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ABSTRACT 

Functional languages provide a framework 
in which combining existing programs to 
produce new ones is particularly simple 
and elegant. However, the penalty usually 
paid for such simplicity and elegance is 
poor execution efficiency, especially if 
the program under consideration is a 
combination of programs that are more 
general than required for the problem. 

We describe extensions and implementation 
techniques with which such combinations 
can be transformed into more specialized 
and generally faster programs. Our system 
is based on delaying explicit application 
for as long as possible by treating 
applications as compositions of suitable 
functions. The usual reduction rules then 
become a subset of the set of 
"optimization rules" which form the basis 
of our optimizer. These rules are similar 
to the identities of the algebra of 
programs given by Backus, but operate in a 
common framework in which composition 
plays a role similar to that of 
application in the reduction rules. 
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INTRODUCTION 

Functional languages, advanced in [Bac78], 
provide very high level support to a 
programming style in which general purpose 
functions are combined with the aid of 
general purpose functional forms. The 
resulting programs frequently incur an 
execution-time penalty due to the tenuous 
connection between programming concepts 
and machine concepts. Two solutions are 
possible: adapt the machine to the 
program, as in [Mag793, or employ a clever 
translation procedure to produce an 
equivalent but more efficient program. 

Work such as [Bur77] and [Lov773, 
investigating the second approach, have 
found that such translation can best be 
done by using high-level program 
transformations to optimize before 
compiling, rather than by first compiling 
and then attempting to optimize the low 
level code. This has the advantage that 
when a special architecture (e.g., 
parallel reduction machine) becomes 
available, its capabilities can be 
relatively easily utilized by transforming 
the programs appropriately; for example, 
transformations such as those studied in 
[Mye813 can increase the potential use of 
parallelism. 

We have found that the algebra of programs 
presented by Backus forms an excellent 
basis for such program transformation. 
Our system is based on delaying explicit 
application for as long as possible by 
treating applications as compositions of 
suitable functions. The usual reduction 
rules then become a subset of the set of 
"optimization rules" which form the basis 
of our optimizer. These rules are similar 
to the identities of the algebra of 
programs given by Backus [Bac783, but 
operate in a common framework in which 
composition plays a role similar to that 
of application in the reduction rules. 
The optimizer transforms programs by 
rewriting them according to the 
optimization rules. 

We describe the implementation of a simple 
language for animation, an area in which 
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such optimization has been found to be 
particularly beneficial at both a high 
level (e.g., animation sequence 
generators) and a low level (e.g., matrix 
multiplications). We show examples of 
each of these. The matrix multiplication 
optimization depends upon the assertion 
that a particular matrix is diagonal; 
such assertions are made implicitly by the 
use of functions which mimic the 
structural properties being asserted. 
This makes it possible for us to achieve 
an optimization similar to, although less 
general than, that of [Lov77] with a 
recursive algorithm that is easy to 
implement. 

Notation 

The notation used in this paper is similar 
to that of [Bac78] with a few exceptions. 
We use an infix ' .' to denote function 
composition (e.g., f.g), and a prefix '#' 
to denote constant functions (e.g., #x). 
We also drop the def symbol in function 
definitions, and extend the syntax to 
permit multiple definitions in the form 

[fl'f2 ..... fn] = E 

which is taken as being an abbreviation 
for 

fl = I.E 
f2 2 .E 

f = n.E 
n 

If an expression e I reduces, in one or 
more steps, to an expression e 2 using 
the reduction rules of [Bac78], we express 
this fact as 

e I => e 2 

Consider the application 

ADD.lID,#1]:3 (i) 

The sequence of reductions is 

ADD.[ID,#1]:3 => ADD: ([ID,#1]:3) 
=> ADD:<ID:3,#1:3> 
=> ADD:<3,1> 
=> 4 

Reduction is program transformation 

In reduction languages, as in many other 
classes of languages, evaluation is 
source-to-source program transformation. 
The reduction rules specify how an 
expression containing an application is to 
be transformed; there is, in effect, one 
rule for each primitive function and 
functional, and a few higher-level rules 
to deal with metacomposition and 
user-defined functions and functionals. 

OPTIMIZATION 

We rephrase applications as compositions, 
thus viewing (i) as the composition 

ADD. lID, #i ]. #3 (2) 

This is similar to the manner in which 
data is represented as constant functions 
within FP function expressions. With an 
appropriate set of transformation rules, 
the composition (2) "reduces" to #4, which 
is the constant function corresponding to 
the object to which the application (i) 
reduced. We call such transformation 
rules "opt" rules, and use the terms 
"reduce" and "reduction" to refer to such 
transformations as well as to the usual 
reduction rules for application. The 
sequence of reductions for the composition 
(2) is as follows. 

