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Chapter 1

Introduction

Under NASA Contract NAS1-15528, SRI developed techniques for the for-

mal specification and verification of reliable operating systems for flight control

applications. Such operating systems necessarily involve parallel processing ac-

tivities, both within each processor and between multiple processors. The tech-

niques available for the specification and verification of such parallel activities

were very crude and expensive to use. This report describes a new technique for

the specification of asynchronous parallel activities.

In previous research, supported by NSF, SRI explored temporal logic as a

framework for specifying and reasoning about concurrent programs, distributed

systems, and communications protocols. Previous papers[Schwartz/Melliar-Smith

81,82, Vogt82a,b] report on efforts to use temporal reasoning primitives to express

very high-level abstract requirements that a program or system must satisfy.

Based on experience with those primitives, SRI has developed an interval logic

more suitable for expressing higher-level temporal properties.

*This research has received additional support from National Science Foundation Grant MOS-
8104459.

tDr. Vogt was on leave from the Hahn-Meitner=Institut, Berlin, Federal Republic of Germany.



1. Introduction

The survey paper[Schwartz/Melliar-Smith82] examines how several different

temporal logic approaches express conceptual requirements for a simple protocol.

The conclusions were both disappointing and encouraging. On one hand, the

very abstract temporal requirements provided an elegant statement of minimal be-

havior for implementation conformance. It was possible to distill a set of require-

ments expressing the essence of the desired behavior; stating only requirements

without implementation-constraining expedients. Our intention was to specify

only the minimum required externally visible behavior, leaving all other aspects

to lower levels of description. We have argued that only by doing so can one

gain the necessary measure of confidence that a specification reflects the intuitive

requirements. Implementation-oriented details, while facilitating verification of

like implementations, lead to overly detailed and complicated specifications and

bias implementation strategies.

While the level of conceptualization of the specifications was satisfactory,

their expression in temporal logic was rather complex and difficult to understand.

Because of the relatively low level of the linear-time temporal logic operators (D,

_, Until, Latches-Until, etc.), many higher-level concepts had to be "encoded".

To characterize these intervals and any desired properties in temporal logic be-

comes quite difficult and unwieldy. Intervals in temporal logic are "tail sequence"

intervals, always extending from the present state through the remainder of the

computation. Temporal logic operators are always interpreted on the entire tail

sequence. For this reason, unary [] and _ operators cannot be used to specify

invariance and eventuality properties in bounded intervals. The Until operator,

which does allow one to identify a future point in the computation, must be com-

posed to encode indirectly such properties. This quickly leads to a morass of
embedded Until formulas.

The impoverished set of temporal abstractions forced the inclusion of state

components that were not properly part of the specification. These additional

state components were needed to establish the amount of context necessary to

express the requirements. Without these components, context could only have

been achieved by complex nestings of temporal Until constructs to establish a

-- 3 --



1. Introduction

sequence of prior states. The survey paper highlighted how the introduction of

state simplifies the temporal logic formulas at the expense of increasing the amount

of "mechanism" in the specification.

For our goal of minimal specification of internal behavior, the parameterized

event-sequence temporal specification was the most satisfying, and least read-

able. The difficulty of establishing context by temporal constraint rather than

by state function led us to include supplementary state and a slightly lower-level

specification.

In this research, we have investigated an interval logic to provide a higher-

level framework for expressing temporal relationships. A higher-level temporal

concept that pervades almost all temporal specifications is that of a property

being true for an interval. The concept of intervals and interval composition

forms the basic structure of our specification and verification method. This allows

conceptual requirements to be stated rather directly and intuitively within the

logic. For the examples considered, this new logic has provided concise and

workable specifications of the intended semantic requirements.

An informal introduction of the language and logic follows in Section 2. A

formal model for the interval logic is given in Section 3, with a selection of valid

formulas appearing in Section 4. The remainder of the paper contains sample

specifications and a small proof example. Section 5,6,7, and 8 explore the ap-

plication of interval logic to queues, a hardware arbiter, a simple communications

protocol, and a distributed mutual-exclusion algorithm, respectively. Section 9
concludes with a discussion of the current status of the research.

Appended to this report are two papers by David Plaisted, a consultant to

this project, describing a decision procedure for the Interval Logic.

-4-



Chapter 2

An Interval Logic

At the heart of our interval logic are formulas of the form:

Informally, the meaning of this is: "The next time the interval I can be constructed,
the formula a will 'hold' for that interval." This interval formula is evaluated

within the current interval context and is vacuously satisfied if the interval I

cannot be found. A formula 'holds' for an interval if it is satisfied by the interval

sequence, with the present state being the beginning of the interval.

The unary [] and O temporal logic operators retain their intuitive meaning

within interval logic. The formula [ I ][] a requires that property a must hold

throughout the interval, while [ I ]O a expresses the property that sometime
during the interval I, _ must hold. For simple state predicate P, the interval

formula [ I ] P expresses the requirement that P be true in the first state of the
interval.

Interval formulas compose with the other temporal operators to derive higher-

level properties of intervals. The formula



2. An Interval Logic

states that ttle first J interval contained in the next I interval, if found, will have

property c_. The property that all J intervals within interval I have property c_

would be expressed as [ I ] [][ J ]o_. More globally, the formula [] [ I ]_
requires all further I intervals to have property _.

Each interval formula [I]_ constrains _ to hold only if the interval I can be
found. Thus only when the context can be established need the interval property

hold. To require that the interval occur, one could write _ [I] False. If the interval

is found, the "_inverts the False to True, while if the interval is not found, the

interval term is vacuously satisfied and then inverted by the -1 to False. The

interval language defines the formula *I to mean exactly this.

Thus far, we have described how to compose properties of intervals without

discussing how intervals are formed. At the heart of a very general mechanism

for defining and combining intervals is the notion of an event. An event, defined

by an interval formula/7, occurs when 17changes from False to True, i.e., when it
becomes true. In the simplest case,/3 is a predicate on the state, such as x _>5

or at Dq?. Note that, if the predicate is true in the initial state, the event occurs
when it changes from False to True, and thus only after the predicate has become
False.

Intervals are defined by a simple or composed interval term. The primitive

interval, from which all intervals are derived, is the event interval. An event,

defined by/7, denotes the interval of change of length 2 containing the -_/7and/7

states comprising the change. Pictorially, this is represented as

[ ]
event f/

Two functions, begin and end, operate on intervals to extract unit intervals.

For interval term I, begin/ denotes the unit interval containing the first state of
interval I. Similarly, end/denotes the unit interval at the end. Application of the

end function is undefined for infinite intervals. Again, pictorially, the intervals
selected are

tat Dq means that control is at the entry point to the operation Dq.

-- 6 --



2. An Interval Logic 2.1. The Interval Operators _ and

i [ ]

For a P predicate event, the following formulas are valid.

[endP ]P

[ beginP ]-_P

[Pimp

2.1 The Interval Operators _ and

Two generic operators exist to derive intervals from interval arguments. We

take the liberty of overloading these operators to allow zero, one or two interval-

value arguments. Intuitively, the direction of the operator indicates in which

direction and in which order the interval endpoints are located. The endpoint at

the tail of the arrow is first located, followed by a search in the direction of the

arrow for the second endpoint. A missing parameter causes the related endpoint

to be that of the outer context.

The interval term I =_ denotes the interval commencing at the end of the

next interval I and extending for the remainder of the outer context. The right

arrow operator, in effect, locates the first I interval, relative to the outer context,

and forms the interval from the end of that I interval onward. With only a second

argument present, :=_J denotes the interval commencing with the first state of

the outer context and extending to the end of the first J interval. Thus,

I [ I I 1 ]

[ ]
,I ,I

-- 7 --



2. An Interval Logic 2.1. The Interval Operators _ and

J[ , , , ]
ond_[ ]

[ ]_J
,1 ,I

Tlle term I _ J, with two interval arguments, represents the composition of

the two definitions. This constructs the interval starting at the end of interval I

and extending to the end of the next interval J located in the interval I ::,. Given

this definition, the interval formula [ I :=, J Jot is equivalent to [ I =, ][ = J ]_.

Recall that the formula [ I =:*J ] c_is vacuously true if the I :=_J interval cannot
be found. Pictorially, the interval selected is

'1 ,II I "lj
I

endI H

' 't 1J t !

endJ _-_

The right arrow operator with no interval arguments selects the entire outer
context.

The left arrow operator _ is defined analogously. For interval term I *=-J,
the first J interval in context is located. From the end of this J interval, the most

recent I interval is located. The derived interval I _ J begins with end/and ends
with endJ. Thus,

[ ]
I I, '
I I J

-8-



2. An IntervalLogic 2.1. The IntervalOperators=, and

Similarly, the interval term I €=selects the interval beginning with the end of the

last I interval and extending for the remainder of the context. For a context in

which an interval I occurs an infinite number of times, the formula [ I €= ] c_is
vacuously true. The interval terms _ and _ J are strictly equivalent to =, and

J, respectively.

The following examples illustrate the use of the interval operators.

[ x = y =:* y-- hS J El x > z (1)

[-'lx>z ]
,I ,I

x--y y_16

For the interval beginning with the next event of the variable x becoming

equal to y and ending with y changing to the value 16, the value of x is asserted

to remain greater than z. The first state of the interval is thus the state in which

x is equal to y and the last state is that in which y is next equal to 16. Note that

the events x _ y and y _ 16 denote the next changes from x _ y and y 7- 16.

To modify the above requirement to allow x _ z to become False as y becomes

16, one could write

[x--'y :=:€'begin(y---- 16)] [] X > Z (2)

Nesting interval terms provides a method of expressing more comprehensive

context requirements. Consider the formula

[(A :::*B ) =:*C ] O D (3)

[oD]
,T ,I ,I
A B C

-- 9 --



2. An Interval Logic 2.1. The Interval Operators =, and

The formula requires that, if an A event is found, the subsequent B to C interval,

if found, must sometime satisfy property D. The outer _ operator selects the

interval commencing at the end of its first argument, in this case, at the end of
the selected A =:_B interval. The interval then extends until the next C event -

establishing the necessary context.

In the previous example, the formula was vacuously true if any of the events

A,B, or C could not be found in the established context. In order to easily express

a requirement that a particular event or interval must be found if the necessary

context is established, we introduce an interval term modifier ,. For interval term

I, ,I adds an additional requirement that B must be found in the designated
context. The formula

[(A_ *B)_C]_D (4)

strengthens formula (3) by adding the requirement that, if an A event occurs, a

subsequent B event must occur. This is equivalent to formula (3) conjoined with

The , modifier can be applied to an arbitrary interval term. The formula

[ • (A =, B) _ C ] O D, for example, would be equivalent to (3)conjoined

with *(A=aB), or equivalently, *A A [A :=_]*B. The, modifier adds only
linguistic expressive power and can be eliminated by a simple reduction (given in

the Appendix).

As an example of specifying context for the end of the interval, consider the
formula

[A_(B_C) JOD (5)

[ OD]
,! ,I ,I
A B C

Here, the interval begins with the next occurrence of A and terminates with the
first C that followsthe next B.

- 10 -
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By modifying formula (3) to begin the interval at the beginning of A =, B,

i.e.,

[ begin(A :=:}B)==} C ] O D (6)

[ <>D]
,!

A B C

we obtain a requirement similar to that of (5), but allowing events B and C to be

arbitrarily ordered.

Introducing the use of backward context, to find the interval A =, B in the

context of C, we have

[(A_B)_C]<>D (7)

[<>D]

A B C

tIere the occurrence of the first C event places an endpoint on the context, within

which the most recent A _ B interval is found. Note the order of search: looking

forward, the next C is found, then backward for the most recent A, then forward
for the next B. Thus_ the formula is vacuously true if no B is found between C
and the most recent A.

As a last example, consider

[ begin(A€= B)€= C ] O D (8)

- 11-



2. An Interval Logic 2.2. Parameterized Operations

[ oD]

A B C

Tile interval extends back from the first C event to the beginning of the most
recent A €=B interval.

2.2 Parameterized Operations

Within the language of our interval logic we include the concept of an abstract

operation. For an abstract operation O, state predicates atO, inO, and afterO are

defined. These predicates carry the intuitive meanings of being "at the beginning",

"within", and "immediately after" the operation. Formally, we use the following

temporal axiomatization of these state predicates.

1. , [atO =:_ begin afterO ] [] inO

2. [ afterO =:_ begin atO ] [7 _inO

] []
= ][]

Axioms 1 and 2 together define inO to be true exactly from _tO to the state

immediately preceding _fterO. Axiom 3 allows atO to be true only at the beginning

of"the operation, and axiom 4 requires that afterO be true only immediately

following an operation. Note that, in axiom 1 for example, the predicate atO used

as an event term defines the interval commencing with the entry to the operation.

The axioms do not imply any specific granularity, duration or mapping of the

operation symbol to an implementation. Any interpretation of these slate predi-

'eate symbols satisfying the above axioms is allowed. In addition, no assumption

of operation termination is made. To require an operation to always terminate,

- 12 -
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one could state as an axiom

[ ato , altorO]True

Abstract operations may take entry and result parameters. For an opera-

tion taking n entry parameters of types T1, ..., :In, and m result parameters of

types Tn+l, ..., Tn+m, the at and alter state predicates are overloaded to include

parameter values, atO(vl, ..., vn) is true in any state in which atO is true and the

values of the parameters are vl, ..., vn. The predicate after is similarly overloaded.

As an example of an interval requirement involving parameterized operations,

consider an operation O with a single entry parameter. To require that this

parameter increase monotonically over the call history, one could state

Va, b [--1[ atO(a)=:_ atO(b) ] b > a

Since a and b are free variables, for all a and b such that we can find an interval

commencing with an atO(a) and ending with an atO(b), b must be greater than a.

Recall that the formula is vacuously true for any choice of a and b such that the

interval cannot be found.

