
A SIMPLE OPTIMIZER FOR FP-LIKE LANGUAGES

N. Islam, T.J. Myers, P. Broome*
Department of Computer and Information Sciences

University of Delaware
Newark, Delaware 19711

ABSTRACT

Functional languages provide a framework
in which combining existing programs to
produce new ones is particularly simple
and elegant. However, the penalty usually
paid for such simplicity and elegance is
poor execution efficiency, especially if
the program under consideration is a
combination of programs that are more
general than required for the problem.

We describe extensions and implementation
techniques with which such combinations
can be transformed into more specialized
and generally faster programs. Our system
is based on delaying explicit application
for as long as possible by treating
applications as compositions of suitable
functions. The usual reduction rules then
become a subset of the set of
"optimization rules" which form the basis
of our optimizer. These rules are similar
to the identities of the algebra of
programs given by Backus, but operate in a
common framework in which composition
plays a role similar to that of
application in the reduction rules.

Ke~words: Functional
optimization, program
animation.

programming,
transformation,

* Also with USARRADCOM, Chemical Systems
Laboratory, DRDAR-CLB-PC, Aberdeen Proving
Ground, MD 21010.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981ACM0-89791-060-5/81-10/0033 $00.75

INTRODUCTION

Functional languages, advanced in [Bac78],
provide very high level support to a
programming style in which general purpose
functions are combined with the aid of
general purpose functional forms. The
resulting programs frequently incur an
execution-time penalty due to the tenuous
connection between programming concepts
and machine concepts. Two solutions are
possible: adapt the machine to the
program, as in [Mag793, or employ a clever
translation procedure to produce an
equivalent but more efficient program.

Work such as [Bur77] and [Lov773,
investigating the second approach, have
found that such translation can best be
done by using high-level program
transformations to optimize before
compiling, rather than by first compiling
and then attempting to optimize the low
level code. This has the advantage that
when a special architecture (e.g.,
parallel reduction machine) becomes
available, its capabilities can be
relatively easily utilized by transforming
the programs appropriately; for example,
transformations such as those studied in
[Mye813 can increase the potential use of
parallelism.

We have found that the algebra of programs
presented by Backus forms an excellent
basis for such program transformation.
Our system is based on delaying explicit
application for as long as possible by
treating applications as compositions of
suitable functions. The usual reduction
rules then become a subset of the set of
"optimization rules" which form the basis
of our optimizer. These rules are similar
to the identities of the algebra of
programs given by Backus [Bac783, but
operate in a common framework in which
composition plays a role similar to that
of application in the reduction rules.
The optimizer transforms programs by
rewriting them according to the
optimization rules.

We describe the implementation of a simple
language for animation, an area in which

33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800223.806760&domain=pdf&date_stamp=1981-10-18

such optimization has been found to be
particularly beneficial at both a high
level (e.g., animation sequence
generators) and a low level (e.g., matrix
multiplications). We show examples of
each of these. The matrix multiplication
optimization depends upon the assertion
that a particular matrix is diagonal;
such assertions are made implicitly by the
use of functions which mimic the
structural properties being asserted.
This makes it possible for us to achieve
an optimization similar to, although less
general than, that of [Lov77] with a
recursive algorithm that is easy to
implement.

Notation

The notation used in this paper is similar
to that of [Bac78] with a few exceptions.
We use an infix ' .' to denote function
composition (e.g., f.g), and a prefix '#'
to denote constant functions (e.g., #x).
We also drop the def symbol in function
definitions, and extend the syntax to
permit multiple definitions in the form

[fl'f2 fn] = E

which is taken as being an abbreviation
for

fl = I.E
f2 2 .E

f = n.E
n

If an expression e I reduces, in one or
more steps, to an expression e 2 using
the reduction rules of [Bac78], we express
this fact as

e I => e 2

Consider the application

ADD.lID,#1]:3 (i)

The sequence of reductions is

ADD.[ID,#1]:3 => ADD: ([ID,#1]:3)
=> ADD:<ID:3,#1:3>
=> ADD:<3,1>
=> 4

Reduction is program transformation

In reduction languages, as in many other
classes of languages, evaluation is
source-to-source program transformation.
The reduction rules specify how an
expression containing an application is to
be transformed; there is, in effect, one
rule for each primitive function and
functional, and a few higher-level rules
to deal with metacomposition and
user-defined functions and functionals.