ADD.lID,#1].#3 => ADD.lID.#3,#1.#3] 
ADD. [#3, #i] 
#4 

The rules used in the above derivation 
were 

[fl'f2 ..... fn ]'g => 
[fl'g'f2 "g ..... fn "g] 

ID .g => g 
#x.g => #x 
ADD.[#x,#y] => #(x+y) 

(Here the f and g are arbitrary 
functions, a~d x and y are arbitrary 
constants. We use '=>' also to separate 
the left and right parts of rules.) 

Notice that each of the above rules has a 
central composition on the left hand side; 
i.e., all rules are of the form 

f.g => E 

where E is a function expression. This is 
true of all opt rules. Having opt rules 
"driven" by compositions yields a close 
resemblance between them and the reduction 
rules which are similarly driven by 
application. However, there is a major 
difference: composition is associative, 
but application is not, i.e., 

f.(g.h) = (f.g).h 

but 

f:(g:x) # (f:g):x generally 

As a result, there are generally more 
composition subexpressions candidate for 
reduction than there are application 
subexpressions. (In our current system we 
have not exploited this property as much 
as we could have.) 

We can now usefully include opt rules like 

ADD.[g,#0] => g 
ADD.[#0,g] => g 
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to assert the fact that 

ADD:<x,0> => x 
ADD:<0,x> => x 

independently of the value of x. 

These rules can properly be called 
optimization rules because they transform 
non-constant functions into loosely 
equivalent functions, and also improve 
their efficiency. We use the qualifier 
"loosely" to mean that the resulting 
function may be more defined than the 
original. In other words, we may lose 
strictness and have a call-by-need 
semantics instead of FP's strict 
call-by-value semantics. Except for this 
possible loss of strictness, our rules are 
similar to those of the algebra of 
programs given in [Bac78]. 

We have developed a set of such rules (see 
the Appendix), and have incorporated it 
into an interpreter that permits the user 
to define efficient new functions as 
specializations of existing general 
functions. 

To illustrate this, we take the example of 
matrix multiplication in which one 
argument is known to be diagonal. This 
example is considered in [Lov77], where 
optimization is accomplished by 
substituting, for each occurrence of the 
diagonal argument, an if-then-else 
statement asserting the diagonal property, 
and then propagating this through the body 
of the procedure. We do something 
similar, except that our assertion takes 
the form of a construction function which 
is simply composed onto the original 
function. This composition is then 
optimized, the effect of the assertion 
being propagated by the optimizer using 
the opt rules. 

Matrix multiplication 

Consider the definitions 

IP = (/ADD) . (*MULT) .TRANS 
MM = (*(*IP)).(*DISTL). 

DISTR. [ I, TRANS. 2 ] 
ID3X3 = [[1.1,2.1,3.1], 

[1.2,2.2,3.2], 
[1.3,2.3,3.3]] 

DIA3X3 = [[i,#0, #0], 
[#0,2,#0], 
[#0, #0, 3]] 

MMDIA = MM.[DIA3X3.1, ID3X3.2] 

Here IP and MM are the inner product and 
matrix multiplication functions as given 
in [Bac78]. ID3X3 is the identity 
function for 3x3 matrices. DIA3X3 is a 
function that takes a vector of three 
values and produces a 3x3 matrix with 
those values on the diagonal. MMDIA is 'a 
function that is defined as a 
specialization of MM to the case where the 
first argument is a diagonal matrix. 

The optimizer transforms the definition of 
MMDIA into 

MMDIA' = [[MULT.[I.I,I.I.2], 
MULT. [i. i, 2. I. 2], 

MULT. [i. i, 3. i. 2]], 
[MULT.[2.1, 1.2.2], 

MULT.[2.1,2.2.23, 
MULT. [2. i, 3.2.2]], 

[MULT. [3.1, 1.3.2], 
MULT. [3. i, 2.3.2], 

MULT. [3. i, 3.3,2]]] 

,The results of counting the number of 
CONSes that the interpreter executed while 
applying the unoptimized and optimized 
forms of MMDIA are given below. 

Unoptimized: 
Each call 

Optimized: 
First call 
Each subsequent call 

729 CONSes 

1245 CONSes 
193 CONSes 

Here, the "First call" count includes the 
cost of optimization. Note that 516 
CONSes were expended (once only) in 
improving the program by 536 CONSes (for 
each subsequent call) -- an increase in 
speed by a factor of about 3.7 . 

