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ABSTRACT 

A consensus protocol enables a system of n 

asynchronous processes, some of them mali- 

cious, to reach agreement. No assumptions 

are made on the behaviour of the processes 

and the message system; both are capable of 

colluding to prevent the correct processes 

from reaching decision. A protocol is t- 

resilient if in the presence of up to t mali- 

cious processes it reaches agreement with 

probability 1. In a recent paper, t-resilient 

consensus protocols were presented for 

t < n / 5 .  We improve this to t < n / 3 ,  

thus matching the lower bound on the 

number of correct processes necessary for 

consensus. The protocol restricts the 

behaviour of the malicious processes to that  

of merely fail-stop processes, which makes it 

interesting in other contexts. 
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1. In troduct ion  

A consensus protocol enables processes, 

some of them faulty, to agree on a common 

value. In [Fisc82] it was shown that  in 

asynchronous systems there is no finite 

agreement protocol that  can tolerate even 

one fail-stop process. However, probabilistic 

[Brac83] and randomized [BenO83] solutions 

are possible for both the fail-stop and the 

malicious cases. In [BenO83] it was left as 

an open question whether there is an asyn- 

chronous consensus algorithm that  can 

tolerate t malicious processes, for 

n/5 < t < n/3. In this paper we present a 

random algorithm for t < n / 3 ,  thus match- 

ing the lower bound on the number of 

correct processes necessary for any con- 

sensus protocol. 

The expected number of steps required 

to reach decision is 2 n-t. However, if 

t _ c  .v/'~, then the expected number of 

steps is constant (though exponential in c). 

For the protocol, we develop schemes 

that  render the malicious processes virtually 

fail-stop. Thus, these schemes enable us to 

use malicious processes in other protocols 

designed for fail-stop processes. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800222.806743&domain=pdf&date_stamp=1984-08-27


2. T h e  c o n s e n s u s  a g r e e m e n t  p r o b l e m  

We consider an asynchronous system 

of n fully interconnected processes. 

Processes communicate  by  sending messages 

via the message system. The message sys- 

tem supports  the Send and Receive primi- 

tives. Messages sent can take  arbitrarily 

long t ime until received, and they  are not  

necessarily received in the order sent. 

In an atomic step of the system, a pro- 

cess can t ry  to receive a message, perform 

some local computat ion,  and then send a 

finite set of messages. The computa t ion  

and the messages sent are prescribed by  the 

protocol, i.e., a function of the messages 

received and of the local state.  The protocol 

may  be random; at a given state a process 

can choose with certain probabilit ies what  

step to take  next. 

A correct process always follows the 

protocol. A fail-stop process may  fail and 

stop part icipating in the protocol; other  

processes cannot  detect  its failure. Mali- 

cious processes, besides failing to send mes- 

sages, can send wrong and conflicting mes- 

sages. The protocol has to wi ths tand any 

behaviour  of the malicious processes, so we 

assume tha t  the malicious processes can col- 

lude against the correct ones according to 

some malevolent design. However, processes 

can identify the origin of every message tha t  

they receive. Otherwise, one malicious pro- 
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cess can impersonate the  whole system and 

no solution is possible. 

Each process p has an initial value ip 

in {0,1}. The protocol terminates  when 

each correct process has made an irreversi- 

ble decision on some value. 

A configuration of the system is the 

collection of processes' s ta tes  and the mes- 

sages in transit.  The initial configuration 

of the system is the collection of the 

processes' ip's at the beginning of the proto- 

col. ' 

A schedule is an alternating sequence 

C 1 el,  . . . , C k e k Ck+ 1 of steps and 

configurations such tha t  Ci+ 1 is obtained 

by applying e i to C i. The schedule deter- 

mines which message is received by  which 

process, and which process takes the next 

step. We make no assumption about  the 

schedule. Thus,  we have to consider the 

schedule as capable of arranging the steps of 

the protocol to the worst  possible effect. 

The random steps taken by the processes 

introduce probabilit ies on the schedule 

space. 

A t-resilient consensus protocol is a 

protocol tha t  satisfies the following proper- 

ties, provided tha t  no more than t processes 

are faulty: 

bivalence: if all the correct processes s ta r t  

with the  same value v then they  all decide 

o n  v .  



consistency: all the correct processes decide 

on the same value. 

convergence : for any initial configuration, 

lira Probabi l i ty  [a correct process has 
k --*co 

not decided within k steps] = 0. 

3. Rel iable  b r o a d c a s t  - A s y n c h r o n o u s  

B y z a n t i n e  a g r e e m e n t  

In this section we present  a broadcast-  

ing protocol which will be used in the con- 

sensus protocol as a primitive. In a broad- 

cast protocol some process p sends a mes- 

sage containing its value to all the other  

processes. The protocol achieves Asynchro- 

nous Byzantine agreement [Brae83] if the 

following conditions hold: 

1. If p is correct, then all the  correct 

processes accept the value of its message. 