It is also useful to be able to designate the next occurrence of the operation

call, and to bind the parameter values of that call. The event term atO • (a)

designates the next event atO and binds the free variable a to the value of the

parameter for that call. Thus the previous requirement constraining all pairs of

calls, can be restated in terms of successive calls as

[] [ atO(a) ==_atO "(b) ] b _> a

Tile requirement is now that for every a, the call atO(a) is followed by a call

of O whose parameter is greater than a. This parameter binding convention has

a general reduction, which we omit here. For this specifie formula, the reduction

gives

[] ] ) [ ]b>

- 13 -



Chapter 3

A Formal Model

In this section we give the syntax and model-theoretic semantics for the

language of interval logic.

In the following, we will use a, fl, q as logical variables ranging over interval

formulas and use I, J,K ranging over interval terms. We use P to range over

atomic predicates and A to range over event terms.

Summarizing the language of our logic, we have defined the following syn-
tactic constructs:

<interval formula_ a ""

P I -_/3 ] /3 <propositionalconnective_>q I

<>_I D/3 I ,I11I]/3

<interval term_ I ""

A I beginJ ] endJ I

J _ K (with possible omission of one or both arguments) [
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J _ K (with possibleomission of one or both arguments)

<event term> A ""o_

As we mentioned earlier, the , interval term modifier is considered as a

syntactic abbreviation. Rules for its elimination appear in the Appendix.

For a finite or infinite computation state sequence s, we now define satisfac-

tion of an interval formula a by s. In defining the model, we use the notation

s<i,j> to denote the subsequence of s beginning with the i th element of the se-

quence, and ending with the jth element of the sequence. As a representation for

an infinite sequence, we use oo as the right endpoint value, as in the subsequence

s<i,c_>. For a finite computation, we extend the last state to form an infinite

sequence.

The following model defines, for sequence s and interval formula c_, the

satisfaction relation s<_:,j> _ o_. We say that a sequence s satisfies formula

a if s<l,l,l> _ o_. Since our definition of the satisfaction relation will always

be referring to portions of the same s sequence, we will refer to s using only its

subsequence denotation, i.e., as < i, j >_ a.

The relation < i, j >_ a is defined recursively, based on the structure of

the formula, as follows:

< i, j >_ P ---- si _ P (i.e. P is true of the first state of the interval.)

<i,j >_o_ __----not <i,j >_oc

<i,j>_aAfl =-- <i,j>_a and <i,j>_fl

<i,j >_ []a =_ VkE<i,j> <k,j>_ot

< i,j 7>_ <>a _ 3kC< i,j > < k,j >_a

< i,j >_ [ I ]a -- 7(I, < i,j >,F) _ a

The .7" function appearing in the definition of [ I ] a is a interval-valued

- 15 -



3. A Formal Model

function from an interval term, an interval, and a direction of search. The

direction of search is denoted by F for forward or B for backward - logical variable

d ranges over F and B. The function .7"denotes the interval I found in the _ i, j _>

context looking in the direction of search. The function is defined to return the

null interval value _L.when the interval cannot be constructed. All functions oil

intervals are strict on _[_. By the last clause in the above definition, any formula

a is satisfied for such a null interval. This serves as a device to define our partial
correctness semantics for interval formulas.

For event term a and interval _ i, j > we define

{<k-l,k>,kE<i+l,j> }

changeset(a,< i,j >) -- A < k- 1,j >_ -_a

A<k,j>_a

to define the set of events a occuring in the interval, each event being the interval

of change < k- 1, k > in which a changes from false to true. With this we next
define

7(a, < i,j >,F)----min(changeset(t_, < i,j >)

7(a, < i,j >,B)----max(changeset(a, .( i,j >)

We assume rain and max functions on sets of (interval-valued) pairs are defined

in the standard manner (the represented intervals are disjoint). Both min and

max return _[_ if the set is empty, and max returns _!. for an infinite set. Thus _"

returns tile interval of change for the first or last event a in the interval ( i, j >,

and returns _]_if that interval cannot be found.

Next we define the interpretation of the interval functions begin and end

7(beginI, < i, j >, d) =

< first(7(I, < i,j >, d)),first(7"(I, < i,j >,d)) >

7(endl, < i,j >,d) --

< last(7(I, < i,j >,d)),last(7(I, < i,j >,d)) >

where first(< i, j >) -- i, last(< i, j >) -- j

and last(< i, c_ >) is defined to return _].

- 16 -



3. A Formal Model

We now define our forward and backward interval construction functions

through a recursive interpretation for jr based on the structure of the interval-

term argument.

7(_, <i,j >,d) = 7"(_,<i,j >,d) -- <i,j>

7(I_, < i,j >,d) ----- < last(7(I, < i,j >,d)), j >

_'(I_, < i,j >,d) = < last(7(I, < i,j >,B)), j >

7(_J, < i,j >,d) = < i, last(Y(J, < i,j >,F)) >

7(_J, < i,j >,d) -- < i, last(7(J, < i,j >,d)) >

We now derive the semantics of the two argument arrow operators as the

composition of those above.

7(I_J, < i,j >,d) ---- 7(_J, 7(I=:_, < i,j >,d),F)

Y(I_J, < i,j >,d) -- F(I_, F(_J, < i,j >,d),F)

This completes our model for interval logic formulas.

Interval logic specifications are divided into two parts: Init and Axioms. An

Init portion states properties to be satisifed at (from) the beginning of a com-
putation, assuming a distinguished starting state. Formally, using distinguished

(uninterpreted) state predicate start, each interval formula a within the Init clause

is interpreted as an axiom of the form start D a. The interpretation of start is a

a methodological concern: the predicate will be mapped to the beginning state of

the computation sequence when proving that a program satisfies the specification.

The assumption of a distinguished starting state will allow us to more completely

characterize correct system or program behavior.

- 17 -



Chapter 4

A Sampling of Valid Formulas

In this section we present a selection of valid formulas. Our intention here is

simply to illustrate a style of expression and deduction rather than a more com-

prehensive list of valid formulas or a complete axiomatization. We are currently

incorporating a decision procedure for interval logic[Plaisted83] into our STP

deduction system[Shostak/Schwartz/Melliar-Smith82]. We are therefore more

concerned about the style o/ expression than an axiomatization of the language
or rules of deduction.

As in tile previous section, we use a, fl,'7 as logical variables ranging over

interval formulas, and I, J,K ranging over interval terms. Additionally, we

use variables p,a to range over state predicates (not containing any temporal

operators}.

Interval formulas distribute across intervals, as indicated by the following for-
mulas.

v_.[i]_ ^ [i]_ - [l](_^a)
V2. [I]oe :::) [I]fl _ [I](a2)/3)

Expressing the fundamental case split in interpreting interval formulas, we have
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va[i] - v
defining the formula to be true if either the interval cannot be constructed, or if
a holds for the constructed interval. Associated with this, we also have

v4. ,I _-__-_[x]False
V5. *a -= <>(-_aAOa)

V6. -,[I ]a _ [ *I]-_a

Formula V4 derives the meaning of our interval-eventuality operator in terms of
an interval formula, while V5 re-expresses this in terms of nested <>eventuality.

Fornmla V6 defines "pushing" interval formula negation into the interval.

For an arbitrary interval a, we have the following formulas illustrating the "promotion"

of noninterval properties to interval properties.

Vr.a = [:=_ ]a

va.n
Formula V7 expresses the fact that the interval (=,) selects the complete outer

context, while V8 expresses the fact that any invariant a of the outer context will

apply in any "tail interval" of tile context. A consequence of our baste definition
of event, terms is

v0.[__ bogin-_o] []
That is, for the interval beginning with a becoming true and extending until just

prior to ci becoming false, a will remain true.

As properties of how intervals are constructed, we have

gl0. [beginC_==}]*fl V [beginfl:=}]*C_

Vll.[ a €=/3 ]_ _ [ :=}/3 ][ _*a :=}]"/

V12.[=al]_r-l*J

Formula V10 expresses a fundamental event-ordering property. For two events

- 19 -



4. A Sampling of Valid Formulas

designated by _ and fl, either (1) one or the other event does not occur, (2) c_

occurs before fl, (3) fl occurs before a, or (4) both occur at the same time. This

case split is often used to prove properties relating multiple events.

For nonnested interval terms, formula Vll reduces the semantics of our backward

operator to an equivalent expression using the forward =_ operator. In doing

this reduction, we employ a nested interval event formula. The embedded (-_*a)

thus begins when the _*a formula changes to become true. This will becomes

true in the first state when one can no longer find another a event - precisely in

the first a state of the last change to a. Of course this kind of "tricky encoding"

should be avoided; the backward operator was included in the language to provide

a higher-level construct to express this!

Formula V12 expresses the fact that no interval with an upper end point, and

therefore finite, can contain an unbounded number of J intervals. This follows

from the fact that the occurrence of an event requires a change in predicate value
- and thus at least two states. Note that the formula * O a is satisfiable in a

bounded interval. This would be satisfied by any interval state sequence in which

a is true in the last state. Thus, the interpretation of [] O as "infinitely often"

only applies over infinite intervals.

As basic properties of interval partitioning, we have

V13.[_l][]p A [I=*][]p D r-lp

D v
By V13, for any interval term I, if a simple property p is true up to I and is true

from I onward within the outer context, then p is true throughout the context.

Typical use of this would be to establish invariance or eventuality properties for

an interval by showing the properties to hold for portions of the interval. Formula

VI4 expresses the dual of this.
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Finally, the following formulas express interval composition.

V15.[I_J]Dp ^ [(I_J)_K]Dp

[I=(J=K)] Dp
w+ [= (J=/_)]_ ^ [= •J ]-,K

z [=/_].
Formula V15 defines the composition of two intervals (I =a J) and ( (I _ J) =_ K)

to form the interval (I _ (J _ K)). Pictorially, we have

[Dp]
,[ ,I
I J

[Dp]
,I ,I ,I
I J K

[ Dp]
,I ,I ,I
I J K

A nonembedded interval property 12]p is thus derived for the interval from I to

the first K that follows the first J by proving it for the associated I to J and J

to K intervals. For the case where one can prove that the first K following I also

follows J, formula V16 allows the simplification of (€=:(J =:_K)) to (:=, K).
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Chapter 5

Queue Specifications

In this section, we illustrate two specifications of queues with asynchronous

enqueuing and dequeuing operations. We first consider a reliable (normal) queue,

followed by an unreliable queue. Our queue has only two operations, Enq which

takes a single parameter value, which it enqueues, and Dq which removes the

value at the front of the queue and returns that value as its result. We assume in

this specification that the queue is unbounded, and require that values enqueued

must be distinct. No assumptions are made about the atomicity of, or temporal

relationships between, the Enq and Dq operations. These operations can overlap

in an arbitrary manner. We do assume that at most one instance of the Enq

and Dq operations will be active at any given time. This avoids a more explicit

process-naming convention.

The formula

Queue.

[ €:= atterDq(b) ](*afterDq(a) ----- $(atEnq(a) €= atEnq(b) ))

expresses the fundamental first-in first-out behavior that characterizes a queue.

It requires that, for all a and b, if we dequeue b, then any other value a will be
dequeued in the interim if and only if it was enqueued prior to b. Further axioms

are needed to express liveness requirements on the two operations.
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By exchanging atEnq(a) and atEnq(b) terms in the queue axiom above, yield-
ing

Stack.

[ €= afterDq(b) ](*afterDq(a) ___-- *(atEnq(b)€= atEnq(a) ))

one obtains a last-in first-out queue (i.e., stack).

In preparation for specifying the services of a communication transmission

medium in Section 7, consider a modification to the queue semantics to allow

it to be intermittently unreliable. Individual values can be lost from the queue,

provided that any value enqueued a sufficient number of times will eventually

be available for dequeuing. This specification allows repeated Enq operations for

the same value, to permit the value to be reenqueued until it is dequeued. The

s)ecification is shown in Figure 5-1.

hilt:

I1. [ , (_tEnq(a) =__tEnq(b)) €= (afterDq(a)=_ _fterDq(b)) ]True

I2. [ =* a_erDq(a) ]*atEnq(a)

13. [ _tEnq(c) _ _tEnq(c) ]d yd c D --,*_,tEnq(d)

AI. [] *atEnq A *atDq D .atterDq

A2. [ _tEnq _ ]*_terEnq

Figure 5-1: Specification of an Unreliable Queue, with distinct enqueued items.

Clause I1 requires that, for all a and b, if we dequeue a before dequeuing b then

we must have previously enqueued those two items in that same order.

q
*Enq(a) ,Enq(b) Dq(a) Dq(b)

Note that a and b do not have to be successive items; the clause applies to any
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5. Queue Specifications

pair of items. If the values of either a or b, or both, are such that the value

is never dequeued then it will not be possible to construct the interval between

their dequeuings. Note that the clause is vacuously satisfied for any pair of values

for which this dequeuing interval cannot be found. Clause I2 contributes the

requirement that values must be enqueued prior to being dequeued. These clauses

are both predicated on items being dequeued and state that items dequeued must

have been enqueued in the same order. These two clauses place no constraints on

items lost and thus never dequeued. I3 here expresses the distinct item constraint:

repeated Enqs must be consecutive; once some other value is enqueued, it is not

permissible to return to any prior value.

_Lxiom A1 now expresses the weak constraint that infinitely repeated Enqs

will ensure that the Dq operation returns. Items can thus be lost from the queue

as long as, eventually, an item is retained to be dequeued. Axiom A2 requires only

that the Enq operation terminate.
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Chapter 6

A Self-Timed Systems Specification

Self-timed logic [SeitzS0] was introduced as a means to reduce complexity
of asynchronous connections between hardware modules. The method is based

on a request-acknowledgment protocol which guarantees that a module remains

inactive until it is requested, and that the request remains in place as long as the

module is required. The correctness of such systems, if properly constructed, is

independent of the speed of its components.

