
A n a s y n c h r o n o u s [{n - 1) /3J -res i l i en t
c o n s e n s u s p r o t o c o l

Gabriel Bracha*

Cornell University
Ithaca, New York 14853

ABSTRACT

A consensus protocol enables a system of n

asynchronous processes, some of them mali-

cious, to reach agreement. No assumptions

are made on the behaviour of the processes

and the message system; both are capable of

colluding to prevent the correct processes

from reaching decision. A protocol is t-

resilient if in the presence of up to t mali-

cious processes it reaches agreement with

probability 1. In a recent paper, t-resilient

consensus protocols were presented for

t < n / 5 . We improve this to t < n / 3 ,

thus matching the lower bound on the

number of correct processes necessary for

consensus. The protocol restricts the

behaviour of the malicious processes to that

of merely fail-stop processes, which makes it

interesting in other contexts.

*Partial support for this work was provided
by NSF grant No. 83-03135.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

© 1984 ACM 0-89791-143-1/84/008/0154 $00.75

154

1. In troduct ion

A consensus protocol enables processes,

some of them faulty, to agree on a common

value. In [Fisc82] it was shown that in

asynchronous systems there is no finite

agreement protocol that can tolerate even

one fail-stop process. However, probabilistic

[Brac83] and randomized [BenO83] solutions

are possible for both the fail-stop and the

malicious cases. In [BenO83] it was left as

an open question whether there is an asyn-

chronous consensus algorithm that can

tolerate t malicious processes, for

n/5 < t < n/3. In this paper we present a

random algorithm for t < n / 3 , thus match-

ing the lower bound on the number of

correct processes necessary for any con-

sensus protocol.

The expected number of steps required

to reach decision is 2 n-t. However, if

t _ c .v/'~, then the expected number of

steps is constant (though exponential in c).

For the protocol, we develop schemes

that render the malicious processes virtually

fail-stop. Thus, these schemes enable us to

use malicious processes in other protocols

designed for fail-stop processes.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800222.806743&domain=pdf&date_stamp=1984-08-27

2. T h e c o n s e n s u s a g r e e m e n t p r o b l e m

We consider an asynchronous system

of n fully interconnected processes.

Processes communicate by sending messages

via the message system. The message sys-

tem supports the Send and Receive primi-

tives. Messages sent can take arbitrarily

long t ime until received, and they are not

necessarily received in the order sent.

In an atomic step of the system, a pro-

cess can t ry to receive a message, perform

some local computat ion, and then send a

finite set of messages. The computa t ion

and the messages sent are prescribed by the

protocol, i.e., a function of the messages

received and of the local state. The protocol

may be random; at a given state a process

can choose with certain probabilit ies what

step to take next.

A correct process always follows the

protocol. A fail-stop process may fail and

stop part icipating in the protocol; other

processes cannot detect its failure. Mali-

cious processes, besides failing to send mes-

sages, can send wrong and conflicting mes-

sages. The protocol has to wi ths tand any

behaviour of the malicious processes, so we

assume tha t the malicious processes can col-

lude against the correct ones according to

some malevolent design. However, processes

can identify the origin of every message tha t

they receive. Otherwise, one malicious pro-

155

cess can impersonate the whole system and

no solution is possible.

Each process p has an initial value ip

in {0,1}. The protocol terminates when

each correct process has made an irreversi-

ble decision on some value.

A configuration of the system is the

collection of processes' s ta tes and the mes-

sages in transit. The initial configuration

of the system is the collection of the

processes' ip's at the beginning of the proto-

col. '

A schedule is an alternating sequence

C 1 el, . . . , C k e k Ck+ 1 of steps and

configurations such tha t Ci+ 1 is obtained

by applying e i to C i. The schedule deter-

mines which message is received by which

process, and which process takes the next

step. We make no assumption about the

schedule. Thus, we have to consider the

schedule as capable of arranging the steps of

the protocol to the worst possible effect.

The random steps taken by the processes

introduce probabilit ies on the schedule

space.

A t-resilient consensus protocol is a

protocol tha t satisfies the following proper-

ties, provided tha t no more than t processes

are faulty:

bivalence: if all the correct processes s ta r t

with the same value v then they all decide

o n v .

consistency: all the correct processes decide

on the same value.

convergence : for any initial configuration,

lira Probabi l i ty [a correct process has
k --*co

not decided within k steps] = 0.