2. If p is malicious, then either all the 

correct processes accept the same value, or 

none of them will accept any value from p.  

3.1.  T h e  p r o t o c o l  

All the messages tha t  are sent in the  

k ' t h  broadcas t  by  p are tagged with (p,k), 

thus  eliminating possible interference 

between broadcasts .  There are three types  

of messages in the protocol: initial, echo and 

ready. The algorithm star ts  with the 

t ransmi t te r  p sending (initial,v) messages, 

where v is the value of p .  Then processes 

repor t  to each other  the  value they  received 
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via (echo,v) messages. If more than  

(n + t)[2 (echo,v) messages are received 

by a process, then it sends (ready,v) mes- 

sages to all the other  processes. Also, if a 

process receives t + 1 (ready,v) messages 

then it sends its own (ready,v) message. If 

it receives 2 t +  1 (ready,v) messages with 

the  same value v, then it accepts v. 

Broadcast(v) 
step 0. (Only by the t ransmit ter)  

Send (initial,v) to all the processes. 

s tep 1. Wai t  till Receive for some v, 

one (initial,v) message 

or ( n +  t)[2 (echo,v) messages 

or ( t +  1) (ready,v) messages. 

Send (echo ,v) to all the processes. 

step 2. Wai t  till Receive for some v, 

( n + t )/2 ( echo ,v ) messages 

or t + 1 (ready,v) messages 

Send (ready,v)to all the processes. 

s tep 3. Wai t  till Receive for some v, 

2 t +  1 (ready,v). 

Accept v. 

F i g u r e  1. An Asynchronous Byzantine 

agreement protocol for t < n / 3  



3.2. Correctness proof  

In this section we show tha t  the proto- 

col in Fig 1. achieves Asynchronous Byzan- 

tine agreement for 0 _~ t < n / 3 .  

L e m m a  1. If two correct processes r and 

s send (ready,v) and (ready,u) messages 

respectively, then u = v. 

Proof'. Suppose not; r can send a (ready,v) 

message if it receives more than  (n + t)/2 
(echo,v) messages, or if it receives more 

than  t +  1 (ready,v) messages, i.e., it 

receives a (ready,v) message from some 

other correct process. Therefore, there is 

some correct process p (which may be r)  

tha t  received more t han  ( n +  t)/2 (echo,v) 

messages. Similarlly, there is a correct pro- 

cess q tha t  received more than  ( n +  t)/2 

(echo,u) messages, where u ~ v .  There- 

fore, some correct process r must  have sent 

both (echo,u) and (echo,v) messages. But 

correct processes can send only one message 

of each type, during a broadcast,  and hence 

a contradiction. [] 

LemmtL 2. If two correct processes p and 

q accept the values v and u respectively, 

then u = v. 

Proof'. In order for p to accept v it must  

have seen 2 t + l  (ready,v) messages, and 

therefore at least t + 1 (ready,v) messages 

from correct processes. Similarlly, q must  

have seen at least t + 1 (ready,u) messages 

from correct processes. By lemma 1, u ----- v. 
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[] 

L e m m a  3. If a correct process p accepts 

the value v then every other correct process 

will eventually accept v. 

Proof'. If p accepts v, then p received 2t + 1 

(ready,v) messages. At least t +  1 of these 

messages were sent by correct processes. 

Therefore, every other correct process 

receives at least t + 1 (ready,v) messages, 

and sends its own (ready,v) message. Note 

that ,  by lemma 1, it is impossible for a 

correct process to send a different ready 

message. Thus,  at  least n-t  processes will 

send (ready,v) messages. Every correct pro- 

cess will eventually receive at least 

2t + 1 <_ n-t  (ready,v) messages, and will 

accept v. [] 

L e m r n a  4. If the t ransmit ter  p is correct 

and it sends v, then all the correct processes 

will accept v. 

Proof'. Suppose p is correct and sends v; 

every other correct process will receive an 

(initial,v) message and will send an 

(echo,v) messages. Consider a correct pro- 

cess q,  q will receive n-t  > ( n + t ) / 2  

(echo ,v ) messages from the correct 

processes, and possibly t < (n+ t)/2 

different messages from the malicious ones. 

Therefore, every correct process will send a 

(ready,v) messages. In step 3, q will receive 

n-t  > 2 t +  1 (ready,v) messages, and possi- 

bly t different ready messages from the 



malicious ones. Therefore q will accept v. 

17 

4. C o r r e c t n e s s  e n f o r c e m e n t  

In the  previous section we restricted 

the behaviour  of the malicious processes by 

forcing them to "vir tual ly"  send the same 

message to all the processes or no message 

at all. However,  we could not control the 

content  of the message. In this section we 

present a scheme tha t  forces the malicious 

processes to conform with the underlying 

protocol. 