In this section, we use interval logic to describe a simple request-acknowledgment

protocol. Based on these specifications, we define an arbiter module (adapted from

[Seitz80] and [Bochmann82]), that determines the order in which two user modules
obtain access to a shared resource.

6.1 Request-Acknowledgment Protocol

The interaction between self-timed modules takes place by a pair of circuits.

One circuit, indicated by "R" carries the request from the requesting module to the

responding module (see Figure 6-1). The second circuit indicated by ".4."carries

the acknowledgments in the opposite direction (from the responding module to
the requesting module).



6. A Self-Timed Systems Specification 6.1. Request-AcknowledgmentProtocol

l R -I r,spo.a,'.9
module .4 " _od_&

Figure 6-1: Interaction Scheme Between Two Modules

The request-acknowledgment protocol determines how requests and acknowled-

gements are exchanged between two interacting modules. Using state predicate

R to indicate that the request signal is up and A that the acknowledgment

signal is up, the following figure illustrates the flow of signals in the request-
acknowledgment protocol.

R --,R
,I ,I
A --,A

Note that events R and A then designate signal raising, while events -_R and -_A

designate signal lowering.

As the figure indicates, after R is set, an acknowledgment signal must occur

before R can become False again. Note the causality between R and A, requiring

that the R signal is raised before A. Similarly the acknowledgment signal must

be False before a request can be initiated, and the A signal cannot be lowered

until the request has ended. A consequence of these requirements is that a "new"

request on the same circuit can occur only after the previous acknowledgment has

ended. Graphically, these specifications of the order of these signal-changes are:

- 26 -



6. A Self-Timed Systems Specification 6.1. Request-Acknowledgment Protocol

-_AAOR ]
,I ,I
R *A

,I ,I
A begin*'nR

_'_A

,I
begin_R

A precise specification of these properties in interval logic is given in Figure 6-2.

Init. _R A --A

A1. [R.=, ,A.]--,A A OR

A2. [ h _ begin * -,R ]R A [] .4.

h3. [ begin'nR ::_ ] *-_i

Figure 6-2: Request Acknowledgement Protocol Axioms.

Axiom 1 expresses a requester requirement that a request signal, only in-

itiatable when the acknowledgment signal is down, remains up at least until the

acknowledgment signal is raised.

For the responder, A2 states that the acknowledgment signal, once raised,

remains up as long as the request stays up (safety). Axiom A3 requires that, after

lowering the request signal, the acknowledgment must also be lowered at some
later time.

The initial condition indicates that the axioms are implied from a point at

which a request has been reset.
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6.2 Arbiter

We now give a specification of an arbiter module. The arbiter, adapted from

[Seitz80] and [Bochmann82], determines the order in which two user modules

obtain access to a shared resource module. The arbiter AR interacts with the

user modules U1/U2, the transfer modules T1/T2, and the resource module RM

(see Figure 6-3) by the request-acknowledgment protocol described in the previous
section.

J, ---. _- ~_I I

! " L T, F ,,

II

Figure 6-3: The Arbiter Module and its Interacting Modules

Assume that a user module, U1, requests access to the resource RM by raising

UR1. The arbiter grants this access by requesting first the transfer module, 7'1,

and then the resource module - provided it is not currently servicing any other user

module. Until the arbiter receives acknowledgments from both the transfer module

and the resource module, it maintains its requests for each of those modules and

refrains from sending an acknowledgment to the user. The use of the request-

acknowledgment protocol ensures that pairs of requests and acknowledgments

be well-behaved - i.e., that both safety and liveness properties expressed in the

previous subsection will be obeyed.

Tile requirements on the signalling order are graphically specified in the
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following figure:

,I ,I ,I ,I
UR_ *TRI ,RMR TA_ARMA

Init. Vk-_URk k E {1,2}

A1. [ VRi _ TA, ARMA ] [] -_UA_ i, j E {1, 2}

A [ * TRi =*] [] TRi
A _RMR

A[ , RMR =, ] [:3RMR

A2. D- TRj i_j i, jE{1,2}

Figure 6-4: Arbiter Axioms

A precise specification of the arbiter module in interval logic is given in Figure
6-4.

Axiom I establishes three nested intervals, all ending at the first moment at

which both TAi and RMA are true. For the outer interval, from URi until TAI

and RMA, UA must be False throughout the interval and TRi must be found. For

the contained interval from TRi, TRi must remain true throughout the interval,

and RMR must be False initially but occur later within the interval. For the inner

interval, once RMR becomes true it must remain true.

Similar to the initial condition of the request-acknowledgment protocol, all

user request signals must start low.

- 29 -



Chapter 7

Protocol Specification

This section outlines the use of interval logic in the communication protocol

and service area. When dealing with a communication system, it is of particular

importance to state the conceptual requirements directly and intuitively. A great

advantage of the interval-logic approach is its inherent flexibility and the relatively

high degree of selectivity it offers when choosing suitable state information. To

illustrate the use and the appropriateness of this language the Alternating Bit

protocol is selected as an example. This protocol can be considered as a rather

simple, but not trivial, example of a Data Link layer protocol. (The concept of

layering is specified in the ISO OSI Basic Reference Model [ISO82].)

7.1 Introduction

Protocols are defined as a set of rules that determine the required com-

munication behavior of communicating entities with respect to their functions.

Communication services are defined as capabilities of communicating entities at

the user's service access points [ISO82].

A service specification defines the services provided by a layer, describing only

that behavior visible to the users at the layer above. The protocol specification
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refines the service specification in order to define the requirements of each entity

supporting the service on one layer through interaction with the service of the

next lower layer. (This principle is illustrated in Figure 7-1.)

n ,_erw'ce I

1 Iewil£y n p_loco_ entl.y
• n-I _rwtce N

Figure 7-1: Principle of the OSI-Architecture

As such, a protocol standard imposes (or should impose) sufficient constraints

to ensure that any implementation that satisfies the standard will uphold con-

tinued communication between entities. The standard should also be sufficiently

liberal to allow any implementation that would uphold continued communication

with other implementations, thus satisfying the standard. Therefore a protocol

specification should serve as a formal contract between the overall protocol layer

and each distributed component; any component satisfying its local specification

should be capable of successfully joining the network.

The objective of the Data Link layer is to detect and possibly correct errors

that may occur in the underlying Physical Link layer. For the purpose of this

paper, only one direction of data transmission of the Alternating Bit (AB) protocol
is considered.

7.2 The AB Protocol Used for Illustration

The AB protocol is used to provide a reliable message communication over

an unreliable transmission line through repeated transmission. It considers mes-

sages one at a time and cannot proceed to the next message until it receives

acknowledgement that its current message has been received correctly. The mes-
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sage is placed in a packet with a one-bit sequence number (hence the name of the

protocol), and an acknowledgment is assumed to consist of the return of the same

packet (although only the sequence number is really required). Several packets

may be in transit simultaneously. The protocol recovers successfully from packets

lost, duplicated, or delayed by the transmission line, as long msno packets arrive

out of order. We consider only the half-duplex protocol providing unidirectional

message transfer.

A refinement of the Data Link layer entities for the AB protocol may consist

of an input queue and a Sender process as well as a Receiver process and an output

queue. The structure of such AB protocol entities as illustrated in Figure 7-2.

ar,,dO,) R_:(ml

_Lronsmis_ion me_iu_l

Figure 7-2: Structure of AB protocol entities

The scenario of sending one message can be described by assuming that the

Sender entity gets a message m by means of Send(m) from the sending user. It

will be placed in the Sender queue. The Sender process dequeues (through Dq(m))

the message and transmits it together with the Sender's current sequence number

v as a packet through T_(rn, v). The Receiver entity gets packets by means of

Rr(m,v). Acknowledgements are sent from the Receiver entity through Tr(m,v)

and received by the Sender entity by means of R_(m,v). Messages from the

Receiver process can be stored by means of Enq(m) in the Receiver queue from

which the receiving user can dequeue it by using Rec(m).
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7.3 Specification of the Operations

•The abstract operations of the Sender process and the Receiver process are:

- Dq(m) to obtain the next message to be sent.

- Ts(m,v) to transmit a packet consisting of a message and a sequence number.

- R_(m,v) to receive an acknowledgement with a sequence number.

- R,.(m,v) to receive a packet with a message and a sequence number.

- T_(m,v) to transmit an acknowledgement containing a sequence number.

- Enq(m) to add a message in the Receiver queue.

7.4 Specification of the Service Used and the Service Provided

The service used defines a service of an unreliable medium and therefore

subject to loss or corruption of the sent data, but not subject to a reordering of the

sequence of submitted packets. It is also assumed that, by repeated retransmission

of a packet, it will be delivered uncorrupted at some time. This characteristic

is equivalent to the properties of the unreliable queue specified in Section 6.

Therefore the specification of the service used consists of the mapping of T_ to

Enq and of Rr to Dq, in order to get the unreliable transmission service for the

packet transmission. The unreliable transmissions of acknowledgements can be

specified by an analogous mapping of Tr and R_ to Enq and Dq, respectively.

Two unreliable queues, one for the packet flow and one for the acknowledgement

flow, represent the service through which the AB Sender and Receiver processes

are communicating with each other.

Similar to the approach taken to specify the unreliable medium, the reliable

message exchange between two users in the one-way exchange mode has the

same characteristic as the reliable queue. Therefore a similar mapping as above,

associating Send with Enq and Rec with Dq, provides the specification for

the service provided.
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One may also be interested in the service provided by the sublayer consisting

only of the two processes (based on the same characteristics of the underlying

medium). In this case only the dequeue and enqueue operations have to be

considered. It will turn out (with respect to the imposed behavior of the AB

Sender process and the AB Receiver process described in tile following subsections)

that this service is just the service that could be represented by a one element

(maximum) queue. For this reason, of course, the AB protocol is not efficient for

long delay links.

7.5 AB Protocol Specification

The protocol specification focuses on the Sender process and the Receiver

process.

Consider what requirements one would like to impose on the visible behavior

of the Sender process as part of a protocol standard. We will assume the following

requirements are desired:

1. Sucessive messages must be transmitted in packets having alternating se-

quence numbers.

2. The sequence of distinct packets transmitted must follow the sequence of

messages dequeued.

3. Itaving initiated transmission of a packet containing a new message, only that

message may be transmitted until the first uncorrupted acknowledegement

with the transmitted sequence number is received.

4. Having initiated transmission of a message, continued retransmission must

occur at least until an acknowledgement is received.

5. If acknowledgements for the last transmitted packet are repeatedly received,

they must lead to a call to dequeue another message. Any finite number of

acknowledgements may be ignored.
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6. No packet may be transmitted during a dequeue. (By (5), the acknowl-

edgement for the last packet must have been noted, prior to the call of de-

queue, with the next message not yet available.)

The requirements we assume for the visible behavior of the Receiver process
are as follows:

1. Until the next packet is received, acknowledgements may be transmitted
only for the last packet received.

2. If packets are received repeatedly, they must eventually be acknowledged.

Any finite number of packets may be ignored.

3. In accordance with the Sender requirement that sucessive messages be trans-

mitted in packets with alternating sequence numbers, the Receiver can deliver

successive messages only from packets with alternating sequence numbers.

4. Only messages from received packets are allowed to be delivered.

5. The message contained in a packet nmst be delivered before a packet with

a different sequence number can be acknowledged. Note that this allows the

Receiver process to store the packets temporarily, since the delivery can occur

after the reception of a new packet.

6. Having initiated acknowledgement of a packet, the contained message must
eventually be delivered.

For the Sender process:

Figure 7-3 illustrates the initial property and the three axioms corresponding

to the above informal requirements. The initial property Init states that no

transmissions occur before the first dequeue and that, at the time of the first

dequeue, the value of the expected sequence number has been set to a distinguished
initial value.
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Init. [=:} atDq ]_*atT. A [*atDq=* ]exp--inilial

AI. [ a/terDq(m) ==€,] exp --" v D [ endaiterDq ]exp --

A [ =* atDq ]*_terR,(rn, _)

A [] [end at W_]atT_(m, _)

A2. [ afterDq(m)=* ] exp = v D ( [] *atterRs(m,V) D *atDq )
A _*atDq D 13*atT,(m,_)

A3. inDq D _inTs

Figure 7-3: Specification of Sender for AB Protocol.

Rather than use interval expressions to establish temporally the alternation

of outgoing sequence numbers, we introduce state component exp, indicating

the expected sequence number. This simplifies our temporal expressions while

not overly constraining implementation strategy. Note that the value of exp is

specified only at the time of returns from Dq.

The three clauses in Axiom A1 express the basic safety requirements on the

Sender. In clause order, they are:

• After returning from dequeuing a message m with the currently expected

sequence number v, the expected sequence number will be _ (i.e., incremented

modulo 2) at the time of the next dequeue.

• At least one uncorrupted acknowledgement with the expected sequence number

must be received before the next message can be dequeued.

• Until the next message is dequeued, only ( m,V ) packets may be trans-
mitted.
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Graphically:

V)

exp -- v exp -- V
,I ,I

a_terDq(m) atDq afterDq

Tile two clauses of Axiom A2 express Sender liveness requirements. After

returning from dequeuing a message m, with _urrent sequence number v, repeated

acknowledgents for sequence number _ must lead to a request for another message

from the queue. Furthermore, that the Sender never attempts to dequeue another

message implies continual retransmission of the current packet < m, v >.

Axiom A3 expresses a further safety requirement: while the Sender is dequeu-

ing another message, no packet can be transmitted.

For the Receiver process:

Figure 7-4 illustrates the Receiver specification. The initial property is that,

until receipt of an initial packet, there will be no prior delivery of messages or

transmission of acknowledgements, and from that receipt onward, transmission of

the first acknowledgement leads to delivery of the message. Again, we introduce

a state component exp, defining the current sequence number only at the time of

a call on Enq.

Axiom A1 expresses a safety property about acknowledgments: Between

receiving a packet < m, v > and the next packet receipt, acknowledgements will

be sent only for sequence number v.