Our diagonal assertion also fixes the 
dimensions of the argument matrix. This 
may be undesirable in some applications, 
but in low level graphics programming it 
is quite acceptable. 

A better example of the improvement that 
our system can achieve is multiplication 
of a sparse matrix with a vector -- a 
problem very common in low-level graphics 
algorithms. In such problems, the matrix 
is usually a transformation matrix (for 
rotation, scaling or translation) and the 
vector a point to be transformed. 
Consider the following definitions (for a 
two-dimensional homogeneous coordinate 
system) 

SCL = [[i, #0, #0], 
[#0,2, #0], 
[#0, #0, #1]] 

PNT = [[1],[2],[3]] 
SCLPNT = MM. [SCL. I, PNT. 2] 

The function SCLPNT, which takes a scaling 
transformation matrix and a point vector 
(actually a 3xl matrix) and yields the 
transformed point vector, optimizes to 

SCLPNT' = [[MULT.[I.I,I.2]], 
[MULT.[2.1,2.2]], 

[3.2] ] 

which is a considerably improved form of 
the original definition which was based on 
a too-general MM. 

The CONS counts for the unoptimized forms 
of SCLPNT were 
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Unoptimized: 
Each call 

Optimized: 
First call 
Each subsequent call 

317 CONSes 

550 CONSes 
55 CONSes 

Again, the "First call" count includes the 
cost of optimization. Here, 233 CONSes 
were expended in improving the program by 
262 CONSes, increasing speed by a factor 
of about 5.7. 

Type checking 

The optimizer also serves as a somewhat 
limited type-checker. There is no static 
typing in the language; all functions are 
expected to do dynamic type-checking of 
their own. However, some types can be 
inferred. For example, a function 
construction of length n must, when 
applied to any object, yield either I or a 
sequence of length n. If the individual 
components of the function construction 
were themselves function constructions, 
the individual components of the resulting 
sequence will again either be I or 
sequences of corresponding lengths, and so 
on. If a function expression optimizes to 
#I (the everywhere-undefined function), 
then it means that the original function 
would yield ] when applied to any object. 
Thus, l-re~urning functions, when 
optimized? would terminate more quickly 
with the error notification. 

Examples 
rules are 

of #1-returning transformation 

i.[] => #I 
i'[gl ..... gn] => #! if i>n 
MULT~[g I => #I if n#2 

# !  - 

etc .  

Of course, f.g may diverge for all x 
if f.g #> #I. 

even 

Graphics 

We have developed a simple FP-like 
language for describing time-varying 
pictures. Each graphic object is a 
function that maps a time sequence (0,1,2, 
...) into a sequence of wire-frame 
pictures representing the object at 
co[responding times. They may be 
specified to have arbitrary and 
independent motion. 

The programs are manipulatable and can 
thus be subjected to our kind of 
optimization transformations fairly 
easily. These transformations are 
particularly useful in animation because 
often large parts of the pictures are 
constant in time. These constant parts 
get optimized into constant functions 
producing the corresponding data 
structures, while the time-varying parts 
get optimized into somewhat better 
(although not constant) functions because 

some computations are done at 
transformation time. Since the framework 
for constant and time-varying objects is 
the same, it is extremely easy to redefine 
a constant object as a time-varying one 
(with immediate gain in speed) or 
vice-versa. 

A call-by-need mechanism is used in our 
formulation of graphic sequences because 
our time sequence is an infinite stream 
and the corresponding graphic pictures 
also form a stream that must be evaluated 
(and displayed) in a lazy fashion. 

The following program describes a bicycle 
(with square wheelsl) moving uniformly 
with time, with the wheels rotating in 
synchronism. 

BIKE = PICTURE.[FRAME,BWHEEL,FWHEEL] 
FRAME = MOVE.[PICTURE. 

(*LINE).[[FRI,FR2], 
[FR2,FR3], 
[FR4,FRL], 
[FRL,FR6]], 

BAXLE] 
[FRI,FR2,FR3,FR4,FRL,FR6] = 

(*POINT).[[#0,#0], 
[#i00,#200], 
[#24,#2003, 
[#15,#3003, 
[#200,#3001, 
[#300,#013 

BAXLE = POINT.[MULT.[ID,#5],#200] 
FAXLE = MOVE.[BAXLE,POINT.[#300,#0]] 
[FWHEEL,BWHEEL] = 

(*MOVE).[[ROTWHL,FAXLE], 
[ROTWHL,BAXLE]] 

ROTWHL = ROTATE.[WHEEL,ANGLE] 
ANGLE = MULT.[ID,#(.I)] 
WHEEL = PICTURE.(*LINE).[[LB,RB], 

[RB,RT], 
[RT,LT], 
[LT,LB]] 

[LB,RB,LT,RT] = 
(*POINT).[[#-100,#-100], 

[ # i 0 0 , # - i 0 0 ] ,  
[#-100,#i00], 
[ # i 0 0 , # i 0 0 ] ]  

(Note how optimization allows us to use 
mapping in our function definitions 
without penalty.) 