OPTIMIZATION

We rephrase applications as compositions,
thus viewing (i) as the composition

ADD. lID, #i]. #3 (2)

This is similar to the manner in which
data is represented as constant functions
within FP function expressions. With an
appropriate set of transformation rules,
the composition (2) "reduces" to #4, which
is the constant function corresponding to
the object to which the application (i)
reduced. We call such transformation
rules "opt" rules, and use the terms
"reduce" and "reduction" to refer to such
transformations as well as to the usual
reduction rules for application. The
sequence of reductions for the composition
(2) is as follows.

ADD.lID,#1].#3 => ADD.lID.#3,#1.#3]
ADD. [#3, #i]
#4

The rules used in the above derivation
were

[fl'f2 fn]'g =>
[fl'g'f2 "g fn "g]

ID .g => g
#x.g => #x
ADD.[#x,#y] => #(x+y)

(Here the f and g are arbitrary
functions, a~d x and y are arbitrary
constants. We use '=>' also to separate
the left and right parts of rules.)

Notice that each of the above rules has a
central composition on the left hand side;
i.e., all rules are of the form

f.g => E

where E is a function expression. This is
true of all opt rules. Having opt rules
"driven" by compositions yields a close
resemblance between them and the reduction
rules which are similarly driven by
application. However, there is a major
difference: composition is associative,
but application is not, i.e.,

f.(g.h) = (f.g).h

but

f:(g:x) # (f:g):x generally

As a result, there are generally more
composition subexpressions candidate for
reduction than there are application
subexpressions. (In our current system we
have not exploited this property as much
as we could have.)

We can now usefully include opt rules like

ADD.[g,#0] => g
ADD.[#0,g] => g

34

to assert the fact that

ADD:<x,0> => x
ADD:<0,x> => x

independently of the value of x.

These rules can properly be called
optimization rules because they transform
non-constant functions into loosely
equivalent functions, and also improve
their efficiency. We use the qualifier
"loosely" to mean that the resulting
function may be more defined than the
original. In other words, we may lose
strictness and have a call-by-need
semantics instead of FP's strict
call-by-value semantics. Except for this
possible loss of strictness, our rules are
similar to those of the algebra of
programs given in [Bac78].

We have developed a set of such rules (see
the Appendix), and have incorporated it
into an interpreter that permits the user
to define efficient new functions as
specializations of existing general
functions.

To illustrate this, we take the example of
matrix multiplication in which one
argument is known to be diagonal. This
example is considered in [Lov77], where
optimization is accomplished by
substituting, for each occurrence of the
diagonal argument, an if-then-else
statement asserting the diagonal property,
and then propagating this through the body
of the procedure. We do something
similar, except that our assertion takes
the form of a construction function which
is simply composed onto the original
function. This composition is then
optimized, the effect of the assertion
being propagated by the optimizer using
the opt rules.

Matrix multiplication

Consider the definitions

IP = (/ADD) . (*MULT) .TRANS
MM = (*(*IP)).(*DISTL).

DISTR. [I, TRANS. 2]
ID3X3 = [[1.1,2.1,3.1],

[1.2,2.2,3.2],
[1.3,2.3,3.3]]

DIA3X3 = [[i,#0, #0],
[#0,2,#0],
[#0, #0, 3]]

MMDIA = MM.[DIA3X3.1, ID3X3.2]

Here IP and MM are the inner product and
matrix multiplication functions as given
in [Bac78]. ID3X3 is the identity
function for 3x3 matrices. DIA3X3 is a
function that takes a vector of three
values and produces a 3x3 matrix with
those values on the diagonal. MMDIA is 'a
function that is defined as a
specialization of MM to the case where the
first argument is a diagonal matrix.

The optimizer transforms the definition of
MMDIA into

MMDIA' = [[MULT.[I.I,I.I.2],
MULT. [i. i, 2. I. 2],

MULT. [i. i, 3. i. 2]],
[MULT.[2.1, 1.2.2],

MULT.[2.1,2.2.23,
MULT. [2. i, 3.2.2]],

[MULT. [3.1, 1.3.2],
MULT. [3. i, 2.3.2],

MULT. [3. i, 3.3,2]]]

,The results of counting the number of
CONSes that the interpreter executed while
applying the unoptimized and optimized
forms of MMDIA are given below.

Unoptimized:
Each call

Optimized:
First call
Each subsequent call

729 CONSes

1245 CONSes
193 CONSes

Here, the "First call" count includes the
cost of optimization. Note that 516
CONSes were expended (once only) in
improving the program by 536 CONSes (for
each subsequent call) -- an increase in
speed by a factor of about 3.7 .

Our diagonal assertion also fixes the
dimensions of the argument matrix. This
may be undesirable in some applications,
but in low level graphics programming it
is quite acceptable.