[ ...Tr(m,v)... ]
,I ,f

after Rr(m, v) atRr
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Init. [ =:,_tRr ]-_*atEnq A -_*atT,.(a,b)

A [ begin atRr =:_] [end atTr ]_tTr(l,w) D [*end _tEnq]_tEnq(l)
A exp _ w

Al. [ a_terRr(m, v)=e,a_terRr] [] [endatTr]atTr(m,v)

A2. [] ,a_terRr(m,v) D *atT,.(m,v)

A3. [atEnq =* ] exp -- v D [ atEnq :=*]exp =

A[ =*,,tEnq: (m) ]*_,terR,.(m,V)
A [ a_terRr(p, V) =* atTr(q, v) ]*atEnq(p)

A *atWr(n,_) D *atEnq(n)

Figure 7-4: Specification of Receiver for AB Protocol.

Axiom A2 expresses a liveness property about acknowledgments: If packets

are received continually, they must eventually be acknowledged.

Axiom A3 expresses safety properties related to message receipt. The interval

logic formula combines these requirements in order to exhibit their dependence

on a common context. In clause order, their contribution is as follows.

• Delivery of sucessive messages must result from packets with alternating se-

quence numbers v and 7.

• Delivery of a message must be preceded by its receipt.

• Having received a packet, the contained message must be delivered before an

acknowledgement for a packet with a different sequence number is transmitted.

• Acknowledging a packet n must ensure delivery of its message, but that

acknowledgement may be transmitted before or after the delivery occurs.
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[ * aRerRr(m, _) ]
exp_v exp--- V

• el ,I
atEnq atEnq : (m)

[ *atEnq(p) ]

I ,l ,I
after Rr(p, _) atTr(q, v)
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Chapter 8

A Specification of Distributed Mutual Exclusion

The intent of this specification is to ensure exclusive access to a shared critical

section by some set of processes. Each process is to make an independent decision

based on a shared global data structure. In stating the specification, we assume a

state predicate cs(i) which, for process i, indicates that i is in the critical section.

For a shared global data structure, we assume a state predicate x(i) which, for

process i, indicates i's intention to enter the critical section. We wish to state

minimal requirements on the use of state predicate x by a process to ensure mutual

exclusion. Pictorially we represent the required behavior as follows:

[ vi _ i []x(i)<>_x(/)]

•x(i) cs(i)

As shown, an entry of the critical section by process i must be preceded by an

earlier setting of x(i) to true. Throughout this interval x(i) must remain true, and,

for every other process j, there must be some moment within the interval at which

x(j) is false. This specification imposes no requirement on the order or frequency
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of inspecting the x(j)s; it suffices that, at some time during the interval, each x(j)

is false. Herein lies the basic reason for exclusion, x(i) remains true through the

interval, and no other x(j) can be true for that interval. Thus no other process j

can find x(i) false between the time that i signals his intention and the time that

i leaves the critical section (or abandons his claim). The specification does not,

however, ensure the absence of deadlock.

Figure 8-1 gives the interval logic specification. Given an initial condition

in which all processes have relinquished their claims, axiom A1 expresses our

previous pictorial requirement that, if process i enters the critical section, then

for the interval back to the most recent setting of x(i), each x(j) must be found

to be false. Axiom A2 requires that x(i) remains true while i is in the critical

section. We have not needed to state explicitly that there must be a setting of

x(i) prior to the entry. Valid formula V5 of section 4 can be used to deduce this

from the initial assumption and A2. Similarly we can deduce that x(i) remains

true through that interval.

From this specification, we now demonstrate the mutual exclusion property

that henceforth no pair of processes can both be in the critical section at the same

time, i.e.,

Init. V m -_x(m)

A1. i _A j D [ x(i) €=cs(i) ] O -_x(j)

A2. cs(i) 5) x(i)

Figure 8-1: Specification of Distributed Mutual Exclusion Algorithm

Vm A i # j 3 [] =(cs(i)Acs(j))

Pictorially, we show that a violation of mutual exclusion, with both processes in

the critical section, requires that one process enter while the other is already in,
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or just entering, the critical section.

,I ,I
cs(i) I - cs(i)

,cs(j)

From the axioms, we know that each entry must be preceded by setting of the

coresponding x. Two situations arise. Either setting x(j) precedes setting x(i), or

x(j) is set at the same time or after x(i).

I, 1 I
x(i) cs(i)  cs(i)

' Ii

x(jl x(jl cs(j!
(casel) (case2)

In the first case, since the interval x(i) _ cs(i) is fully contained in the interval

x(j) €= cs(j), process i could not have found the required false x(j) in that interval.

Similarly, in the second case j could not have found x(i) false. Since neither of

these two situations can arise, the postulated violation of mutual exclusion could
not occur.

In interval logic, our proof is given in Figure 8-2. With mechanized decision-

procedure support in the style of [Shostak/Schwartz/Melliar-Smith82, Plaisted83],

the only user input necessary, in principle, is instantiation of the free variable

m in our initial assumption, and of I in step L2. More realistically, the proof

would likely be decomposed into user-provided steps L2 and LS. The other steps,

including the major case split expressed in L1, would follow automatically as part

of the complete theory.

Lemma L1 expresses the case split illustrated above, elaborated to include a

third case in which a process enters and never exits the critical section. To avoid

considering the symmetric argument of which process enters the critical section

first, the
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LI. Vm _x(m)

[[ begin(x(k) _ ¢s(k) ) :::$ ][ :=_ begin(mCS(k) ]m:_(x(1)_cs(l))

Avk,t k€ l 3 [] / ^ -,,-,cs(k)_ -,,(x(0_c_(t))
(A [ begin(x(l)) €::: CS(I) ]-_*(x(k)C=cs(k))

[]-,(cs(i) A cs(j))

L2. -_x(j)A i # j _ [][I ]( []x(0 D -,,(x(j)_cs(j)))

L3. [ x(m)_ cs(m)] [] x(m)

L4. [ cs(m)_ 1[ _ begin(-_CS(m))] [] x(m)
A--,*--,cs(m)D [] x(m)

LS. [begin(x(Tn) _ cs(m))_ ][ ::=O [begin("nCS(m)) ] [] X(m)

h _,-,cs(k) D []x(,.)
Figure 8-2: Proof of the Mutual Exclusion Property.

antecedent is expressed in terms of quantified k and I. This lemma is valid within

the interval theory.

Lemma L2 states that, if x(i) is true throughout an interval I, then it is not

possible to find the x(j) _ cs(j) interval. By axiom A1, if the interval were found,

there would be within it a -_x(i) state, contradicting tile antecedent.

Lemmas L3 and L4 state intervals throughout which x(m) is true. Both
lemmas follow directly from axiom A2. Combining L3 and L4, we obtain lemma

L5 for the composed interval, from the x(m) preceding entry until the exit if any,

otherwise indefinitely.

Instantiating the free interval variable I in L2 with the intervals of LS, we

use the invariant [] x(m) of L5 to establish the antecedent of the implication in

L2. We then use the consequent of L2 to establish each of the three cases of L1,
thereby establishing the conclusion and completing the proof.
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Chapter 9

Analysis and Conclusions

This report presents a preliminary version of the Interval Logic and illustrates

its application to several different problem domains. We are reasonably satisfied

with its success, although we expect further honing of the language as we gain

more experience with specification and verification attempts. But much remains

to be done before Interval Logic call be used for the specification and verification of

operating systems or asynchronous applications programs. The next steps required
are:

• The current logic does not distinguish the various concurrent processes of a

multiprocess system, and does not attribute operations to processes. A notation

is required to identify processes and to associate operations and state variables

with processes.

• A method must be devised for composing together the specifications of in-

dividual processes, or of small multi process systems, so as to form the specification

of a larger multiprocess system.

• Theory and techniques must be developed to allow the hierarchical development

of specifications in Interval Logic, with temporal mappings between levels of
abstraction.
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• Using these techniques, the semantics of a concurrent, programming language
must be defined.

• Methods must be developed to use Interval Logic, with the language definition

and the specification of the required behavior, to develop a concurrent program

verification method. Taking advantage of the power of Interval Logic to im-

prove on the efficiency of the current methods will be important if the method

is to be effective in practical use.

• Although an initial version of a decision procedure for the Interval Logic has

been constructed, further investigation of the theory of deciding the logic.

Work is still required to improve its performance and also to integrate it into

the Specification and Verification Environment currently under development.

• Interval Logic lends itself to graphical representation, and we feel that such

graphical representations can greatly assist in human comprehension of concur-

rent specifications, which are otherwise difficult to understand. The mechani-

cal support for such graphical representation, both input and output, requires

investigation.

At the heart of the interval logic design is the decision to support a be-

havioral style of specification and reasoning. A cause/effect style pervades our

specifications - always of the form "given a particular context, some future be-

havior of the system must occur". As discussed in [Schwartz/Melliar-Smith82],

this form of specification is closer to the intuitive operational understanding of

requirements, while still managing to avoid details of operational implementa-

tion. More history-related specifications, capturing a static view of necessary

relationships between different input/output histories, don't seem to provide the

same degree of intuition crucial to understanding and reasoning about a system

from its specification.

The decision to base interval formation on "state-change events" was motivated

by the observation that. establishing context almost always required seeing a

change in state. Without "anchoring" requirements on properties becoming true,

one often cannot guarantee that the proper interval has been identified. This is
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particularly true for eventuality properties.

Two language decisions related to this notion of context establishment are

the decisions (1) to make interval formulas vacuously true whenever tile context

cannot be established, and (2) to interpret interval formulas as properties of the

next time tile context occurs. Both these decisions support an abstract form of

operational thinking. Having sufficient expressive power to conveniently establish

context requirements either temporally or through the use of state components

proved to be an important method of directing the level of abstraction of the

specification.

Based on previous experience with formal specification methods, we do not

think any specification method for distributed and concurrent systems can be suc-

cessful without mechanical verification support. The level of process interaction

makes it only too easy to make incorrect or incomplete analysis of specifications,

regardless of the amount of human care that is taken. Experience with informal

proof techniques and unverified specifications have led us to include mechanical

verification support as a crucial part of any specification language design effort.

The emphasis in designing the interval logic was to retain decidability in order

to provide a complete decision procedure. Although interval logic has a complete

axiomatization, through a reduction to linear-time temporal logic, we do not ex-

pect anyone to attempt to use the axiomatization in doing a proof. For this reason,

we chose features on the basis of utility rather than mathematical elegance.

One direction for further work that may prove extremely fruitful is develop-

ment of a formal graphical representation of specifications and proofs. The ability

to represent specifications and proof arguments pictorially could greatly enhance

intuitive understanding of temporal properties.

Preliminary analysis of the computational complexity of the logic indicates

it is P-space complete - the same order of complexity as for linear-time temporal

logic. We, with David Plaisted playing the primary role, have developed an

experimental decision procedure for interval logic, described in the attached papers

by Dr Plaisted.

- 46 -



9. Analysis and Conclusions

Several other higher-order temporal languages have appeared in the litera-

ture. Lamport introduced a Timeset language[Lamport80] for defining properties

of intervals. At the heart of the language proposal are terms of the form [P_Q),

denoting the set of all time intervals starting with a state in which property P is

true and extending to all points such that Q has remained false. Such all-inclusive

terms make it difficult to avoid capturing unexpected and unwanted contexts, and,

we believe, result in nonelementary computational complexity.

Wolper[Wolper82] introduced the concept of a regular-expression grammar

operator into his Extended Temporal Logic (ETL). These grammar operators

are used to define constraints, in the form of regular expressions, on allowable se-

quences of parameterized operations. This produces very abstract specifications,

in much the same style as Hailpern's[Hailpern80] history-based, linear-time tem-

poral logic. Wolper's extension preserves P-space complexity.

With a somewhat different focus, Moszkowski[Moszkowski82] uses a related

notion of interval logic to define and prove properties of hardware circuits. Moszkowski

integrates specification of quantitative bounds into his hardware description lan-

guage. While our interval logic is oriented toward identifying properties true

of specified contexts, Mozkowski's logic provides interval abstraction, that is,

a method to refer to all intervals having a certain property or decomposition.

A semicolon operator, similar in spirit to the dynamic logic[Hare179] "chop"

operator, allows formulas such as [ P ; Q ] to refer to all intervals composed

from subintervals having properties P and Q. This very powerful concept again

leads to nonelementary computational complexity.
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Appendix A.

Reduction of Formulas Containing • Modifier

The, modifier in the interval language is regarded as a linguistic convenience.

Below, we give axioms to reduce a formula containing the • modifier to an equiv-

alent formula without the modifier. In this section we denote interval terms pos-

sibly containing the , modifier by I and ).

We base the reduction on the following equivalence

[IJa _ [I']_ A [IJtrue

where I' is derived from by omitting throughout the , modifiers. We also use

the definition of *I to reduce tile eventuality on intervals to an interval formula

• * _ _[*] false

For the outer level of interval structure, we use:

[, I]true -- [_,.r]true _---- *I

[,i_]true =_ *(I¢=)

[begin* IJtrue -- [* beginIltrue

5nd,IJtrue ---- [*endIJtrue

and for splitting composite intervals we use:



A. Reduction of Formulas Containing * Modifier

F= ]true--
Finally we give reduction rules for the four composite intervals that cannot

be reduced by simple splitting of an interval.

[_(I_J)]true _----[]=_)]true

[_(.f_))Jtrue _----[I_)]true

[(I_ Jr)€=] t.rue -- [begin([€==):=_,]] true

[(I¢=))_] true =-- [Jr_begin(.f¢=)] true
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Appendix B.