The functions PICTURE, LINE and POINT are 
primitive constructor functions, and MOVE 
and ROTATE are primitive transformation 
functions. The function BIKE defines a 
picture whose components are generated by 
the functions FRAME, BWHEEL, and FWHEEL. 
FRAME defines the frame consisting of 
lines joining certain pairs of points with 
the frame's origin "attached" to the point 
BAXLE. BAXLE, which represents the rear 
axle, defines a point whose y coordinate 
is fixed at 200 and whose x coordinate 
increases at the rate of 5 coordinate 
units per time unit. FAXLE, which 
represents the front axle, defines a point 
relative to the moving BAXLE. FWHEEL AND 
BWHEEL define instances of ROTWHL attached 
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to the points FAXLE and BAXLE 
respectively. ROTWHL represents a 
rotating wheel and is a function of ANGLE, 
which, in turn, is a function of time. 
WHEEL defines a square with corners at the 
points LB, RB, LT, and RT. 

The CONS counts for the unoptimized and 
optimized forms of BIKE were 

Unoptimized: 
Each call 1715 CONSes 

Optimized: 
First call 2303 CONSes 
Each subsequent call 1143 CONSes 

As before, the "First call" count includes 
the cost of optimization. Here, 588 
CONSes were expended in improving the 
program by 572 CONSes, increasing its 
speed by a factor of about 1.5. 

This is a substantial speedup in view of 
the fact that all parts of the picture 
vary with time. In cases where large 
parts of a picture are time-independent, 
we can expect correspondingly large 
improvements beyond those shown in this 
example. 

Optimizing functions 

Associated with each function is an 
optimizing function, called its opt 
function, which is invoked when a 
composition with that function on the left 
is chosen for reduction. The opt function 
can then examine the form of the function 
expression on the right using predefined 
meta-functions, and can construct new 
functions when a reduction can be done. 
The opt function is usually a conditional 
expression on the structure of the right 
hand function expression. If no predicate 
of the . conditional expression is 
satisfied, the composition is returned 
unchanged, 

Strategies 

"Strategy" determines the order in which 
compositions are picked for optimization. 
A non-deterministic (and possibly 
parallel) optimization of the various 
subexpressions could be performed. 

Our current strategy is a kind of demand 
propagation from the left (top) going to 
the right (down), in a manner similar to 
evaluation, i.e., the token of control for 
optimization is passed up and down in a 
manner similar to the behavior of ': ' in 
[Bac78]. Each (successful or 
unsuccessful) optimization step specifies 
where the optimization should be attempted 
next, in a manner much less general than 
in Loveman's system [Lov77]. In our case, 
the points of application are always 
specified to be within the resulting 
expression. For example, having used 

[fl,f2 ..... f ].g => 
[f?'g'f2 " g l  ..... fn "g] 

the opt function for function construction 
will cause all compositions in the r.h.s. 
£o undergo optimization. The opt 
functions explicitly call the optimizer to 
attempt to optimize subexpressions which 
are components of the structure that they 
return. Care is taken not to recurse 
where doing so might cause infinite 
recursion. Since we have not yet formally 
proven our set to be loop-free, we have 
omitted these specifications from the 
rules given in the Appendix. 

Space-time tradeoff 

There is a tradeoff between space and time 
for several of the optimizations. For 
example, in 

*f'[gl ..... gn ] => 
[f'gl ..... f'gn ] 

the l.h.s, is better in space while the 
r.h.s, is better in time. In 

[fl ..... f ]'g => 
n [fl.g ..... f .g] 

n 

the r.h.s, is worse in both space and 
time unless some of the f..g can be 
reduced. Our system applies these 
reductions out of optimism. 

THE INTERPRETER 

The interpreter is a demand-driven 
simulation of the underlying reduction 
system. It accepts definitions in the 
form 

f = E 

where f is a unique function name (there 
is no scoping of names whatsoever) and E 
is a function expression. It also accepts 
queries in the form 

?f 

There is no explicit application. When a 
query is encountered, the interpreter 
optimizes f (if not already optimized) and 
all subordinate functions (those not 
already optimized) and then applies f to 
0,i .... successively and displays the 
result after each application. One can 
think of the application as being even 
further delayed and say that the system 
optimizes successively f.#0, f.#1 .... 
and applies the resulting functions (which 
must then be constant functions) to an 
arbitrary object. 