We call any message tha t  gets accepted 

in the k ' t h  broadcas t  of some process a 

k -message .  In particular,  the  k-message 

'k By lemma 2, k from p is denoted as mtj. mp 

is well defined. Consider the following gen- 

eral form of the ff th step of the protocol. 

s t ep (k  ) 

Send v to all the processes. 

wait  till Receive a set S of n - t 

k-messages 

v :---- N ( k , S )  

N is the protocol function tha t  determines 

the new value of the process according to 

the step number  and S.  

The  following scheme will allow correct 

processes to consider only messages tha t  are 

valid, i.e, messages tha t  could have been 

sent by  correct processes at tha t  step. 

Thus,  malicious processes have to behave 

correctly, otherwise they  are ignored. 

Each process p maintains the  following 

set of messages VALIDp: 

V A L I D ] =  { accepted 1-messages } 

For k > 1, mkqE VALIDtp, if there exist n - t 

(k - 1)-messages 

ml,  • • • ,  mn-t E VALIDkp -l such tha t  

m ~ = N ( k , { m l ,  . . . , m n _ t  }). 

Process p Validates a message rn if 

m E VALIDkp. 

The basic step form is modified to the 

following: 

s t ep (k  ) 

Broadcas~ v ) 

wait  till Validate a set S of 

n - t k-messages 

v : =  N ( k , S )  

In the consensus protocol we use Validate 

and Broadcast as the communicat ion primi- 

tive. We now show tha t  they  have the 

same properties as the  Accept  and Broad- 

cast primitives. 

l e m m a  5. Let p and q be correct processes. 

If p validates a k-message from r with 

value v and q validates a k-message from r 

with value u,  then u = v. 

Proof: In order for p (q) to validate a k- 

message with value v (u) ,  it must  accept it. 

By l emma 2, u = v.  17 
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L e m m a  6. Let p and q be correct 

processes. If m CVALIDkp, then eventually 

m E VALID~ will hold. 

Proof'. The proof is by induction on k. If 

k = 1 then by lemma 3, if m is accepted by 

p then m will be accepted by q, and we are 

done. Let assume tha t  the s ta tement  of the 

lemma holds for some k > 1. Let 

m E VAL[D~ + 1. Therefore,  there are n - t 

messages ml ,  . . . .  , ran_rE VALID~ such tha t  

m = N ( k + l , { m l , . . . , m n _  t }). By our 

induction hypothesis, each of these messages 

joins VALIDkq. By lemma 3, m will be 

ev6ntually accepted by q. Therefore m joins 

VALIDkq+ 1. [] 

L e m m a  7. If p is a correct process, then  

eventually mkpEVALIDkq for every correct 

process q. 

Proof'. The proof is by induction on k. If 

k = 1, then  by lemma 4 we are done. Sup- 

pose the s ta tement  of the lemma holds for 

step k. Since p is correct it can send mp k+l  

only if it val idated n - t  k-messages, 

m l ,  • • • ,  m,,_t, such tha t  

mpk+'---- N ( k +  1 , {m l ,  . . . , m,,_t} ). By 

lemma 6, for every correct process q and for 

each rai, 1 < i < n - t ,  eventual ly 

m i E V A L I D  ~. Also, since p is correct, by 

iemma 4, every other  correct process q will 

accept mp k + 1 Therefore,  eventually 

k+ 1E VALIDkq+ 1 for every correct process mp 

q. El 

Through the validation mechanism the 

malicious processes are reduced to mere 

fail-stop processes. We will not provide a 

formal proof of t ha t  in this paper. The only 

remaining aspect of their  malice is tha t ,  

whenever there is a random step to perform, 

their  choice is not subject to probability. 

5 .  T h e  c o n s e n s u s  a l g o r i t h m  

The protocol is conducted in rounds 

which are repeatedly executed by all the 

processes. Each round consists of three 

steps. For notat ional  convenience, the pro- 

tocol in Figure 2 does not te rminate  once 

decision is made. However, this can be 

easily accomplished by making the processes 

tha t  have decided send some special halting 

message. 

R o u n d ( k ) :  (by process p ) 

1. Broadcas~ip),  and wait  till Validatet 

n - t messages. 

ip : - -  majori ty value of the vali- 

da ted messages. 

2. Broadcaat(ip), and wait  till Validate 

n - t messages. 

If more than  n / 2  of the messages have 

the same value v, then ip : = ( d , v )  

t The validation is done with respect to N, 
the protocol function described in Figure 2. 
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. Broadcas~ip), and wait  till Validate 

n - t messages. 

If val idated more than  2t + 1 (d ,v )  

messages then Decide v. 