3. Rel iable b r o a d c a s t - A s y n c h r o n o u s

B y z a n t i n e a g r e e m e n t

In this section we present a broadcast-

ing protocol which will be used in the con-

sensus protocol as a primitive. In a broad-

cast protocol some process p sends a mes-

sage containing its value to all the other

processes. The protocol achieves Asynchro-

nous Byzantine agreement [Brae83] if the

following conditions hold:

1. If p is correct, then all the correct

processes accept the value of its message.

2. If p is malicious, then either all the

correct processes accept the same value, or

none of them will accept any value from p.

3.1. T h e p r o t o c o l

All the messages tha t are sent in the

k ' t h broadcas t by p are tagged with (p,k),

thus eliminating possible interference

between broadcasts . There are three types

of messages in the protocol: initial, echo and

ready. The algorithm star ts with the

t ransmi t te r p sending (initial,v) messages,

where v is the value of p . Then processes

repor t to each other the value they received

156

via (echo,v) messages. If more than

(n + t)[2 (echo,v) messages are received

by a process, then it sends (ready,v) mes-

sages to all the other processes. Also, if a

process receives t + 1 (ready,v) messages

then it sends its own (ready,v) message. If

it receives 2 t + 1 (ready,v) messages with

the same value v, then it accepts v.

Broadcast(v)
step 0. (Only by the t ransmit ter)

Send (initial,v) to all the processes.

s tep 1. Wai t till Receive for some v,

one (initial,v) message

or (n + t)[2 (echo,v) messages

or (t + 1) (ready,v) messages.

Send (echo ,v) to all the processes.

step 2. Wai t till Receive for some v,

(n + t)/2 (echo ,v) messages

or t + 1 (ready,v) messages

Send (ready,v)to all the processes.

s tep 3. Wai t till Receive for some v,

2 t + 1 (ready,v).

Accept v.

F i g u r e 1. An Asynchronous Byzantine

agreement protocol for t < n / 3

3.2. Correctness proof

In this section we show tha t the proto-

col in Fig 1. achieves Asynchronous Byzan-

tine agreement for 0 _~ t < n / 3 .

L e m m a 1. If two correct processes r and

s send (ready,v) and (ready,u) messages

respectively, then u = v.

Proof'. Suppose not; r can send a (ready,v)

message if it receives more than (n + t)/2
(echo,v) messages, or if it receives more

than t + 1 (ready,v) messages, i.e., it

receives a (ready,v) message from some

other correct process. Therefore, there is

some correct process p (which may be r)

tha t received more t han (n + t)/2 (echo,v)

messages. Similarlly, there is a correct pro-

cess q tha t received more than (n + t)/2

(echo,u) messages, where u ~ v . There-

fore, some correct process r must have sent

both (echo,u) and (echo,v) messages. But

correct processes can send only one message

of each type, during a broadcast, and hence

a contradiction. []

LemmtL 2. If two correct processes p and

q accept the values v and u respectively,

then u = v.

Proof'. In order for p to accept v it must

have seen 2 t + l (ready,v) messages, and

therefore at least t + 1 (ready,v) messages

from correct processes. Similarlly, q must

have seen at least t + 1 (ready,u) messages

from correct processes. By lemma 1, u ----- v.

157

[]

L e m m a 3. If a correct process p accepts

the value v then every other correct process

will eventually accept v.

Proof'. If p accepts v, then p received 2t + 1

(ready,v) messages. At least t + 1 of these

messages were sent by correct processes.

Therefore, every other correct process

receives at least t + 1 (ready,v) messages,

and sends its own (ready,v) message. Note

that , by lemma 1, it is impossible for a

correct process to send a different ready

message. Thus, at least n-t processes will

send (ready,v) messages. Every correct pro-

cess will eventually receive at least

2t + 1 <_ n-t (ready,v) messages, and will

accept v. []

L e m r n a 4. If the t ransmit ter p is correct

and it sends v, then all the correct processes

will accept v.

Proof'. Suppose p is correct and sends v;

every other correct process will receive an

(initial,v) message and will send an

(echo,v) messages. Consider a correct pro-

cess q, q will receive n-t > (n + t) / 2

(echo ,v) messages from the correct

processes, and possibly t < (n+ t)/2

different messages from the malicious ones.

Therefore, every correct process will send a

(ready,v) messages. In step 3, q will receive

n-t > 2 t + 1 (ready,v) messages, and possi-

bly t different ready messages from the

malicious ones. Therefore q will accept v.

17

4. C o r r e c t n e s s e n f o r c e m e n t

In the previous section we restricted

the behaviour of the malicious processes by

forcing them to "vir tual ly" send the same

message to all the processes or no message

at all. However, we could not control the

content of the message. In this section we

present a scheme tha t forces the malicious

processes to conform with the underlying

protocol.