As mentioned earlier, with each function 
the interpreter associates an opt 
function; it also associates an 
evaluation function. (We are attempting 
to combine these functions in such a way 
that the evaluation function body becomes 
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just another clause in the conditional 
expression of the opt function.) 

In addition, for each user-defined 
function, the interpreter associates an 
unoptimized definition and an optimized 
definition. It also maintains a graph of 
function dependencies in order to delete 
optimized definitions when any subordinate 
function is redefined. 

CONCLUSIONS 

We have shown that a fairly simple 
optimization scheme, based on Backus's 
algebra of programs, can effect 
substantial improvement in execution speed 
of functional programs. This encourages 
the programmer to build new programs from 
existing general-purpose programs without 
too much concern for efficiency. This 
process can be viewed as one of successive 
specialization of general-purpose 
functions from a suitable base library. 

We have shown that this scheme is quite 
successful in graphics programming, and we 
expect similar results in areas where the 
structure of the data involved provides 
implicit assertions which obviate the need 
for bidirectional transformations, goal 
direction and, thus, planning. 

We are investigating several aspects of 
this approach. We are attempting to 
extend the system to include inference of 
attributes other than structure. We are 
also exploring new strategies, 
particularly those with little or no 
heuristic search, so as to strike a good 
balance between simplicity of . the 
optimizer and the improvement it yields. 
We are also updating the library of 
optimization rules and extending the kinds 
of functions that could form a suitable 
library of assertion functions. 

Comparing our system with Loveman's, we 
find that Loveman had to contend with, in 
effect, three languages -- assertions, 
expressions, and statements. On the other 
hand, FP-like languages provide a much 
more hospitable medium for such 
transformations. The absence of side 
effects and variables (free and bound) 
eliminates many of the problems of 
environments and binding, while the 
property that all functions take exactly 
one argument simplifies considerably the 
interfacing of functions and provides more 
freedom in their transformation. 
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APPENDIX 

Metacomposition rule 

(m f).g => m.[[#m,#f],g] 

Opt rules for some primitive functions 

Identity 

ID.g => g 

Selectors 

i.[] => #1 

i'[gl ..... gn ] => gi if l<i<n 

Tail 

TL.[] => #I 

TL.[g I ] => #[] 

TL'[gl'g2 ..... gn ] => [g2 ..... gn ] 

Length 

LEN. [] => #0 

LEN.[gl,g2 ..... gn ] => #n 

Null 

NULL.[] => #T 

NULL.[g I ..... gn ] => #F 

Distribute 

DISTL.[gI,[g21,g22 ..... g2n ]] 

=> [[gl,g21],[gl,g22 ] .... 

,[gl,g2n ]] 

DISTR.[[glI,gI2 ..... gln],g2 ] 

=> [[gll,g2],[gl2,g2 ] .... 

,[gln,g2 ]] 

Arithmetic 

ADD'[#0'g2] => g2 

ADD'[gI'#0] => gl 

SUB'[#0'g2] => g2 

MULT.[#0,g 2] => #0 

MULT. [gl, #0 ] => #0 

MULT" [#i' g2] => g2 

MULT. [ gl ' #i ] => gl 

DIV. [gl, #0] => #! 

DIV.[#0,g 2] => #0 
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DIV'[gI' #i ] => gl 

ADD. [g I ..... gn ] => #_I if n#2 

etc. 

Equal 

EQUAL.[gl,g 2] => #T 

if gl=g2 (intensionally) 

EQUAL.[[gll ..... glm ]' 

[g21 ..... g2n ]] 

=> #F 

Transpose 

TRANS. [ gl ' 

[gil ..... gin ] ' 

gm ] 

=> [[l'gl ..... gil' "" " ' l'gm]' 

[2"gl ..... gi2 ..... 2"gm]' 

[n'gl ..... gin ..... n .gm ] ] 

Constant 

#x .g => #x 

Construction 

[fl'f2 ..... f n ]'g 

=> [ fl'g' f2 "g .... ' fn "g] 

Conditional 

(p->fl;f2) .g 

=> fl.g if p.g => #T 

f2.g if p.g --> #F 

(p->fl;f2) .g otherwise 

Apply-to-all 

(*f) .[] => [] 

(*f) .[gl,g2 ..... gn ] 

=> [f.gl,f.g2 ..... f.gn ] 

if m#n 
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