A Decision Procedure for Combinations
of Propositional Temporal Logic
and Other Specialized Theories

David A. Plaisted

SRI International, University of Illinois

Abstract

We present two decisionproceduresfor formulaeof discrete linear time proposi-
tional temporal logicwhosepropositionalpart may includeassertionsin a specialized
theory. The combineddecision proceduresmay be viewed as extensions of known
decisionproceduresfor quantifier-freetheories to theories includingtemporal logic
connectives. The firstruns in polynomialspace relative to an oracle for the underly-
ing theory. The second is moremodularbut requiresthe computation of least and
greatest fixed points and may have a worseasymptotic running time. However,the
second procedurecan handle assertionscontainingarbitrary mixtures of extralogical
variables,whose values cannot change with time, and state variables,whose values
can change with time. The secondprocedurehas been implementedefficientlyenough
to be practical. The same techniques appear to apply to logicsother than temporal
logicwhich have tableau-like decisionprocedures.

This rcsearchwassupportedin part byNationalScienceFoundationGrantMCS-81-09831.



B. A Decision Procedure 1. Introduction

1. Introduction

Varioustemporal logics have been proposedrecentlyfor reasoningabout concur-
rent programs. The advantage of temporal logic is that primitivesare available for
expressingtime relationshipsconcisely.The application of temporal logicto concur-
rent programsis discussedin [6]and [2]and [3]. In [1],temporal logicspecifications
are used to guide the synthesisof programshaving the desiredbehavior. This paper
makes use of a tableau-like satisfiability algorithmfor propositional temporal logic.
An extension of propositional temporal logic is given in [10]for specifying and syn-
thesizing programs written in the language of communicatingsequential processes
developedby Hoare. The complexityof decidingsatisfiability of propositional tem-
poral logic formulaeis discussedin [9]for severalvariants of temporal logic.

In practice, one is often interested in decidingvalidity or satisfiability of temporal
formulae involving theories for which specializeddecision proceduresare arailable.
Forexample, to verify that "Hencefortha _> 1 implieseventually a > 0" requires
reasoning not only about time but also about inequalities and integers. We develop
a method for deciding the satisfiability (or validity) of such formulae. The method
we giveapplies in generalto logicshaving tableau like decisionproceduressimilar to
that for temporal logic.

Weconsider discretelinear time temporal logicsimilarto that describedin [3].The
formulaeof this logicare composedof predicatesymbolsP_,Q;, R_, atoms (predicate
symbolsfollowedby a list of argumentswhich may contain variables,constants, and
function symbols),the usual BooleanconnectivesA (conjunction), V (disjunction), -,
(negation), and the temporal connectives 121(henceforth), O (eventually),U (until),
and o (next time). Predicatesymbols by themselvesare consideredas special cases
of atoms. Of the temporal connectives, I-1, O, and o are unary operators and U is
binary. Our semantics is similarto that given in [3]except that U does not imply
an eventuality; that is, U(p, (t) is true if p is henceforth true and q never becomes
true. The decisionprocedurecouldbe adapted to either versionof U. For a detailed
description of the semantics of these formulae, see [3]. We give a briefdescription
here.

An interpretation consists of an infinitesequenceof states, representingthe world
at successive instants of time. Each predicate symbol is given a Boolean value in
each state (at each instant of time); the variables and function symbols in atoms
are also interpreted so that atoms may be given Boolean values in the usual way.
The interpretations of variables may differdependingon whether the variable is an
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eztralogical variable, whose value does not change with time, or a 8tare variable, whose
value may change with time. From these values, the interpretation of an arbitrary
formula in a state is defined. A formula is valid if it is true in all states in all

interpretations, and it is consiatent if it is true in some state in some interpretation.
The Boolean connectives are interpreted as usual, so that for example P A Q is true
in a state if P is true in the state and Q is true in the state. A formula [] A is true
at time t if A is true at time t and at all successive times; a formula <>A is true at
time t if A is true at time t or at some later time; a formula oA is true at time t if
A is true at time t + 1, and U(P,Q) is true at time t if either [] P is true at time
t or there exists time u, u >_ t such that Q is true at time u and P is true at all
timesv, t < v < u. For example, the formula <> []P :) [] <>Pisvalid since if
at some future time, P is henceforth true, then at all future times, P is eventually
true. However, the formula <>P D [] P is satisfiable but not valid, since P may
be eventually true without being henceforth true. We write TL _ A if A is a valid
temporal logic formula.

Suppose only a subset of the models are considered. For example, the atoms
may actually be quantifier-freeformulae involving integers, addition, and inequalities,
and we are only interested in interpretations consistent with the theory of linear
inequalities of integers. The formula [] (I/ = z + z) D [] (It = 2z) is true in all
suchinterpretations,but not validin the uninterpretedcase. In general,we assume
a theory7"whichis time-independentandis a subsetof the interpretationsof the
predicate symbols and atoms at each instant of time. Thus the same interpretations
of the predicate symbols are permitted at all time instants. We write T 1==A to
indicate that A is a Boolean combination of atoms which is valid in 7", that is, A

is true in all interpretations in T. We write TL(T) 1==A to indicate that A is a
temporal logic formula which is true in all interpretations allowed by T; that is, the
interpretationof the atoms at any time instant must be a member of 7". We say

informally that A is valid in 7" in this case. Satisfiability is defined as usual.

The complexity of the satisfiability problem for such formulae without specialized
theories is PSPACE complete[9]. In the presence of specializedtheories,the com-
plexity can be much greater; it will be at least as high as the complexity of the theory
T being used. We will show that the complexity can never be much higher than this.
In particular, the decision procedure is of PSPACE complexity relative to an oracle
for deciding the specialized theory. The PSPACE upper hound can be realized by
an algorithm which we shall call Algorithm A. However, another decision procedure
(Algorithm B) for the combined theory has a more modular structure, requiring no
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interactionbetweenthe tableau method and the specializedtheory, but may have a
worseasymptotic behavior. AlgorithmB has the advantage, however,that it can be
used for formulaecontainingvariableswhosevalues do not change with time (which
we shall call extralogicalvariableabelow, to distinguish them from 8tare variable8
whose values can changewith time).

2. Extralogical variables

The variablesinatoms can be of two types,8talevariable8and eztralogicalvariables.
State variableshave values that may change from one time instant to the next; ex-
tralogical variableshave the same values at all times. Thus the formula z = 1 2)
o(z -_ 2) is valid if x is an extralogicalvariablebut not if x is a state variable. We
are interestedin decidingthe validityof formulaecontainingboth kinds of variables,
in the presence of specialized theories. For example, suppose A(z, lt,z,u,v,w) is a
temporal formulain which x, y, and z are extralogicalvariables and u, v, and w are
state variables. We give a method for constructing a formula Ta(z, y, z, u, v, w) not
containing temporal connectives, such that TL(7") _ VzVyVzA(z, It,z, u, v, w) iff
7"_ VzVyVzTa(z,y,z,u,v,w). This method uses Algorithm B, and is therefore
apparentlyof a highercomplexitythan AlgorithmA in some cases.

- 56 -



B. A Decision Procedure 3. The Tableau Method

3. The tableau method

Without going into details, we give enough of the tableau method to describe the
workings of Algorithms A and B. Given a temporal logic formula A, we decide if

TL _ A by negating A and constructing a graph G -----Graph(",A) which represents
the set of models of -,A. The nodes of G represent states and are labeled with formulae
which must be true in the state. A node may be labeled with several formulae; in that
case, all of the formulae labeling the node must be true in the state. One of the nodes

is distinguished as the initial node of G and is labeled with -,A. The edges are labeled
with conjunctions of iiterals, where a literal is an atom or the negation of an atom.

The edges may also be labeled with eventualities, which represent temporal formulae
which must eventually be satisfied in any model of -, A. Nodes with no outgoing edges
may be deleted from G; similarly, edges are deleted if their terminal node is deleted, if
the conjunction of literals labeling the edge is a contradiction, or if the edge is labeled
with an eventuality which cannot be satisfied. An eventuality A on edge E can be
satisfied iff there is a path in the graph from the terminal node of E to some node

N having A as one of its labels. Let Itcr(G) represent the graph that results from
iterating all such deletions on G until no more deletions are possible. It turns out that

A is valid (TL _ A) iff the initial node of Graph(', A) is deleted in Iter(Graph(-, A)).
If a specialized theory 7" is specified, the graph or the iteration must be modified in

a manner to be described below to determine whether TL(7") 1==A.

The tableau method works because of the followingchain of reasoning: A is
non-valid iff there is an interpretation in which -,A is true, iff there is an infinite
path through Graph(",A) starting at the initial node, such that all eventualities are
satisfied, iff the initial node is not deleted from Iter(Graph(",A)). We now explain
what is meant by %11eventualities are satisfied"on an infinite path. Suppose that
the infinite path is {el, e2,..., e_,...} where the e_are edges and e, is an edge from
node N, to node N_+l. (There may be morethan one edge betweentwo nodes in the
graph.) Suppose A is a temporal formula. Then we say A is reachablefrom node
N; if there exists j, j _> i, such that A is one of the labels of nodePC,,.If A is an
eventuality labeling edge e_, then we say A is 8ati,]ied at edge ei if A is reachable
from node N_+_. Finally, all eventualities are satisfiedon this infinite path if for all
edges e; in the path and all eventualitiesA labeling e¢, A is satisfied at edge ec. If
there is a theory T specified,then TL(T) [# A iff there is an infinite path as above
in which for all i, the conjunctionof literals labeling e_is satisfiable in 7".
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4. Algorithm A

The first algorithm is quite simple. Before iterating to obtain Iter(G), we first
delete fromG all edgesE labeled with a conjunctionof literalswhich is unsatisfiable
in 7". Other than this, the algorithm is exactly as in the general tableau method.
One can easily verify that this is correctby reasoningsimilarto that used above to
justify the general tableau method;one disadvantageis that this method requiresa
closer interaction betweenthe decisionprocedurefor T and the tableau method than

AlgorithmB. However,AlgorithmA has the advantagethat edgescan be deletedusing
the specializedtheory as the graph is constructed,so it may be that whole sectionsof
the graph neednot be constructedat all. It isclear that this methodcan be performed
in polynomial space relative to an oracle for deciding 7", by nondeterministically
guessing a long enough path through the graph.

5. Algorithm B

The second algorithm requires a much more complicated iteration method on

the graph G. Given the graph Graph(-, A), the method constructs a formula C
representing conditionsguaranteeing the validity of A. To be precise, C is a maximal
formula Vi r-]C_ where the Cc are Boolean combination of literals of A, such that
TL i== (C D A). We mean "maximal" in the sense of being true the most often
possible. Note that C does not depend on T.

Theorem 1. TL(T)_A iffTL(T)_C iffforsomei, T_C_.

Proof: If forsome i, T _ C,, then TL(T) _ C (and conversely).However,TL(T)
(C 23A) and so TL(T) 1_ A by modus ponens. Conversely,suppose TL(T) 1= A.
Let D be a Boolean combinationof atoms in A such that for all interpretations I
of the atoms in A, I _=,D ill"I can be extended to an element of T by assigning
Boolean values to other atoms. Thus, for all Boolean combinations Da of atoms of
A, D 29 Da iff T 1= DI, and D representsthe set of interpretations of atoms in A
consistent with T. SinceD specifiesall permissibleassignmentsof Booleanvalues to
atoms of A consistent with T, and TI.(T) _==A,it followsthat TL _==!:3D 29 A.
Since C is maximal, TL _==r-1D 23C. By propertiesof temporal logic, D 23 C_for
somei {in propositional logic). Since T _ D, T _ C_for some i. II
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In method B, the formula C is found and then each Ci is given to a decision
procedure for T. If some Cl is valid in T, then A is valid in the combined theory
TL(T); otherwise,A is non-valid in this combinedtheory. Note that algorithm B is
more modular than algorithmA since there is little interaction betweenthe tableau
method and the decisionprocedurefor T. The decisionprocedureis calledonly when
the graph construction and iteration are completed. Also, algorithm B may require
fewercalls to the decisionprocedurethan algorithmA. Forexample, if the formula A
is valid in pure temporal logic,then algorithmB will not use the decisionprocedure
for T at all, but algorithmA may. We do not know if algorithm B can be done in
polynomial space relative to an oracle for T. One might try to guess a condition
Ci suchthatT l==C_andthenverifythatTL _==0 C; D A; however,sucha U_
may itselfbe ofsizeexponentialinthesizeofA. Furthermore,extralogicalvariables

requirethatC be computed as a whole,and a nondeterministicguessof Ci isnot
sufficient.

IfA hasuniversallyquantifiedextralogicalvariables,thentheseareincludedinC.

Thus ifA isVzVyVzA(z, y,z)where x,y, and z areextralogicalvariables,then C

isVzVyVzC(z,y,z) where C(x,y, z)isobtainedfrom A(x,y,z)thesame way C is
obtainedfromA above.

Oorollary 2. TL(T) _ Vzx...Vz.A(zi...z.) iff TL(T) _ Vz,...Vz.C(zi...z.)
where the z_ are eztralo_iealvariables.

Proof: Similar to the theorem. II

To apply this result,we need a way of reducingthe decisionprocedurefor formulae
Vz_...Vz,C(z_ ...z,), which are quantifiedtemporal logicformulae,to formulaein the
theory T. Note that TL(T) _ Vz_...Vz,,U(z_...z,,)ill

vz,...vz. 3iT _ c,(z,...z.) (1)

where Ci are as before except with extralogicalvariables included. In order to use
specializeddecision proceduresfor the theory 7", it is necessaryto make statement
(1) into a statement in the theory T. There arewaysof doing this fortheories having
certain common properties. For example, suppose Y has the property that for all
closed formulaeB, either T 1==B or T 1==-, B. (A formula is closed if it has no free
variables.) Then statement (1) is true ill

1"t:: Vzi...Vz,Vi (2)
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where C:. is C,. with all state variables universally quantified. Thus the difference

between extralogical variables and state variables is one of scope; extralogical variables

have the whole formula (2) as scope, whereas state variables have only a singel C_ as
scope. If T has uninterpreted function symbols, it will be necessary to rename these
in each C_ so that no two formulae (7,*.have common uninterpreted function symbols.