We call any message tha t gets accepted

in the k ' t h broadcas t of some process a

k -message . In particular, the k-message

'k By lemma 2, k from p is denoted as mtj. mp

is well defined. Consider the following gen-

eral form of the ff th step of the protocol.

s t ep (k)

Send v to all the processes.

wait till Receive a set S of n - t

k-messages

v :---- N (k , S)

N is the protocol function tha t determines

the new value of the process according to

the step number and S.

The following scheme will allow correct

processes to consider only messages tha t are

valid, i.e, messages tha t could have been

sent by correct processes at tha t step.

Thus, malicious processes have to behave

correctly, otherwise they are ignored.

Each process p maintains the following

set of messages VALIDp:

V A L I D] = { accepted 1-messages }

For k > 1, mkqE VALIDtp, if there exist n - t

(k - 1)-messages

ml, • • • , mn-t E VALIDkp -l such tha t

m ~ = N (k , { m l , . . . , m n _ t }).

Process p Validates a message rn if

m E VALIDkp.

The basic step form is modified to the

following:

s t ep (k)

Broadcas~ v)

wait till Validate a set S of

n - t k-messages

v : = N (k , S)

In the consensus protocol we use Validate

and Broadcast as the communicat ion primi-

tive. We now show tha t they have the

same properties as the Accept and Broad-

cast primitives.

l e m m a 5. Let p and q be correct processes.

If p validates a k-message from r with

value v and q validates a k-message from r

with value u, then u = v.

Proof: In order for p (q) to validate a k-

message with value v (u) , it must accept it.

By l emma 2, u = v. 17

158

L e m m a 6. Let p and q be correct

processes. If m CVALIDkp, then eventually

m E VALID~ will hold.

Proof'. The proof is by induction on k. If

k = 1 then by lemma 3, if m is accepted by

p then m will be accepted by q, and we are

done. Let assume tha t the s ta tement of the

lemma holds for some k > 1. Let

m E VAL[D~ + 1. Therefore, there are n - t

messages ml , , ran_rE VALID~ such tha t

m = N (k + l , { m l , . . . , m n _ t }). By our

induction hypothesis, each of these messages

joins VALIDkq. By lemma 3, m will be

ev6ntually accepted by q. Therefore m joins

VALIDkq+ 1. []

L e m m a 7. If p is a correct process, then

eventually mkpEVALIDkq for every correct

process q.

Proof'. The proof is by induction on k. If

k = 1, then by lemma 4 we are done. Sup-

pose the s ta tement of the lemma holds for

step k. Since p is correct it can send mp k+l

only if it val idated n - t k-messages,

m l , • • • , m,,_t, such tha t

mpk+'---- N (k + 1 , {m l , . . . , m,,_t}). By

lemma 6, for every correct process q and for

each rai, 1 < i < n - t , eventual ly

m i E V A L I D ~. Also, since p is correct, by

iemma 4, every other correct process q will

accept mp k + 1 Therefore, eventually

k+ 1E VALIDkq+ 1 for every correct process mp

q. El

Through the validation mechanism the

malicious processes are reduced to mere

fail-stop processes. We will not provide a

formal proof of t ha t in this paper. The only

remaining aspect of their malice is tha t ,

whenever there is a random step to perform,

their choice is not subject to probability.

5 . T h e c o n s e n s u s a l g o r i t h m

The protocol is conducted in rounds

which are repeatedly executed by all the

processes. Each round consists of three

steps. For notat ional convenience, the pro-

tocol in Figure 2 does not te rminate once

decision is made. However, this can be

easily accomplished by making the processes

tha t have decided send some special halting

message.

R o u n d (k) : (by process p)

1. Broadcas~ip), and wait till Validatet

n - t messages.

ip : - - majori ty value of the vali-

da ted messages.

2. Broadcaat(ip), and wait till Validate

n - t messages.

If more than n / 2 of the messages have

the same value v, then ip : = (d , v)

t The validation is done with respect to N,
the protocol function described in Figure 2.

159

. Broadcas~ip), and wait till Validate

n - t messages.

If val idated more than 2t + 1 (d ,v)

messages then Decide v.

If val idated more than t + 1 (d,v)

messages then ip :-~ v.

Otherwise, ip :-~ 1 or 0 with probabil-

i ty ~ .

Go to step 1 of round k + 1

f igure 2 . The consensus protocol.

6. C o r r e c t n e s s p r o o f

We prove in this section tha t the pro-

tocol in Figure 2 is a t-resilient consensus

protocol, for t <~ n / 3.

L e m m a 8. If in some round r , at the

beginning of s tep 1, all the correct processes

have the same value v, then they all decide

v at s tep 3 of round r .