If val idated more than  t + 1 (d,v) 

messages then ip :-~ v. 

Otherwise,  ip :-~ 1 or 0 with probabil-  

i ty ~ . 

Go to step 1 of round k + 1 

f igure  2 .  The consensus protocol. 

6. C o r r e c t n e s s  p r o o f  

We prove in this section tha t  the pro- 

tocol in Figure 2 is a t-resilient consensus 

protocol, for t <~ n / 3. 

L e m m a  8. If in some round r ,  at  the  

beginning of s tep 1, all the correct processes 

have the same value v, then they all decide 

v at s tep 3 of round r .  

Proof: Since all n-t correct processes v as 

their value, every correct process will vali- 

da te  at  least n - 2 t  messages with value v 

at step 1. Since n - 2 t  > ( n - t ) ~ 2  for 

t <~ n/3, each correct process retains v as 

its value at s tep 1. At step 2, in order to 

validate a message with value u ~ v, a 

correct process must  also validate more than 

( n - t ) / 2  u messages from step 1. Since 

(n - t ) / 2~>t ,  this is clearly impossible. 

Therefore,  the  only possible value val idated 

in step 2 is v,  and all the correct processes 

c h a n g e  their  value to (d,v). At step 3, all 
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the correct processes validate more than  

2t + 1 (d ,v )  messages, and they  decide v. 

D 

Since the protocol requires processes to wait  

for each other,  we must  show tha t  it does 

not deadlock. 

L e m m a  9. If a correct process p is at  s tep 

k, then p will eventual ly  progress to step 

k + l .  

Proof: Suppose not; then some correct 

processes are forever blocked. Let k be the  

smallest s tep number  at which some process 

p is blocked, wait ing for val idated messages. 

Since k is minimal, all the  correct processes 

have already broadcas ted  messages at  s tep 

k. By lemma 7, all these messages get even- 

tually validated.  Therefore,  p is not  

blocked at s tep k, a contradict ion.  O 

Define Dr to be v, if t + 1 (d,v) mes- 

sages were val idated by  some correct process 

at round r .  Otherwise,  D r ~ ~b. 

L e m m a  10.  D r is well defined. 

Proof: Suppose not; then some correct 

processes p and q have val idated (d,1) and 

(d,0) messages respectively. If p validates a 

(d,1) message it must  also validate more 

t han  n/2 messages with value 1 tha t  were 

sent at the s tep 2 of round r .  Similarlly, q 

must  have val idated more than  n/2 mes- 

sages with value 0 tha t  were sent at step 2 

of round r .  By lemma 5, this is impossible, 

and hence a contradict ion.  [] 



T h e o r e m  1. The protocol described in 

Figure 2 is a t-resilient consensus protocol, 

f o r t  < n/3.  

Proof: 

Bivalence: If all the processes start  with 

value 1 (0) then by lemma 8, they all decide 

on 1 (0). 

Consistency:. Suppose, without  loss of gen- 

erality, tha t  a correct process p decides 1 at 

step 3 of round r .  p must  have validated 

at least 2t + 1 (d,1) messages. By lemma O, 

every other correct process q validates at 

least t + 1 of these messages. Since, by 

lemma 10, D r is well defined, every correct 

process sets its value to 1. At the beginning 

of round r + 1 all the correct processes 

have value 1. By lemma 8, at the end of 

round r + 1, all the correct processes decide 

1. 

Termination: Consider the time the first 

process p reaches the end of round r and 

sets ip. The only thing the schedule can do 

to affect the processes' values in the next 

round is to establish a value for Dr, and 

then try to force the processes initial values 

at round r + 1 to Dr. Consider a correct 

process p at the end of round r;  there are 

two cases: 

1. p has validated a (d,v) message. There- 

fore, by lemma 10, the only potential value 

of D r is v. With probability p :> T (n-t), all 

the correct processes will set their value to 
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D r • 

2. p has not validated a (d ,v)  message. 

Any correct process can validate only up to 

t (d,v) messages, for any v. Therefore, Dr 

cannot have any value. The schedule has 

no way of forcing the processes' values. 

Again, with probability p _> 2 -(n-t), all the 

correct processes will set their values to the 

same value. 

In either case, by lemma 8, they all decide 

in the next round. The probability of not 

terminating is tlimoo(1-p)t = 0 .  I-1 

For t > n / 3 ,  t-resilient consensus pro- 

tocol are impossible [Brac83]. Thus,  the 

protocol is optimal in the number  of mali- 

cious processes it can tolerate. 

7. P e r f o r m a n c e  

Since at each phase we have a proba- 

bility p > 2-("-0 of deciding in the next 

phase, the expected number  of phases to 

decision is 2 "-t. However, if t < c-v/~ ", 

then the expected number  of phases is only 

a constant  [BenO83] ( though exponential in 

c). 
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