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Abstract 

Recent proposals for nondeterministic facilities in 

high-level dataflow programming systems have 

stopped short of giving details of low-level 

implementation. The underlying machine is assumed 

to provide basic nondeterministic operations which 

lead to the required high-level effects. This paper 

gives details of a practical implementation of one 

such high-level language, Id {3}, for a specific 

dataflow computer, the Manchester prototype {11}. 

It adds to previous work by the authors {7, 8} in 

which implementations of Communicating Processes 

{12} and Distributed Processes {5} were proposed. 

Id is based on an unravelling dataflow interpreter 

which closely resembles the labelled token scheme 

used in the Manchester prototype. Thus translation 

of Id programs into suitable machine code is 

relatively straightforward. However, instead of 

requiring complex nondeterministic operators to 

support resource managers as in {I}, the existing 

simple matching functions of the Manchester system 

{8} prove to be adequate. 

For the non-specialist reader, the Manchester 

labelled dataflow schema and the resource 

management constructs of Id are outlined before 

details of implementation are given. 
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I Introduction 

This paper addresses the development of 

nondeterministic software for dataflow computers, 

using the prototype system being built at 

Manchester University {11} as a target for code 

generation. To date, the few attempts to exploit 

the potential of dataflow machines for 

nondeterministic programs have stopped short of 

giving implementation details {2, 3, 9, 13}. In 

previous papers {7, 8}, the authors have introduced 

practical low-level nondeterministic dataflow 

primitives and shown them to be applicable to the 

implementation of Communicating Processes {12} and 

Distributed Processes {5}. However, the efficiency 

of such implementations is questionable, mainly 

because the languages retain features of the 

sequential multiprocessors they were designed for. 

In this paper, we report on an implementation of 

resource managers in the high-level notation of the 

language Id {I, 3}. This language has been 

developed from consideration of coloured 

(unravelled) dataflow graphs, and is eminently 

suitable for the Manchester machine. The 

implementation model confirms the natural mapping 

that was expected (compared with Distributed 

Processes and Communicating Processes), and shows 

that the implementation can be achieved without the 

specialized nondeterministic machine-level 

operators that were originally proposed {3}. 

The two following sections outline the Manchester 

machine-level notation and resource managers in Id, 

respectively. The major section describes the 

implementation model and identifies critical areas 

for performance. 
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2 Machine Level Dataflow Graphs 

A machine-level dataflow algorithm is expressed as 
a flowgraph. In flowgraphs supported by the 
Manchester system, nodes implement functions of one 
or two arguments, and arcs convey data tokens 
between nodes. In addition to the static arcs 
determined by a flowgraph, dynamic arcs may be 
created by the run-time action of some nodes (see 
section 2.4). 

In reentrant flowgraphs, such as loops and user- 
defined functions, potential clashes between 
unrelated token sets must be prevented. Tokens 
could be physically separated, either by preventing 
a node from firing while any of its output arcs 
holds a token, or by replicating the reentered 
subgraph each time it is used. However, the 
Manchester dataflow system uses logical separation 
implemented by labelling tokens (see section 2.1). 
The labelling scheme allows many tokens to wait for 
their partners at the same two-input node without 
being confused. Alternatively, it can be viewed as 
creating several logical instances of the node, 
each with a unique label, which effectively unfolds 
the flowgraph {I, 3}. This guarantees maximum 
asynchronism in execution {I}, and dispenses with 
actual copying of the flowgraph. 

2.1 Token Labellin~ 

Labelling of tokens thus allows coexistence of 
independent instances of a flowgraph in the sense 
of the Id unravelling interpreter. A label is 
attached to each token, and only tokens with 
identical labels can be used as arguments for each 
firing of a node. As currently implemented, the 
label comprises three independent fields whose 
names reflect their most common usage. An 
activation name separates tokens which belong to 
distinct activations of a given flowgraph. An 
iteration level separates tokens which belong to 
distinct cycles of a loop in a flowgraph. It has 
the same value for all tokens generated in a 
particular cycle. An index separates the scalar " 
components of a linear structure. The activation 
name and the iteration level together determine the 
colour of a token. 

2.2 Token Matchin~ 

A token that reaches a two-input node requests a 
match, specifying an {s-function, f-function} pair 
known as the matching f~nction. If an identically 
labelled partner is waiting at the node, the match 
succeeds and the s-function specified by the 
incoming token is executed. If no partner is 
available, the match fails, and the f-function 
specified by the incoming token is executed. The 
full set of matching functions supported by the 
Manchester dataflow system is described elsewhere 
{8}. The following are all that are used in this 
paper: 

(a) {extract. wait~ (EW) is the default two-input 
matching function. If the match fails, the 
incoming token waits at the node until a 
partner arrives. If the match succeeds, the 
node fires and both input tokens are consumed. 