A better example of the improvement that
our system can achieve is multiplication
of a sparse matrix with a vector -- a
problem very common in low-level graphics
algorithms. In such problems, the matrix
is usually a transformation matrix (for
rotation, scaling or translation) and the
vector a point to be transformed.
Consider the following definitions (for a
two-dimensional homogeneous coordinate
system)

SCL = [[i, #0, #0],
[#0,2, #0],
[#0, #0, #1]]

PNT = [[1],[2],[3]]
SCLPNT = MM. [SCL. I, PNT. 2]

The function SCLPNT, which takes a scaling
transformation matrix and a point vector
(actually a 3xl matrix) and yields the
transformed point vector, optimizes to

SCLPNT' = [[MULT.[I.I,I.2]],
[MULT.[2.1,2.2]],

[3.2]]

which is a considerably improved form of
the original definition which was based on
a too-general MM.

The CONS counts for the unoptimized forms
of SCLPNT were

35

Unoptimized:
Each call

Optimized:
First call
Each subsequent call

317 CONSes

550 CONSes
55 CONSes

Again, the "First call" count includes the
cost of optimization. Here, 233 CONSes
were expended in improving the program by
262 CONSes, increasing speed by a factor
of about 5.7.

Type checking

The optimizer also serves as a somewhat
limited type-checker. There is no static
typing in the language; all functions are
expected to do dynamic type-checking of
their own. However, some types can be
inferred. For example, a function
construction of length n must, when
applied to any object, yield either I or a
sequence of length n. If the individual
components of the function construction
were themselves function constructions,
the individual components of the resulting
sequence will again either be I or
sequences of corresponding lengths, and so
on. If a function expression optimizes to
#I (the everywhere-undefined function),
then it means that the original function
would yield] when applied to any object.
Thus, l-re~urning functions, when
optimized? would terminate more quickly
with the error notification.

Examples
rules are

of #1-returning transformation

i.[] => #I
i'[gl gn] => #! if i>n
MULT~[g I => #I if n#2

! -

etc .

Of course, f.g may diverge for all x
if f.g #> #I.

even

Graphics

We have developed a simple FP-like
language for describing time-varying
pictures. Each graphic object is a
function that maps a time sequence (0,1,2,
...) into a sequence of wire-frame
pictures representing the object at
co[responding times. They may be
specified to have arbitrary and
independent motion.

The programs are manipulatable and can
thus be subjected to our kind of
optimization transformations fairly
easily. These transformations are
particularly useful in animation because
often large parts of the pictures are
constant in time. These constant parts
get optimized into constant functions
producing the corresponding data
structures, while the time-varying parts
get optimized into somewhat better
(although not constant) functions because

some computations are done at
transformation time. Since the framework
for constant and time-varying objects is
the same, it is extremely easy to redefine
a constant object as a time-varying one
(with immediate gain in speed) or
vice-versa.

A call-by-need mechanism is used in our
formulation of graphic sequences because
our time sequence is an infinite stream
and the corresponding graphic pictures
also form a stream that must be evaluated
(and displayed) in a lazy fashion.

The following program describes a bicycle
(with square wheelsl) moving uniformly
with time, with the wheels rotating in
synchronism.

BIKE = PICTURE.[FRAME,BWHEEL,FWHEEL]
FRAME = MOVE.[PICTURE.

(*LINE).[[FRI,FR2],
[FR2,FR3],
[FR4,FRL],
[FRL,FR6]],

BAXLE]
[FRI,FR2,FR3,FR4,FRL,FR6] =

(*POINT).[[#0,#0],
[#i00,#200],
[#24,#2003,
[#15,#3003,
[#200,#3001,
[#300,#013

BAXLE = POINT.[MULT.[ID,#5],#200]
FAXLE = MOVE.[BAXLE,POINT.[#300,#0]]
[FWHEEL,BWHEEL] =

(*MOVE).[[ROTWHL,FAXLE],
[ROTWHL,BAXLE]]

ROTWHL = ROTATE.[WHEEL,ANGLE]
ANGLE = MULT.[ID,#(.I)]
WHEEL = PICTURE.(*LINE).[[LB,RB],

[RB,RT],
[RT,LT],
[LT,LB]]

[LB,RB,LT,RT] =
(*POINT).[[#-100,#-100],

[# i 0 0 , # - i 0 0] ,
[#-100,#i00],
[# i 0 0 , # i 0 0]]

(Note how optimization allows us to use
mapping in our function definitions
without penalty.)

