changes, it is classified as
nonatomic. The activity should continue as long as the
greenhouse computer is up regardless of other failures in
the network, it should also survive the breakdown of
individual devices inside the greenhouse. A controlling
module representing this activity executes on the local
machine. It responds to the death of nonsessential devices
by telling specific processes to revise their model of the
greenhouse. This is indicated in the form of user-defined
object notices (the default would have been to terminate
the activity). In the particular network configuration
assumed, a crash of the local computer leads to
termination of the activity. Since manual operation of the
greenhouse is required during the downtime and very
different external conditions will likely be present when
the computer eventually restarts, it is reasonable that this
controlling module be neither replicated nor recoverable.
The task of storing sensor measurements is not necessary
for operating of the greenhouse and it may be desirable to
exercise control over it separately; it could be a nonatomic
subactivity. The planning function is independent of the
recording subactivity and supplementary to the basic
operation. It may be set up as a parallel second-level
subactivity. Both of these subactivities have controlling
modules with object notices that enable them to adapt to
certain object faihtres. The files involved in the recording
and planning subactivities belong to a distinct system
activity that provides a file service. Thus, the solution can
be organized as an activity with two subactivities that share
objects of a distinct file service activity.

The actual work in an activity-based system is still
being done by the objects much as it would be in a PI,ITS
solution. Each physical device is controlled by a process
which is the managed object representing that device in
the activity world. There are two classes of devices in this
example: sensors (e.g. thermometers) and motors (e.g.
vents). Consider first a thermometer object as typical of
the sensor processes. It has the activity-related properties
of being sharab[e and nonatomic. Sensors participate in
the top-level activity (where they were created) and in
both subactivities. The thermometer object periodically
sends temperature readings to the user process (associated

with the top-level activity), to a recording process to be
formatted and written on a file and to a planning process
for use in determining fi~ture motor commands. Tagged
data structures are used to separate the information
devoted to one of the activities sharing the thermometer
from that of another. We have already discussed the
Condit ions record. The nonatomic property indicates that
this object does not understand the commit protocol or
require the extra mechanisms for recovery, in general, the
properties determine the set of activity notices (primarily
messages from the activity coordinator) to which the object
is expected to respond, l 'or example, the suspend activity
command can be handled in the thermometer by updating
the tagged status variable and refraining from sending
temperature readings to processes working on behalf of the
suspended activity. A vent object is typical of motor device
controllers. It too is sharable and nonatomic. The vent's
job is to generate the proper signals to open or close the

physical vent as specified by connnands received from the
user or the planner. It participates both in the operating
activity and the planning activity. In response to the same
suspend activity notice, the vent might update status and
ignore any commands arriving with the suspended activity
tag. Other objects needed in the solution include the
recorder, the planner, the user process, and various file
objects. The recorder is a private nonatomic participant in
the recording subactivity. It receives messages containing
sensor readings from all of the live sensor objects and
constructs a record which it sends to the file server. The
file server is a shared object owned by a system activity
and participating in potentially many user activities. It
should be capable of taking part in atomic activities
(although the greenhouse example does not demand it)
and so would have the atomic property. The planner is a
private nonatomic member of the planning subactivity that
communicates with sensors, some database servers, and the
motors. Finally the user process, involved in the top-level
activity, might serve as a command interpreter allowing the
user to issue commands to the activity subsystem and to
the motor devices.

Figure 1 sulnmarizes the activities and some of the
objects that might be set up. The top-level activity,
denoted by Operating, deals with the basic operation of
the greenhouse. It involves the processes (drawn as boxes)
that control the sensors, the motors, and the user terminal.
In addition, it spawns two subactivities, which are drawn
as ovals and labelled Recording and Planning.
Recording is concerned with data collection fimction. It
shares the sensor processes with Operating and a file
object with a separate server activity. Finally, the recorder
process only participates in this subactivity and is therefore
a private object. Planning deals with automatic operation
of the greenhouse based on a planning process. This
subactivity shares the sensors and the motors with
Opera t ing arid a database object with the server activity.

Given this oudine of a solution formulated using
activities, one can now follow a concrete example of the
management facilities. Suppose the user process died in
such a way that it was detected by an object malinger in
the system. The object manager would send a notification
to the appropriate controlling module where the user may
have specified how to handle the situation (e.g.
substituting a different process), l.n this case however, the
default applies and the activity coordinator terminates the
activity by recursively terminating both subactivities and
sending an activity notice to each object regisleredin the
top-level activity.

The greenhouse example could be fllrther elaixgrated
upon to illustrate atomicity. Suppose that each request to
write a record sent by the recorder to the file server
requires it to perform an atomic action. The shared server
could accomplish this by creating an atomic subactivity
within the context of the recording subactivity. Since the
recording snbactivity is nonatomic, the new subactivity is
registered and managed by the activity coordinator as
atomic rather than subatomic.