5.1. Example

Suppose C is [] (z > 0) V [] (z < 1). If x is a state variable, this formula is valid

in TL(T) iff T l== VII(It > 0) V Vz(z < 1). Thus C would not be valid for ordinary
arithmetic. If x is an extralogical variable, then C is valid iff T I==Vz(z > 0Vz < I),
hence C would be valid for ordinary arithmetic.

5.2. Existential quantifiers

There are problems with extending the method to existentially quantified extralogi-
cal variables. In fact, we have not even been able to give an upper bound in the

arithmetic hierarchy [11] for the decision problem for formulae of the form 3:rA(z)
where x is an extralogical variable and A is a temporal formula. For example, consider
the formula

[]Vll(Z--_ll D o(z=ll- 1)) D O(z < O)

where y is an extralogical variable and z is a state variable. This formula is valid in the

usual interpretation of arithmetic, but to show this requires an inductive argument.
This formula becomes of the form :1yA(It) when the universal quantifier is moved to
the outside of the formula.

5.3. Iterating to obtain C

We now discuss the method of computing C, which involves a double iteration on

the graph G. We compute a set of conditions delete(N) for nodes N of G and fail(A,
N) for nodes N of G and eventualities A of edges of G. These conditions are defined

in terms of one another by a set of equations. It will turn out that for delete(N) we
want the minimal solution of these equations and for fail(A, N) we want the maximal

solution, where FALSE is minimum and TRUE is maximum as usual. To compute
the solution requires a double iteration.

The condition delete(N) gives the condition under which node N will be deleted
from the graph G. The condition fail(A, N) gives the condition under which the
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eventualityA will not be reachableby a path fromthe nodeN. Intuitively,since
nodeswill not be deletedunlessthey are forcedto be deleted,we find the minimal
solutionfordelete(N);however,an eventualityis not reachableunlessit is forcedto
be reachable,hencewewant the maximalsolutionfor fail(A,N).

Givenedgee ofG,let fin(e)be the finalnodeofe, event(e)bethe setofeventualities
labelinge, and prop(e)be the conjunctionof literalslabelinge. Thusprop(e)is the
"propositionalpart"ofe. Givena nodeN ofG, let edges(N)be the setofedgeswhose
initialnodeis N. Wehavethe followingequationsfordelete(N)andfail(A,N):

delete(N) -_ At,tageo(N)(r'l-,prop(€) V delete(fin(€)) V Vatt,t,,t(e)fail(A, fin(€))) (3)

fail(A, N) = At,,age,(N)(r'l ...,prop(e)Vdelcte(fin(€))V(Acevent(e)Afaii(A, fin(e)))) (4)

Let Deletebe a vectorof deletionconditionsfor the nodesof G, andlet Fail be a
vectorof failconditionsforedgesandeventualitiesofG. WecomputeDeleteand Fail
by iterationusingthe functionals7o and7r where,¢ousesequation(3) to compute
newvaluesof Deletefromold valuesof DeleteandFail, and fF usesequation(4) to
computenewvaluesof Failfromoldvaluesof DeleteandFail.The iterationproceeds
as follows:

1. Set all elementsof Deleteto False.

2. Set all elementsof Fail to True.

3. Repeat 4, 5, and6 untilboth DeleteandFail areunchanged:

4. Iterate Fail :--_ _r_(Deletc,Fail) until no change.

5. Iterate Delete :_-_-_ro(Deletc,Fail) until no change.

O. Set all elements of Fail to True.

7. Return Delete of initial node as the condition C.

Since Fail is set to True before each iteration, the maximal fixpoint of Fail will be
computed. Since Delete is initially set to False, the minimal fixpoint of Delete will be

computed. Note that extraloglcai variables of A must be universally quantified.
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6. Implementation

Method B has been implemented in Interlisp on the F2 computer and appears to be
of reasonable complexity. For formulae of moderate size, the graph construction and
iteration typically take about a minute of compute time or less; the graph construction
usually takes longer than the iteration. The iteration was greatly sped up by finding

the strongly connected components of G and iterating on them in order. Thus if G1
is a strongly connected component of G having no edges leading out of G1, then the
Fail and Delete conditions can be iterated to a fixpoint in G1 before iterating on the
rest of G. This can be extended component by component to the whole graph and
avoids much repeated computation.

As examples of formulae run on the program, we give the following formulae R3,
R4, and R5:

R3: []LUA(A,X) A []LUA(A,Y) :D [] LUA(A,X A Y)

R4: D LUA(A,B A C)A E)LUA(B,A A -,C) D • LUA(A V B,FALS E)

R5:LUA(A,B)A LUA(B,C) D LUA(A V B,C)

Here LU(X, Y) is defined to be U(", P, U(P A " Q, Q)) and LUA(X, Y) is defined to
be LU(A,A A B). The times to construct the graph and iterate and the number of
nodes and edges in the graph are given in the following table. These formulae were
all shown to be valid in pure temporal logic.

Graph Construction Iteration Nodes Edges

(S_co,d,) (S_cond,)
R3 67 14 13 108
R4 105 22 16 166
R5 13.8 5 8 34

7. Extensions

We are studying an interval based temporal logic developed by Schwartz, Melliar-
Smith, and Vogt [7] which also has a PSPACE complete decision problem in the
absence of specialized theories. The above methods can be extended to this logic, and
probably to any temporal or modal logic having a tableau like decision procedure.
Since the decision procedures for specialized theories developed by Nelson, Oppen, and
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others[4],[5],[8]haveprovento be ofconsiderablepracticalvalueinthe verification
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Appendix C.

A Low Level Language for Obtaining
Decision Procedures for Classes

of Temporal Logics

David A. Plaisted

SRI International, University of Illinois

1. Introduction

We present a low level language which has been found convenient for obtaining a

decision* procedure for the interval logic of Schwartz, Melliar-Smith, and Vogt [7]. This

language is a generalization of regular expressions, and is expressive enough so that there are

easy translations of other temporal logics into the low level language. We give a non-

elementary decision procedure for the language with a certain syntactic restriction. This pro-

cedure requires that eventualities be treated in a nonstandard way; the reason seems to be

that this language'deals with concatenation of sequences as well as with the usual temporal

connectives. The low level language is convenient for expressing synchronization constraints

such as mutual exclusion and thus may have applications to automatic generation of con-

current programs as described in Manna and Wolper[3]. It would also be interesting to investi-

gate relationships of this language to the path expressions of [1].

1.I Sets of computations

The most natural way to view the language is that each expression represents a set

of computation sequence constraints. A computation sequence conMraint is a sequence of sets

of permitted and forbidden events, specifying which events may or may not occur at various

instants of time. For example, we specify that event x is permitted and events y and z are
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forbidden at a given instant of time by the conjunction = A Ir A r, where x, y, and z are

propositional variables. Thus a computation sequence eonstraint may be represented by a

sequence of conjunctions of propositional variables and negations of propositional variables. A

computation sequence over a given set X of events is a sequence of conjunctions C in which for

each x in X, either x occurs in C or _"occurs in C but not both. This represents the computa-

tion in which event x occurs at time i if x is in the ia conjunction, and event x does not occur

at time i if r is in the ia conjunction. Such a computation sequence satisfies-a constraint if per-
mitted events occur when specified by the constraint and forbidden events do not occur when

forbidden by the constraint. Sets of such constraints represent the disjunction of their ele-

ments; that is, a computation sequence satisfies a set S of constraints if the computation

sequence satisfies some element of S. The language has connectives for expressing concurrency,

nondeterministie choice, iteration, eoncatenation, "hiding" of events, and "exceptional events"

which are false unless specified to be true, or true unless specified to be false. Note that this

language differs from dynamic logic[S] in that we consider computation sequences rather than

just input-output relations of programs.

2. Syntax

The language consists of well-formed expressions built up from propositional vari-

ables and their negations, the following constants:

T (True}, F(False), T',

the following unary, operations:

infloop, _=, Fz, 1"=(for propositional variable x),

the followingbinary connectives:

A (conjunction), V (disjunction}, as, concatenation, ";", iter*, iter(*)

Expressions in the language are denoted by a, #, % 6. The concatenation of a and # is written

as ate. Also, infloop(_) is sometimes written a**. Thus (:t=)[v A (F=I(T'=)I is an example of a

formula. The quantifier :l= binds the variable x according to the usual scope rules; Fx and

Tx do not bind x, although they can also be viewed as quantifiers. Thus in the formula

(Fz)(z A u), both x and y are free variables; in the formula (:]z)(= /_ It), y is free but x is

not free. Therefore in the formula (3z)(y A (Fz)=), the same x is referred to by (3:) and by
(F=). Negation can only be applied to propositional variables; this restriction seems natural

for the examples we have considered.

- 613-



C. A Low Level Language 3. Semantics

3. Semantics

Our method of defining semantics is nonstandardl but seems most convenient for

this language. With each formula a we associate a set *(a) of partial interpretations, where a

partial interpretation is a finite or infinite sequence of conjunctions of propositional variables

and negations of propositional variables. These are the same as the "computation sequence

constraints" introduced in section 1.1. Thus a formula represents a set of constraints; later we

introduce another semantics in which a formula represents the set of computations satisfying

at least one of these constraints. This is an example of a partial interpretation:

P, ff A Q, 1_', F, T, R

If I is a partial interpretation then [I[ is the length of I (so the length of the above example is

6). The letters I and ,l will be used for partial interpretations. A formula a is satisfiable if

there exists I in *(a) such that no conjunction of I is contradictory.

Intuitively, propositional variables z represent computation sequences consisting of

the single event x, negations _-of propositional variables represent computation sequences con-

sisting of a single time instant in which z does not occur, T represents any computation

sequence of length one (that is, consisting of one instant of time), F represents no computation

sequence, T ° represents any finite or infinite computation sequence, a V 0 represents the non-

deterministic choice of a or _, a A _ represents concurrent execution of a and _, with the

longer computation extended past the shorter one, _ represents concurrent execution for

sequences of the same length, a;0 represents serial composition of a and _, aO represents serial

composition of a and _ in which the last state of a is concurrent with the first state of _, and

(3z)a represents the computation of a with the events z "hidden;" this permits "local events"

not visible outside of ( 3z)a. Such local events can be used for message passing or synchroniza-

tion within a subcomputation, for example. Also, (Fz)a represents computations of a in which

the event x is made false everywhere except where it is specified to be true, and (Tz)=

represents computations of a in which the event x is made true everywhere except where it is

specified to be false. In addition, a°° represents computation sequences in which a copy of a is

begun at each successive time instant from now on, iter(*)(a, _) represents computation

sequences in which copies of a are begun at successive time instants until possibly some future

time, at which _ is begun; and itere(o, _) is the same except that _ must eventually be started,

and up to that time, copies Ofa are begun. Furthermore, these last three "iteration" operators

require that all relevant a and _ computations end at the same time. Possibly this simul-

taniety requirement can be dropped. We could add a constant € to the language, representing

a sequence of length zero, but this has not been necessary.

We give an example to show how the language can express synchronization
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constraints. Let a and B be formulae of the lansuage in which neither of the propositional
variables x or y occur free. Considerthe expression

(F:)(r'za)A (Fy)(T'_)A (F:)(Fy)(r':r'y).

The first part of the formula (Fz){T':a) specifies x as an event that occurs at the beginning of

the a computation, but nowhere else until a ends. The second part of the formula specifies

that y is an event that occurs at the beg'inning of the # computation, but nowhere else until #

ends. The third part (F:)(Fv)(r':r'v)specifiesthat the first time x becomes true is no later

than the first time y becomes true. The whole formula therefore specifies that a begins no
later than # begins. The formula

(:I_)(3_)I(F,)(T',_)A (Fv)(r'v#)A (F:)(Fv)(r',r'U)I.

is the same except that the events x and y used to communicate between a and # have been

hidden, and are no longer part of the computation sequences.

It is useful to define some operations on partial interpretations in order to give a

formal semantics of the language.

I A J is defined by

1. II A Jl'_maz(ll], IJI)and

2. ifi<ltl, i<lJIthen It ^ JI,--t, A J,;

ifi<ltl, i>lJIthen It A Jl,ffit,;
ifi>l/I, i<lJ I then It A Jl,ffiJ, •

1I (the concatenationof I and J) is defined by
I. IHlffil/l+ IJl-1 whereco+s--:+ co---co,and

2. ty_--l_if i<lll,
tJ,--t, A Jtif i=ltl,

/J,--J,.l-I_l if i>lI I.
Thus there is a one elementoverlap between I and 1.

l;J is concatenation without overlap, and is defined by

I. It;_l---Itl+ IJI and
2. (l;Jl, ffiI, if i<lI I,

(t;J)_fJ,_lt I if i>lt I.

(3z)t is I with x and r deleted from all conjunctions.
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{Fz)l is I with r added to all conjunctions not containing z or _-. Thus z is made

false except where a value for z is already specified.

{Tz)l is I with z added to all conjunctions not containing z or r. Thus z is made
trueexcept wherea value for z is alreadyspecified.

The semantics of formulae aredefined as follows:

• (p) = {p} for propositional variable p

"1_')= {r}
q_{T)= {T}

q,(F) = {F}

• {r')= {T, T;T, T;T;T, ''', T®}

q,(_,, _)= {z A J : z_,(_), J_,(_), IZl=ISl}

•(_)----{u: z_,(_),s_,(_)}
_®-_A (r;_) h (T;T;_)h {T;T;T;a)h "'"
ite,,(_, #)-V,__0[_a,(T;_)ao(T2;_),, ... ,, (T';_) ,o(T'+';#)l

where T2 is T;T and Ts is T;T;T, et cetera.

iter{S)(a,#)__a°° V itcrs(a,#)

• {Tza)= {rzl : IE*{a)}

3.1 Restrictions on the Quantifiers

Note that Fx and Tx are non-monotone. They must therefore be used with care.