The functions PICTURE, LINE and POINT are
primitive constructor functions, and MOVE
and ROTATE are primitive transformation
functions. The function BIKE defines a
picture whose components are generated by
the functions FRAME, BWHEEL, and FWHEEL.
FRAME defines the frame consisting of
lines joining certain pairs of points with
the frame's origin "attached" to the point
BAXLE. BAXLE, which represents the rear
axle, defines a point whose y coordinate
is fixed at 200 and whose x coordinate
increases at the rate of 5 coordinate
units per time unit. FAXLE, which
represents the front axle, defines a point
relative to the moving BAXLE. FWHEEL AND
BWHEEL define instances of ROTWHL attached

36

to the points FAXLE and BAXLE
respectively. ROTWHL represents a
rotating wheel and is a function of ANGLE,
which, in turn, is a function of time.
WHEEL defines a square with corners at the
points LB, RB, LT, and RT.

The CONS counts for the unoptimized and
optimized forms of BIKE were

Unoptimized:
Each call 1715 CONSes

Optimized:
First call 2303 CONSes
Each subsequent call 1143 CONSes

As before, the "First call" count includes
the cost of optimization. Here, 588
CONSes were expended in improving the
program by 572 CONSes, increasing its
speed by a factor of about 1.5.

This is a substantial speedup in view of
the fact that all parts of the picture
vary with time. In cases where large
parts of a picture are time-independent,
we can expect correspondingly large
improvements beyond those shown in this
example.

Optimizing functions

Associated with each function is an
optimizing function, called its opt
function, which is invoked when a
composition with that function on the left
is chosen for reduction. The opt function
can then examine the form of the function
expression on the right using predefined
meta-functions, and can construct new
functions when a reduction can be done.
The opt function is usually a conditional
expression on the structure of the right
hand function expression. If no predicate
of the . conditional expression is
satisfied, the composition is returned
unchanged,

Strategies

"Strategy" determines the order in which
compositions are picked for optimization.
A non-deterministic (and possibly
parallel) optimization of the various
subexpressions could be performed.

Our current strategy is a kind of demand
propagation from the left (top) going to
the right (down), in a manner similar to
evaluation, i.e., the token of control for
optimization is passed up and down in a
manner similar to the behavior of ': ' in
[Bac78]. Each (successful or
unsuccessful) optimization step specifies
where the optimization should be attempted
next, in a manner much less general than
in Loveman's system [Lov77]. In our case,
the points of application are always
specified to be within the resulting
expression. For example, having used

[fl,f2 f].g =>
[f?'g'f2 " g l fn "g]

the opt function for function construction
will cause all compositions in the r.h.s.
£o undergo optimization. The opt
functions explicitly call the optimizer to
attempt to optimize subexpressions which
are components of the structure that they
return. Care is taken not to recurse
where doing so might cause infinite
recursion. Since we have not yet formally
proven our set to be loop-free, we have
omitted these specifications from the
rules given in the Appendix.

Space-time tradeoff

There is a tradeoff between space and time
for several of the optimizations. For
example, in

*f'[gl gn] =>
[f'gl f'gn]

the l.h.s, is better in space while the
r.h.s, is better in time. In

[fl f]'g =>
n [fl.g f .g]

n

the r.h.s, is worse in both space and
time unless some of the f..g can be
reduced. Our system applies these
reductions out of optimism.

THE INTERPRETER

The interpreter is a demand-driven
simulation of the underlying reduction
system. It accepts definitions in the
form

f = E

where f is a unique function name (there
is no scoping of names whatsoever) and E
is a function expression. It also accepts
queries in the form

?f

There is no explicit application. When a
query is encountered, the interpreter
optimizes f (if not already optimized) and
all subordinate functions (those not
already optimized) and then applies f to
0,i successively and displays the
result after each application. One can
think of the application as being even
further delayed and say that the system
optimizes successively f.#0, f.#1
and applies the resulting functions (which
must then be constant functions) to an
arbitrary object.

As mentioned earlier, with each function
the interpreter associates an opt
function; it also associates an
evaluation function. (We are attempting
to combine these functions in such a way
that the evaluation function body becomes

37

just another clause in the conditional
expression of the opt function.)

In addition, for each user-defined
function, the interpreter associates an
unoptimized definition and an optimized
definition. It also maintains a graph of
function dependencies in order to delete
optimized definitions when any subordinate
function is redefined.

CONCLUSIONS

We have shown that a fairly simple
optimization scheme, based on Backus's
algebra of programs, can effect
substantial improvement in execution speed
of functional programs. This encourages
the programmer to build new programs from
existing general-purpose programs without
too much concern for efficiency. This
process can be viewed as one of successive
specialization of general-purpose
functions from a suitable base library.