Figures 2 and 3 show representative components of tile
solution translated into our proposed activity b~tsed
language constructs. Figure 2 shows an application specific
controlling module that could be used to establish the
activity structure and respond to object failures. Figure 3
gives a sample of a process-module.

5. Sun in la ry

In this paper, we have proposed a new conceptual tool
for organizing distributed software called an 'activity.' The
structuring achieved by activities is orthogonal to that of
objects. The model includes a set of properties that
characterize the relationships among activities, their
subactivities, and objects. Mechanisms for managing
distributed tasks can be based on this notion of an activity
hierarchy. We have outlined our current design for a
programming system and a preliminary set of high level
language constructs. Our approach differs from similar
research efforts by providing additional flexibility for
application-specific failure handling and extended control
features. Finally, we have presented an example of what
we consider a typical application.

Acknowledgements

This work was supported in part by NSI.' grant No.
IST-8025761 and in part by NSF Grant No. MCS-
8] 04008.

 Recordin l
Subactivitty

recorder
[~Recording

user

Jl=Operaling Act

sensor:

Operating

1
~Operating

file
~System

i .~Jsensor :

thermometer
,,r" 2

dCOperaling
Act.

Activity

motor :
vent

lll~per ating
Act.

motor:
shade

~Operaling
Act

* ownership

Planning
Subactivity

planner

,~lanmng
Acl.

database 1
~Syslem

Acl.

Figure 1

6. Bibliography

[Ball76] J.L:. Ball, J.A. Feldman, J.R. Low, R.F. Rashid, and
P.D. Rovner,

"RIO: Rochester's Intelligent Gateway System
Overview,"
IEEE Transactions on Software Engineering, vol. 2,
No. 4, December 1976, 321-328.

[Brinch Hansen78] P. Brinch Hansen,
Distributed Processes: A Concurrent Programming

Concept,"
Communications of the ACM, 21, 11, November 1978,
934-941.

Greenhouse: CONTROLLING MODULE
NONATOMIC =

PUBLIC
-- The PI.ITS mcatfing of this kcywold is itltetlded
type: DeviceName;
which: Directions;

MANAGED
user: PROCESS

DEATH NOTICE Kill;

ThermometerModule: TYPE : PROCESS
TAGGED [location: Directions]
DEATH NOTICE Reconfigure;

thermometerSet: SET OF ThermometerModule;

VentModule: TYPE = PROCESS
TAGGED [location: Directions]
DEATH NOTICE Reconfigure;

-- Notice same death notice for
-- therm's and vents

ventSet: SET OF VentModule;

recorderActivity: ACTIVITY;
-- Death notice is left to be the default

plannerActivity: ACTIVITY;
-- Death notice is left to be the default

VAR
p: PROCESS;

OBJECT NOTICES
BEGIN
Reconl igure (device: PROCESS) =)

VAR
msg: MESSAGE;
a: ACTIVITY;
i: INTEGER;

BEGIN
-- Constltlct a fct.;{.)lii'lgtlraLioll lllu~age aild
-- send it to intcrsted parties

IF device IN thermometerSet
THEN msg *- (type-thermometer),

(which ~ thermometerSet.location[device])
ELSE msg *- (type~vent),

(which~ ventSet.location[device])

SEND msg TO user;
SEND msg TO plannerActivity

END;
Kill (p: PROCESS) =-)

BEGIN
not i f y vent m o t o r s to go into manua l tnodu
TERMINATE plannerActivity
END;

END;

BEGIN

START PROCESS user ON UserTerm (. . .) ;
p *- NEw[ThermometerModule];
PUT p IN thermometerSet;
thermometerSet, locat ion[p] ,- south;
START PROCESS p

ON ThermometerCode (HW-Address);
... a n d so on fo r o the r t h e r m o m e t e r s

p ,- NEw[VentModule];
PUT p IN ventSet;
ventSet. locat ion[p] *- south;
START PROCESS p

ON VentCode (HW-Address);
... a n d so on fo r o the r vents

-- Activate the subactivitics lot the recorder aIld plalHlcr
START ACTIVITY recorderActivity

ON Recording (themometerSet);
START ACTIVITY plannerActivity

ON Planning (. . .)
END.

Figu re 2

[Cook80] R. Cook
"*Mod-A Language for Distributed Programming,"
IEEE Trans. on Software Engineering, vol. SE-6, No.
6, November 1980, 563-571.

[EllisB.0] C. Ellis,
"Concurrent Search & Insertion in 2-3 Trees,"
Acta lnformatica, 14, 1980, 63-86.