Proof: Since all n-t correct processes v as

their value, every correct process will vali-

da te at least n - 2 t messages with value v

at step 1. Since n - 2 t > (n - t) ~ 2 for

t <~ n/3, each correct process retains v as

its value at s tep 1. At step 2, in order to

validate a message with value u ~ v, a

correct process must also validate more than

(n - t) / 2 u messages from step 1. Since

(n - t) / 2~>t , this is clearly impossible.

Therefore, the only possible value val idated

in step 2 is v, and all the correct processes

c h a n g e their value to (d,v). At step 3, all

160

the correct processes validate more than

2t + 1 (d ,v) messages, and they decide v.

D

Since the protocol requires processes to wait

for each other, we must show tha t it does

not deadlock.

L e m m a 9. If a correct process p is at s tep

k, then p will eventual ly progress to step

k + l .

Proof: Suppose not; then some correct

processes are forever blocked. Let k be the

smallest s tep number at which some process

p is blocked, wait ing for val idated messages.

Since k is minimal, all the correct processes

have already broadcas ted messages at s tep

k. By lemma 7, all these messages get even-

tually validated. Therefore, p is not

blocked at s tep k, a contradict ion. O

Define Dr to be v, if t + 1 (d,v) mes-

sages were val idated by some correct process

at round r . Otherwise, D r ~ ~b.

L e m m a 10. D r is well defined.

Proof: Suppose not; then some correct

processes p and q have val idated (d,1) and

(d,0) messages respectively. If p validates a

(d,1) message it must also validate more

t han n/2 messages with value 1 tha t were

sent at the s tep 2 of round r . Similarlly, q

must have val idated more than n/2 mes-

sages with value 0 tha t were sent at step 2

of round r . By lemma 5, this is impossible,

and hence a contradict ion. []

T h e o r e m 1. The protocol described in

Figure 2 is a t-resilient consensus protocol,

f o r t < n/3.

Proof:

Bivalence: If all the processes start with

value 1 (0) then by lemma 8, they all decide

on 1 (0).

Consistency:. Suppose, without loss of gen-

erality, tha t a correct process p decides 1 at

step 3 of round r . p must have validated

at least 2t + 1 (d,1) messages. By lemma O,

every other correct process q validates at

least t + 1 of these messages. Since, by

lemma 10, D r is well defined, every correct

process sets its value to 1. At the beginning

of round r + 1 all the correct processes

have value 1. By lemma 8, at the end of

round r + 1, all the correct processes decide

1.

Termination: Consider the time the first

process p reaches the end of round r and

sets ip. The only thing the schedule can do

to affect the processes' values in the next

round is to establish a value for Dr, and

then try to force the processes initial values

at round r + 1 to Dr. Consider a correct

process p at the end of round r; there are

two cases:

1. p has validated a (d,v) message. There-

fore, by lemma 10, the only potential value

of D r is v. With probability p :> T (n-t), all

the correct processes will set their value to

161

D r •

2. p has not validated a (d ,v) message.

Any correct process can validate only up to

t (d,v) messages, for any v. Therefore, Dr

cannot have any value. The schedule has

no way of forcing the processes' values.

Again, with probability p _> 2 -(n-t), all the

correct processes will set their values to the

same value.

In either case, by lemma 8, they all decide

in the next round. The probability of not

terminating is tlimoo(1-p)t = 0 . I-1

For t > n / 3 , t-resilient consensus pro-

tocol are impossible [Brac83]. Thus, the

protocol is optimal in the number of mali-

cious processes it can tolerate.

7. P e r f o r m a n c e

Since at each phase we have a proba-

bility p > 2-("-0 of deciding in the next

phase, the expected number of phases to

decision is 2 "-t. However, if t < c-v/~ ",

then the expected number of phases is only

a constant [BenO83] (though exponential in

c).

8. R e f e r e n c e

BenO83 M. Ben-Or, Another advantage

of free choice: Completely asyn-

chronous agreement protocol,

Prec. Pnd SympoMum on the

Principles of Distributed Syn-

Brae83

Fist82

tems, pp. 27-30.

G. Bracha and S. Toueg Asyn-

chronous consensus and Byzan-

tine protocol in faulty environ-

ment TR-83-559, CS Dept., Cor-

nell University, Ithaca, N Y

148ss.

M. J. Fischer, N. A. Lynch, and

M. S. Paterson, Impossibility of

distributed consensus with one

faulty process, Proc. gnd A GM

SIGA CT-SIGMOD Symposium

on Principles of Database sys-

tems.

162