We have shown that this scheme is quite
successful in graphics programming, and we
expect similar results in areas where the
structure of the data involved provides
implicit assertions which obviate the need
for bidirectional transformations, goal
direction and, thus, planning.

We are investigating several aspects of
this approach. We are attempting to
extend the system to include inference of
attributes other than structure. We are
also exploring new strategies,
particularly those with little or no
heuristic search, so as to strike a good
balance between simplicity of . the
optimizer and the improvement it yields.
We are also updating the library of
optimization rules and extending the kinds
of functions that could form a suitable
library of assertion functions.

Comparing our system with Loveman's, we
find that Loveman had to contend with, in
effect, three languages -- assertions,
expressions, and statements. On the other
hand, FP-like languages provide a much
more hospitable medium for such
transformations. The absence of side
effects and variables (free and bound)
eliminates many of the problems of
environments and binding, while the
property that all functions take exactly
one argument simplifies considerably the
interfacing of functions and provides more
freedom in their transformation.

ACKNOWLE DGEMENTS

This paper is based on part of Noorul
Islam's doctoral dissertation work
currently in progress. We would like to
thank Dr. Hatem Khalil, Dr. Toni Cohen,
and the referees for pointing out errors
and suggesting numerous improvements.

APPENDIX

Metacomposition rule

(m f).g => m.[[#m,#f],g]

Opt rules for some primitive functions

Identity

ID.g => g

Selectors

i.[] => #1

i'[gl gn] => gi if l<i<n

Tail

TL.[] => #I

TL.[g I] => #[]

TL'[gl'g2 gn] => [g2 gn]

Length

LEN. [] => #0

LEN.[gl,g2 gn] => #n

Null

NULL.[] => #T

NULL.[g I gn] => #F

Distribute

DISTL.[gI,[g21,g22 g2n]]

=> [[gl,g21],[gl,g22]

,[gl,g2n]]

DISTR.[[glI,gI2 gln],g2]

=> [[gll,g2],[gl2,g2]

,[gln,g2]]

Arithmetic

ADD'[#0'g2] => g2

ADD'[gI'#0] => gl

SUB'[#0'g2] => g2

MULT.[#0,g 2] => #0

MULT. [gl, #0] => #0

MULT" [#i' g2] => g2

MULT. [gl ' #i] => gl

DIV. [gl, #0] => #!

DIV.[#0,g 2] => #0

38

DIV'[gI' #i] => gl

ADD. [g I gn] => #_I if n#2

etc.

Equal

EQUAL.[gl,g 2] => #T

if gl=g2 (intensionally)

EQUAL.[[gll glm]'

[g21 g2n]]

=> #F

Transpose

TRANS. [gl '

[gil gin] '

gm]

=> [[l'gl gil' "" " ' l'gm]'

[2"gl gi2 2"gm]'

[n'gl gin n .gm]]

Constant

#x .g => #x

Construction

[fl'f2 f n]'g

=> [fl'g' f2 "g ' fn "g]

Conditional

(p->fl;f2) .g

=> fl.g if p.g => #T

f2.g if p.g --> #F

(p->fl;f2) .g otherwise

Apply-to-all

(*f) .[] => []

(*f) .[gl,g2 gn]

=> [f.gl,f.g2 f.gn]

if m#n

REFERENCES

[Bac72] Backus, J. Reduction Languages
and Variable-free Programming, IBM
Research Report RJI010, Yorktown
Heights, bY, April 7,1972.

[Bac73] Backus, J. "Programming language
semantics and closed applicative
languages", Conf. Record ACM
Symp. on Principles of
Programming Languages, Boston,
Oct. 1973, 71-86.

[Bac783 Backus, J. "Can Programming be
Liberated from the Von-Neumann
Style? A Functional Style and its
Algebra of Programs", CACM, 21, 8,
August 1978.

[Bur77] Burstall, R.M. and Darlington, J.
"A transformation system for
developing recursive programs",
JACM, 24, pp. 44-67, Jan. 1977.

[Lov77] Loveman, D.B. "Program
Improvement by Source-to-Source
Transformation", JACM, 24, i,
1977, pp. 121-145.

[Mag79] Mago, G.A. "A Network of
Microprocessors to Execute
Reduction Languages, Part i", Int.
J. Comptr. and Inf. Sci., 8, 5,
1979.

[Mye81] Myer s , T.J. "Operator-directed
Program Transformations" (in
preparation).

[Poz77] Pozefsky, M. "Programming in
Reduction Languages", Ph.D.
dissertation, U. of N. Carolina,
Chapel Hill, 1977.

39

40