Let L be the language defined above. Let LI be L with the following restriction added:

The quantifiers Tx and Fx may only be applied to a formula a which is composed
of

a) formulae in which x does not occur free

b) x
c) the connectives concatenation, ";', a , as, 3v, Fy, Tv

for _z.

If these restrictions are relaxed, then one can construct formulae which can count arbitrarily

high, and the tableau like decision procedure does not work correctly. In fact, satisfiability of

formulae in L may even be undecidable.
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4. A DecisionProcedure

The decision procedure for L l is complicated by the fact that eventualities do not

behave in the usual way. The connective iter* is the only connective introducing an eventual-

ity: iter*(a, B) implies that eventually 8 will be true (considering the interpretations as

representing sequences offormulae which must be true at successive instants of time). Also,

the formula iter*(a, B);7implies that eventually _;7 will be true. We express an eventuality

•_ as v_(rk;_). We would like to find some eventuality 6 such that

or such that

itcr,(a, #);7_[iter(s)(a, #);"t]a#<_

Now, letting _ be #;_ will not work because we need to know that the # in #;7 ends the same

time itcr(*)(a, #) ends. In fact, we have the following result:

Proposition J.1. There does not exist a formula _ depending on a, #, 7 such that

for alia, #, 7,

fler*(a,#);7"_--[iter(*)(a,0};7]A o8

orsuchthatforalla, _, 7,

iter#(,',,_);_l_[itcr(#)(a,,6);'7]a#,_'_

Proof.Let a be PT_ V P'T',let8 be P-,and let_ be P_. Then P;P'_isa model

ofiter(*}(a,_);7but not a modelofiter*(a,_);7.Thereforeifsucha _exists,_ must be

falseintheinterpretationP;/_. However,P_ isa modelofiter*(a,#}so <>_must betruein

theinterpretationP'_.But ifk-__,c>_thenT;/r°*_<>8henceP;/_o_, contradiction.

Becauseof thisresult,we givea decisionprocedurein which eventualitiesare

treatedinanonstandardway. The decisionprocedureisgraphorientedand modeltheoreticin

nature;itmay be possibletoconvertittoa syntacticnondeterrninistictableau-likedecision

procedure.We firstgiveanotherdefinitionofthesemanticsofa formulaofL.

Definition.A standardtemporalinterpretationisan infinitesequenceofinterpreta-

tionsofpropositionalvariablesina givensetX ofpropositionalvariables.Thisisthesame as
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the "computation sequence" introduced in section 1.1.

Definition. If I is a partial interpretation €1, c2, c_, ..- , let _(1) be the set
of standard temporal interpretations 1' such that e_ is true in the is element of I' for
l<i<ltl.

Definition. If a is a formulaof LI then *z(a)=U{*_(l) : /E*(a)}. This is the set of
computation sequences satisfying at least one of the constraints in *(a).

Note that a is consistentiff _q(a)_}. For eachformulaa of L_,the decisionpro-
cedureconstructsa graph G, and providesa semanticsqq(G,)for G, such that *dG,)=*a(a).
An iterationprocedureappliedto a° decidesif_(C°)---€.

4.1 Graph construction

We constructgraphsc° suchthat tTorepresentsthe set of computationsequences
specifiedby a. The nodesin the graphsrepresentstates, and the edgesrepresenttransitions
fromone state to another. Successivestates in a path throughthe graphrepresentsuccessive
instantsof time in a computationsequence.If thereis an edgefromnodem to noden, then
this edgespecifiesthe events(propositionalvariables)that must occuror not occurin state m,
if the transitionfrom m to n is taken. Also, this edge may have a set of eventualities,
representingeventsthat must occurat somefuture time,and a set of satisfiedeventualities,
representingeventsthat occurat state m andsatisfysomepreviouseventuality.It is necessary
to associateeventualitieswith nodes(actually,nodebasis elements,see below)in the graph.
The reasonis that if two processesarerunningconcurrently,andthey both requirethat some
eventualitybe satisfied,it is sometimesnecessaryto know forwhichof the two processesthe
eventualityhas beensatisfied.It may not be enoughjust foran eventualityto be satisfied;it
mayhave to besatisfiedat a particulartime in the computation.Forthis reason,eventualities
also containinformationabout whichnode they areassociatedwith. We let the nodesin a
graphbe sets of elementsof the nodebasis,whichis somesetdisjointfromtheset of eventual-
ities. The reasonforusing subsetsof the nodebasis as nodesof the graph, is that we can
representstates sl and s2 occurringconcurrentlyby a nodewhichis the unionof the node
basiselementsof sl and s2. However,if sl and s2 havecommonelements,the semanticscan
becomeeonfused;eventualitiesare associatedwith nodebasiselements,and it may be neces-
saryto distinguishwhichnodethe eventualitycamefrom.Thereforewe requirethat the node
basiselementsof sl ands2 be disjointwheneversucha union is done. If this disjointnesspro-
pertydoesnot alreadyhold,then wedefinea disjoining operationand a separation propertyon
graphs,whichinsurethat the disjointnesspropertydoeshold.
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We define the graphs as follows. Each node is a subset of the node basis NB. One

node of the graph is distinguished as the initial node of G, written init(G}. The edges e have,
in addition to an initial node init(e) and a final node fin(e), a set ev{e)of eventualitiesand a set

se(e) of satisfied eventualities. Each eventuality and satisfied eventuality is an ordered pair

<v, n> where n is a subset of NB and v is an eventuality primitive. The eventuality primi-

tives are elements of the set EP; we assume the set EP is specifiedin some way and is disjoint

from NB. An edge e also has a propositionalpart prop{e),which is a conjunction of proposi-
tional variables and their negations. Associated with each edge e of a graph G there is a node
relation R, between subsets of NB and subsets of NB. We consider such a relation R to be the

set {<x, y> : R{x, y)}. Thus _ is the totally undefined relation. Also, for nodes m and n, let

g.,, . be the relation {<m, n>} between m and n. We write the edge e as the tuple <init{e),
fin(e), prop(e), ev(e), se(e), R,>. Let N(G) be the nodes of graph G and E(G) be the edges.
Each graph may have a distinguished END node. This indicates the end of the partial
interpretation.

The graphsG.forvariousa aredefinedasfollows.We givetheeasycasesfirst.

If a is T, F, x, or r forpropositionalvariable x, then iT°is definedby N(Go)= {m,
END}, init{a°) = m, and E(Go)= {<m, END, a, _, _, _>}. Here m is some

singleton subset of N'B. Note that I, is totally undefined for the edge e of G.

If a is T° then a, is defined by N(G°) = {m, END}, init(a,} = m, and E(G°)=

{<m, m, T, _. _, 0.. m>, <m, END, T, _, _, empty>}, where m is some

singleton subset of NB.

tT_,° is a. with x and r deleted from the propositional parts of all edges (and node

relations unchanged).

at,° is 6', with _-addedto the propositionalpartsof all edgesnot containingx or :r
in thepropositionalpart (andnoderelationsunchanged).

Gr,° is G°withx added.tothe propositionalparts of all edgesnot containingx or r
in the propositionalpart (andnoderelationsunchanged).

Definition. Two graphs G, and anare separated if they have no common node basis

elements or eventuality primitives. That is, if mtENodes(G°} and ra2ENo#e#(ap)thenmlf'_mz=¢ ,

and if <v_, m:> is an eventuality or satisfied eventuality of a,, and <vz, raz>is an eventual-

ity or satisfied eventuality of at, then vi_v2.
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In the following definitions of graphs, assume that Go and a s are separated. If they

are not, then assume node basis elements and eventuality primitives have been systematically

renamed so that Go and ap are separated. Note that this also requires modifying the node rela-
tions in a corresponding way.

G° y pisdefinedasfollows:Let m bea new nodenotinN(G°)orN(G,).That is,

m is{b}forsomenodebasiselementb whichdoesnotappearinGooraa.Then

N(O°v ,}=N(a.)UN(a,)u{m}.
init(G° V p]----m,and

E(Go Y ,}=E(G.)UE[G,)U

{<m, ., ¢, ev, Be, e=.,> :

<in,t(6'.),.,c,e,,,.e,
{<m, n, ¢, ev, se, e., .> :

<i.lt(ap), ., ¢, ev, ,e, R2>_E(ap)}.

a°;p is defined as follows: N(G°;p)=N(G°)UN(Gp), E(Go:p)=E(G.)UE(Gp) except that

edges of Go of the form <m, END, (7, ev, me, R,> are replaced by

<m, init(Gp), (7, ev, se, #.,, ,._t(ap)>-Also, init(Go;p)=init(G.).

a°p is defined as follows: N(Go#IfN(Ga)UN(Gp), init(aot)=init(G.), and

E(G._)=E(G.)UE(G_) except that an edge <m, END, (7, ¢t,, .e, R,> of G° is replaced by

{<m, n, (7 A D, ed , se,Ore..> : <init(Gm),n, D, eel, #d, R'>EE(Gt)}.

For the remainingcaseswe need to defineoperationson edges.Suppose

tt "'" ek are edges,and eitherlin{e_)=ENDforalli or lin(e#)y_ENDfor alli. Then

as{el,"", ek)istheedgeesuchthat

init(e)=U,init(e,),
fin(e)=Uifin(ei) unless Iin(ei}=END for all i,

inwhich case fin(e)=END;

prop(e)= A,prap(e,),

ev(e)=U,ev(e,),
•e(e)=U, se(e;), and

R.=U_R..

Also, and(e,, "'', e_) is defined similarly except that the condition on lin(e_) and END need

not hold, and if Iin(e,)----END for all i then li.(and(e,, ..., et))ffiEND, but otherwise

fin(and(e,, "'', ek))fU{fin(e,) : fin(e_)_END}.
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a. A p is defined as follows:

/v'(ao A p]={mu. : m(_N(a.), n_N(Gp)}UN(G.)UN(G_),

E(G. A P)={and(el,e2): °tEE(G.),e2EE(Gp)},andinit(a.̂ p]=init(a,)uinit(a_).

a.,,_ isdefinedasfollows:N(ao..a]={mU.: mEN(Go), .EN(Gp)},
E(Go..p)={as(e,,e2): e,EV(a°),,s£E(ap),as(e,,esJisdefined},and
/.it(G°..,)=i.iqao)Viniqa,).

The remaining connectives are iter*, it°r(*), and infioop. For these iteration primi-

fives, it is necessary to require that some of the graphs he node disjoint. We say that a graph

G is node disjoint if for any two distinct nodes m and n of G, ,,Nn=P. We define the opera-

tion of disjoining a graph a, to produce an "equivalent" graph as which is node disjoint. This

consists essentially in renaming node basis elements in each node so that distinct nodes will he

disjoint, and also adjusting eventualities, satisfied eventualities, and node relations in an

appropriate way. Formally, for each node n we find a 1-1 function 0. whose domain is n and

such that for distinct nodes m and n of a,, 0.(rn) and O.(n) are disjoint. Note that we are

extending 0. and 0. to sets of elements in the node basis, in the usual way. Then as is defined

by Nodes(as)= {0.(.): nENode.(at)},Init(as)= 81.a[a,)(l.fl(a,)),and Edges(as)=

{<0,.(m),O.(n),6',etl,#d, R'> : <m,., 6",ev,#e, R>EEdge#(G,)},whereev'----
{<v,8.(0>: <v, r>£ev},se' = {<v,0.(r)>: <v, r>£,e},and R' =
{<O.(z), O.(y)> : <z, U>€R}. It is this operation of disjoining graphs that leads to the

nonelementary performance of the satisfiability algorithm. It is not really necessary to do this

operation in all eases, but we specify it for all cases for simplicity. When defining graphs for

ite,*(=, _), iter(*)(a, _), and infloop(a), we assume that a and p are separated as before, and

alsothat a is nodedisjoint.

Ca.(.X°,p)isdefinedusingG.V Pinthe followingway:
I¢(G,..I.X°' p))--{US: S is a subsetof N(G° VP)not containingENDandcontain-
ing at most one node in N(Gp)}U{END},init(G,t.(oXo,p))={init(G°V _)}, and
E(a_t.(.Xoon))=ElUE2whereEl and E2areas follows:

El----{ as (e,,''', et, <init(G°V P),lair(G°V P),T, _, _,

Oi.iqa.v _) _,a(a. v p)>) : this is defined and e_EE(G o V P) all i, no t_ in E(Gp),

init(e,)=init(G° V P), andinit(ei) are all distinct}

E2={ as (e,. ..., e,) : as (e,, "", ek) is defined and e,EE(G° V _) with

exactly one e_in E(Gp) and init(e_)are all distinct}

The edges E1 representrepeated iterationsof a and the edgesE2 representthe time after p has
begun.
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c_,,,(_,p) is the same as G,,,(ox_"p) except that there is a new eventuality

<v, init(Go V a)> added to edges e such that Jail(Go V tJEinit(e) and initlG,, y p)Efin{e). Also,

edges e in a,t,,,lo,n have satisfied eventuality <v, init(ao V p)> added if init(G e V t}Einit(e)

but not init(a° V p}E[in{e). Intuitively, v represents the eventuality that p must eventually be
true.

Finally, a_.l_oo_€o)is like a_,loxo, p) except that the edges in E2 and nodes having
subsets in N{Gp) are omitted.

4.2 Semantics of graphs

With a graph G as above we associate a semantics qq(a) representing the set of

standard interpretations satisfying G. A standard interpretation I is in *_(a) if there is an

infinite sequence ct, e2, • • • of edges of G such that

a) init{ e_) = init(G)

b) fin(eilffiinit(e_+l) for all i > 1

c) !__prop(eii for all i, where 1_is the

interpretation I specifies at the it* instant of time

d) all eventualities in the path el, e_, • • • are satisfied.