[Feldman79] J.A. Feldman,
"High Level Programming for Distributed
Computing,"
Communication of the ACM, 22, 6, June 1979, 353-
368.

[Gray79] ,I. Gray
"Notes on Data Base Operating Systems,"
in Operating System~; An Advanced Course. Springer
Verlag, 1979.

[Hoare78] C.A,R. Hoare,
"Communica t ing Sequential Processes,"
Communications of the ACM, 21, 8, August 1978, 666-
677.

[Jones79]A.K. Jones,
"The Object Model: A Conceptual Tool for
.Structuring Software,"
m Operating Systems, art Advanced Course, Springer
Verlag, 1979.

T h e r m o m e t e r C o d e : PROCESS MODULE
(line: HWAddress) SHARABLE NONA [OMIC =

PUBLIC
-- a slot tbr an activity name is auLomalJcally made public
wantsOata: PROCESS;

VAR
s e n s o r m s g : message ;
c o n d i t i o n s : TAGGED RECORD

[fields describing reading3 el mtute~t];
s ta tus : TAGGED {a l ive, s u s p e n d e d } ;
d a t a C o l l e c t o r : TAGGED PROCESS;

tag: ACTIVITY TAG;

ACTIVITY NOTICES
BEGIN
OPEN (msg -- contains tl~c "open activity" nlcsaagc) =)

BEGIN
-- New instances of tagged types arc automaucally generated
tag <- msg.activity;
conditions[tag] (-

[fields are filled from slots in msg];
status[tag] ,-- a l ive;
d a t a C o l l e c t o r [t a g] ~- msg .wan tsData ;
REPLY (g ivesData~SELF) TO msg .wan tsData
END;

-IERMINATE (msg) = >
BEGIN
-- Instances of tagged types arc automatically dcsll()ycd
END;

END;

BEGIN

DO
take temperature reading &

construct sensormsg
FOR EACH t: TAG

SUCH THAT sta tus[t] = a l ive DO
IF conditions in cond i t i ons [t] are met

THEN
SEND senso rmsg TO d a t a C o l l e c t o r l 0

ENDLOOP
ENDLOOP

END.

Figu re 3

[I .ampsonS0] B.W. l,ampson,
"Atomic Transactions,"
in l, ecture Notes for Advanced Course on I)t~uibuted
Systems- drchitecture and hnplementatiot~ Institut
fur infornlatic Technische, Universitat Munchen,
Munich, Germany, March 1980.

It .antz80] K.A. l,antz,
"Uniform Interfaces for I)istributed Systems,"
TR63, Computer Science Dept., University of
Rochester, May 1980.

[l .iskov79] B.H.I.iskov,
"Primitives for l)isU'ibuted Computing,"
Proceedings of the Seventh Symposium on Operating
Systems Principles, December 1979, 30 42.

[1 iskov81] B.H.l.iskov,
"On l,inguistic Support tbr I)istributed Programs,"
Proceedingx Syrup. on Rdiabifity in Distr. Software &
Database System~; July 1981, 53-60.

[l.iskov82] B.H. l Jskov and R. Scheifler,
"Guardians and Actions: l.inguistic Support for
Robust Distributed Programs,"
Proceedingx Syrup. on Principles of Programming
Languages, Jan 1982, 7-19.

[l,owS0] J.R. l,ow,
"Name-Type-Value (NTV) Protocol Draft Proposal,"
TR73, Compvter Science Depk University of
Rochester, July 1980.

[Moss81] J.I'.B. Moss,
"Nested Transactions: An Approach to Reliable
Distributed Computing,"
Ph.D. thesis, MIT/I ,CS/TR-260, MIT l,aboratory lor
Computer Science, Cambridge, Mass.,]981.

[RandellT5] B. Randell,
"System Structure for Software l"ault 'loleral~ce."
IEEE Transactions on Software Engineering, 1, 2,
June 1975, 220-232.

[RashidS0] R.I.'. Rash]d,
"An Inter-Process Conununication l.'acility for
UNIX,"
TR CMU-CS-80-124, Dept. of Compuler Science,
Carnegie-Mellon University, March 1980.

[Shrivastava78] S.K. Shriv~tava and J.P. Banatre,
"l,',eliable Resource Allocation Between Unreliable
Processes,"
IEEE Transactions on Software Engineering 4, 3,
May 1978, 230-240.

[Shrivastava81] S.K. Shrivastava,
"Structuring l)istributed Systems tbr Recoverability
and Crash Resistance,"
IEI"E Trans, on Software Engineering, vol, Sl';-7, 4,
July 1981, 436-447.

[WulfSl] W.A. Wulf, R. l.evin, aad S.P. Harbison,
HYDRA/C.MMP: An Experimental Computer
S.vste~
McGraw-Hill, 1981.