0

The satisfaction of eventualities is defined in a nonstandard way. We extend the node rela-

tions R to eventuality relations by R(<v, m>, <w, n>} ilI v = w and R(m, n). An eventu-

ality ev in ev(e_)is satisfied in the path if there exist ev_, eva+l, - • ", ev_+ksuch that ev -----cv_

and cv_+tEee(e_.j) and for all j, 0<j<k, R,,.,{ev_+_, ev;+s.+t). Thus the eventualities may be

transformed at each edge in the path, and they are satisfied if at some future time, some such

transformed eventuality is satisfied. We claim that q,t(a)ffi_q(6:o)for all formulae a in L_. Thus

the semantics of graphs agree with those of the formulae of the low level language.

4.3 Example

We now give an example of a formula and the graph constructed from it. First we

give an intuitive explanation of the construction for iter*(a, B). Consider the graph G

Go V p for a V P- We construct the graph for 6'_,0(o.p}from G by permitting the nodes of G

to have "markers. _ These markers can travel along edges of G. The current state of the

graph is determined by which nodes have markers on them. At the start, only the initial node

of G has a marker. Thereafter, markers travel along edges in one of two ways: a) The

marker from the initial node travels to some node in G° along an edge, and also reproduces a
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copy of itself which remains on the initial node. All other markers travel along some edge; if

there is an edge e and a markeron node init(e), this marker can travel to node fin(e). This
markeris then removedfrominit{e). A markercan only travel to one othernode in one time

instant (except that the markeron the initial node also may reproducea copy of itself on the

initial node). If a markeris on a node with no outgoingedges, this markeris deleted;this will
happen formarkerson the END node,for example, b) The markerfromthe initial node trav-
els to some node in ap, but does not reproducea copy of itself on the initial node. Other
markersmay travel along edgesas in a).

In both cases, if a node ends up with more than one marker on it, all but one of

these markers are removed. The epllection of marked nodes may be considered as the "current

node" of the graph G. A transition as in a) corresponds to the part of the iteration in which a

is being repeated; a transition as in b) corresponds to the beginning of the _ part of the itera-

tion. Let us call these transitions a-transitions and b-transitions, respectively. These transi-

tions are the edges of G. The propositional part of such a transition is the conjunction of the

propositional parts of the edges of 6"° v _ traversed during the transition. The a-transitions

have a new eventuality associated with them; the b-transitions have this eventuality satisfied.
This corresponds to the fact that there must eventually be a b-transition. In the formal

definition of G, the nodes of G are unions of the node basis elements in the marked nodes of

6'° v p, with the END node ignored in such unions. However, if only END is marked, this

corresponds to the END node of G. The graph 6"_t,,€oXo.p}is similar except that there is no

eventuality for a b-transition to occur. The graph Go**is similar except that there are no b-

transitions and no eventuality for a b-transition to occur.

Consider the formula iter*(P, Q). Since all the partial interpretations P must end

at the same time as Q does, this formula is equivalent to Q. To get a nontrivial use of iter*,

we need to use the T° constant. Consider the formula iter*(PT °, O). This is equivalent to

V_P';Q. To represent graphs pictorially, we draw a node as a circle or oval containing its node
basis elements. The edges are drawn as arrows from their initial node to their final node. The

propositional parts of edges are drawn next to the edges. The eventualities, satisfied eventuali-

ties, and eventuality transforms are not given in the picture but are specified separately for

simplicity. The initial node is indicated by a minus sign next to the node; the end node, if
any, is indicated by END. This graph, with nodes deleted that are not reachable from the ini-

tial node, is as follows. Note that it is also permissible to delete edges whose propositional part
is contradictory.
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P__END

Graph for the formula PT ° V Q

Now, wheneverthere is an a-transition, P will be true and markers will remain on nodes {r}

and {n} and possibly END; when there is a b-transition, Q will be true. Thus this graph
specifies ViP_;O.

4.4 Iteration method

An iteration method is applied to the graph Go to determine if a is satisfiable. The

idea is to repeatedly delete edges having eventualities that cannot be satisfied by any path in

the graph, and to delete nodes having no outgoing edges (except for the END node). Also,

edges whose propositional part is contradictory may be deleted. The formula a is satisfiable iff

the initial node of Go remains after this iteration is completed. When searching for paths satis-

fying eventualities, the eventuality transforms have to be considered as indicated above. The

techniques described in [5] for obtaining decision procedures for combinations of temporal logic

and other specialized theories, can also be applied. Finally, as in [5], it is possible to permit an

arbitrary combination of state variables, whose values change with time, and free variables,

whose values do not. For a discussion of these concepts see [5].

4.5 Complexity

This decision procedure is of nonelementary complexity since IN(G,to,,€o,p))] is

exponential in IN(G,)I, and the node disjoining procedure can then lead to an exponential

number of node basis elements in the graph. There may be an arbitrarily deep nesting of the

iter* and iter(*) and infloop connectives, leading to nonelementary behavior. The following

example may give some syntactic insight as to why the closure of the formulae in LI can be so

large: Let AI be the formula

i,ltoov(3z(it,,(,,)(_,_,a,),', ... **it,,(,)(,_.,a.)))
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The closure of this formula will include formulae of the form 7t aa72ae • • • as7kwhere 7, is

of the form 3z(_ as ... as 6.) and _, is in the closureof iter(#)(ai, B,I. If the closure of
iter(*)(c_, #,) has at least two formulae for all i, then there can be 2"formulae 7, and the clo-

sure of Aa can contain formulae 2" times as large as formulae in the closure of iter(tJ(a,, #,).
Similarly, let As be

infloop((iter(t)(at, _l) a# "'' a#iter(#)(a., _.));7)

The closure of A2 includes formulae of a similar form except that 7, is of the form (81 as
• • • as _,};7. Finally, let Aa be the formula

infloop(7 A (iter(*)(al, [31)as ... as lter(*)(a., #,)))

The closure of A_ is similar except that 7, is of the form 7 A (_1as • • • as_.). Intuitively,

the closure of a formula A represents the set of formulae B which may be true at future times
if A is true now.

5.Intervallogic

We now give some examples to illustrate how the interval logic of Schwartz,

- Melliar-Smith, and Vogt[7] may easily be translated into the low level language. In fact, this

translation was the original motivation for developing the low level language, since it seemed

much simpler to pro_am a decision procedure for the low level language than for interval
logic.

Intervallogicwas developedtopermitconvenientreasoningaboutintervalsoftime.

An intervalformulaisa formulaof intervallogicand has a Booleantruthvaluein any

interpretation.An intervaltermisan expressionofintervallogicwhosevalueisa timeinter-

val.Withoutgoingintodetails,letExpr(a)(z)bethetranslationofintervalformulaa incon-

textz,and letInt(a)(xy z d) be thetranslationofintervalterma incontextz,wherethe

intervalbeginsatx and endsaty: Hered isthedirectioninwhichyou arelookingforthe

interval,and may beF (forward)orB (backward).For ourpurposes,x,y,and zareproposi-

tionalvariableswhichintuitivelydenotethenextstateinwhichtheyaretrue.We givea few

translations;foranexplanationofthenotationsee[7].

Ezp_(Itl_)(_)---3=3y1_t(t)(=,v, x, F) A Fz(T'_Expr(a)(y))

lnt(a--#)(=, u0 z, d)--']wlnt(a)(w, 2, z, d) A
3vFz(r'_lnt(_)(v, U, z, F))
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Ezpr(pl(zl=if z----ovthen pT _ elsep iter*{r °, z)

To decide if an interval formula a is valid, we can convert -,a to a normal form D and test if

Ezpr(_)(vc) is satisfiable.

6. A PSPACE sublanguage

We originally intended to use the language Lt to show that interval logic has a

PSPACE decision procedure. For this, it is necessary to find a sublanguage of La which can be

decided in PSPACE and into which all interval logic expressions may be translated. We have

been unable to do this. It seems that preventing a from containing any iteration connectives in

expressions of the form iter*(a, B), iter(s)(a, #), and inftoop(a) would help, but this prevents

certain interval logic formulae from being expressed. However, this does not mean that inter-

val logic is not in PSPACE.

7. Other temporal logics

It would be interesting to compare the expressive power of L_ with other temporal

and process logics. One can easily encode the usual discrete linear time temporal logic into L_

by expressing Until(x, y) as iter(*)(x, y) (with no eventuality implied), "next time x" as T;x,

"henceforth x" as infioop(x), "eventually x" as iter*(T', x), propositional variables p as pT',

,p as ,pT', and Boolean connectives A and V as themselves. This requires pushing

negations to the bottom, but it is possible to do this; the only slightly hard ease is negating
"until".

The semicolon operator seems similar to the "chop" operator of dynamic logic [2];

the interval logic of Moszkowski[4] has a slightly similar semicolon operator but is undecidable.

We now consider a branching time version of the low level language.

7.1 Branching time syntax

Expressions may be path expressions or state expressions. Intuitively, the models

are trees, and path expressions refer to paths in the tree while state expressions refer to the

whole tree. All the previous connectives are still used; they map path expressions to path

expressions. Thus if a and # are path expressions, so are a;B,a# et cetera. In addition, if a is a

path expression, then Act and Ea are state expressions. Also, if a and # are state expressions,

then a A # and a V # are state expressions. If a is a state expression, then 3za, Fza, and
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Tza are state expressions. Finally, if x is a propositional variable or its negation, T, or F, then

x may be regarded as a state expression. Thus we are overloading certain operators; for

example, 3z maps path expressions to path expressions and state expressions to state expres-

sions. Finally, any state expression can be viewed as a path expression.

7.2 Branching time semantics

The semantics is defined analogously to that for the linear time logic. A literal is a

propositional variable or its negation. A partial path interpretation is a triple (V, L, P} where

V is a tree, L is a labeling function mapping nodes of V to conjunctions of literals, and P is a

finite or infinite path of V starting at the root and not crossing any node more than once. A

partial slate interpretation is a pair {V, L) with V and L as above. With each path expression

a we associate a set *(a) of partial path interpretations, and with each state expression a we

associate a set *(a) of partial state interpretations. The expression a is consistent if some

member of *(a) is a tree having no contradictory conjunctions. Let us call a path P of V as

above a prefix path of V. By convention, if L is a labeling function of a tree V, and N is a node

not in v, then L{N) ----T. The semantics is defined as follows.

(V, L, P}E*(x) for x a literal, T, or F if L(N) = x whereN is the root node of V
and L(M)= T (True}for M_N and P -----{N}.

(V, L, P}E_P(T °) if L(N) = T for all N and P is any prefix path of V.

(V, L,. P}E*{a A /_) if there exists LI, L2, and PI such that P1 is a prefix of P

and L-_L1 A L2 and either [V, LI, Pl]E_I,(a} and (V, L2, P)E*{_) or

(V, L1, P)EC,,(a) and {V, L 2, PI}E_(_).

[V, L, P]E*(a a# _) if there exist L1, L2 such that L-_L1 A L2 and

IV, LI, P)E_P[a)and(V, L2, P)E*[#).

{V, L, P}E*(a V p) if(v, L, P)E*(a) or (V, L, P)E*(_).

(V, L, P)E*{a;B) if thereexist L1, L2, P1, P2 such that LuLl A L2, P = PI ;
P2, (v, L1, PI}E*(a),and Vhas asubtreeV1 such that (Vl, L2, P2}E*(B).

(v, L, P}E*(a_)ifthereexistLI, L2, PI, P2suchthatL----L1 A L2, P_PIP2

(that is, PI and P2 have a node in common}, (v, L1, P1)E*(a), and V has a sub-

tree Vl such that (v1, L2, P2}E*(fl).
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inltoop(aJ--a A T;a A T2;a A "'" A TJ;a A "'"

",,'(_, #)-Vj[_ A r;_ A "'" A _i;_ A r'+';_l

._r(.)(,_,_)_-i,qtoop(_,)V iter*(,_,p)

(V, L, P)E*(3za) if thereis a functionL1 such that (V, LI, P)Eq'(a) and L is
identicalto L1 exceptthat L deletesx andr fromnodesin P.

(V, L, P)Eg'(Fza) if there is a functionL1 such that (v, L1, P)E*(a) and L is
identicalto L1 exceptthat L addsr to nodesof P not containingx or _-.

(V, L, P)Eq'(Tza) if there is a functionL1 such that (V, Ll, P)E*(a) and L is
identicalto L1exceptthat L addsx to nodesof P not containingx or _'.

(v, L, {N})Eq,(a)if a is a state expression,(V, L)Eq,(a),andN is the rootof V.
(Thisconvertsstate expressionsto path expressions.)

If a is a literal,T, F, or T', regardedas a state expression,then q,(a)is as above
exceptthat thepath partof interpretationsis omitted.

(v, L)Eq_(3za)for state expressiona if there is a function L1 such that
(V, L 1)E*(a) andL is identicalto L1 exceptthat L deletesx and _-fromallnodes.

Thesemanticsof Fxa and Txa forstate expressionsa aredefinedsimilarly,modify-
ing allconjunctions,not just thoseon somepath.

(V, L)E*(Aa) if for all infiniteprefixpaths P of V, P has a prefixP1 such that
(v, L, P1)_q,(_).

(V, L)EqqEa) if for someprefix path P of V, (V, L, P)Eqqa).

We do not haveany informationaboutthe decidabilityof this branchingtime versionof the
lowlevellanguage,except that the satisfiabilityproblemis at least as hardas that of £_since
L_is a subsetof the language.Also,it appearsthat L, is of nonelementarycomplexity.

7.3 Regular expressions

We could add the star operator a' to the linear and branchingtime logics to get a
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formalism including regular expressions as a syntactic subset. However, this was not necessary
for our purposes.

8. Executable specifications

In the style of Manna and Wolper [3] and the "path expressions" of Campbell and

Habermann[1], we can use the linear time low level language to construct programs having a

specified behavior. Given a low level formula a, we construct the graph G, which represents

the set of models of a; this graph can then be regarded as a program. By adding suitable fair-

ness constraints to certain nodes of Go, we obtain a program which satisfies all eventualities of

a and thus behaves as specified by a. In this way we might consider automatically construct-
ing concurrent programs from their specifications.
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