(b) {increment. defer} (ID) is used to count 
passing tokens. If the match fails, the counter 
has not yet been preset, and so the incoming 
token is temporarily withdrawn, to try again 
later. If the match succeeds, the node fires 
and the incoming token is consumed, while the 
partner has its value incremented and then 
remains waiting at the node. 

(c) {preserve. ~enerate} (PG) is used in 
conjunction with a branch on empty node (see 
section 2.4), to isolate the first token to 
traverse an arc. For the first token the match 
fails, a value of type empty is substituted for 
the missing partner, the node fires and the 
incoming token is consumed, meanwhile a copy of 
it is generated at the partner input. For each 
subsequent token the match succeeds, the node 
fires and the incoming token is consumed, while 
the generated partner remains waiting at the 
node. 

2.3 Representation of Data 

A token carries a typed value in a data field, and 
has control fields which define its index, co]our, 
destination address and matching function. A token 
represented as: 

<T:V> ix:I col:C addr:N.P mf:F 
carries a value V of type T, has index I and colour 
~, is destined to go to input port P at node N,. and 
specifies matching function F. The colour of a 
token may be written as an.il, to make explicit its 
activation name a__nn and iteration level i__~l. 

A linear structure is similar to an Id stream {3}, 
and has its component tokens represented within 
curly brackets, e.g. 

{<Tk:Sk> ix:k col:C addr:N.P mf:F I k:1...}. 

In this paper, valid data types ~ are the control 
types introduced above (col, addr, mf), the 
combinations [addr, mf] and [col, addr, mf], the 
nonnegative integers (ord) and empty. The type of 
user-defined data is not specified, but may be 
thought of as (e.g.) integer. We will omit default 
field values wherever this simplifies the text and 
diagrams. 

2.4 Representation of Code 

Code is represented as flowgraphs in which nodes 
are specified by the form of their inputs and 
outputs. There are two types of node; machine-level 
nodes and macro nodes. The machine-level nodes are 
specified below. Subscripts on inputs and outputs 
stand for lefthand and £ighthand arcs, as dra~ in 
the later flowgraph figures. 
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combine col. addr. mf - specifies a dynamic arc for 
exit from a shared node (a dynamic arc is set up at 
run-time, rather than compile-time): 

input = <addr:A mf:F> col:C 
output = <col:C addr:A mf:F> col:C 

seDarate structure - isolates the first component 
of a structure: 

input = {<Si> ix:i I i:I...} 
output I = <$I> ix:O 
output r = {<Si+1> ix:i Z i:I...} 

set col - sets the colour of its data input to a 
given control value: 

data input = <val> col:C 
control input = <col:C'> col:C 
output = <val> col:C' 

set ix, s~t il - similar to set col 

set col. addr. mf - sends its data input along a 
given coloured dynamic arc: 

data input = <val> col:C 
control input = <col:C' addr:A' mf:F'> col:C 
output = <val> col:C' addr:A' mf:F' 

proliferate - creates a bounded linear structure: 
data input = <val> ix:O 
control input = <ord:N> ix:O 
output = {<val> ix:i I i:1..N} 

synchronize - forces synchronization of tokens on a 
pair of arcs: 

input I = <val1> 
input r = <val2> 
output I = <val1> 
output r = <val2> 

sway ix. il - swaps the index and iteration level 
of its input token: 

input = <val> ix:i col:a.J 
output = <val> ix:j col:a.i 

branch on empty - routes its data input according 
to the type of its control input: 

data input = <val> 
control input = <x> 
output I : if (x : ~mDtv) then <val> 
output r : if (x <> emPtY) then <val> 

In the flowgraph figures, data input arcs are 
directed to the top of the nodes, control input 
arcs to one side. Output arcs always emerge from 
the bottom. Machine-level nodes are drawn as solid 
boxes, macro nodes as double-walled boxes. Dotted 
macro node boxes represent expansions which are not 
defined in the text, either because they are 
trivial, or because they are beyond the scope of 
this paper. Dashed macro node boxes represent 
shared nodes which are expanded once only. Where 
arcs are referred to by name in the text, the name 
is written in a simple dotted box in the figure. 
Global inputs to" each flowgraph are drawn O, and 
literal-valued inputs to all nodes are drawn T. 

3 High Level Resource Managers i__n_nI__~ {3, 5} 

A manager is a means of enforcing an access policy, 
to ensure that the state of a resource shared by 
independent users follows a valid history. Such an 
access policy is expressed in Id by a definition, 
from which managers can be created and associated 
with particular resources. For instance, the 
definition 

FileMan := manager (infile) 

(...) (3.1) 

might specify a general file managing policy, from 
which the statements 

aMan := create (FileMan, a); 
bMan := create (FileMan, b) (3.2) 

create two uniquely named file managers, aMan and 
bMan, where the formal parameter infile of the 
definition is initialized with file values a and b, 
respectively. 

A definition specifies named ports, via which 
managers and users interact, e.g. 

FileMan := manager (infile) 
(entry read: RREQUEST; 

write: WREQUEST 
do ... 
exit read: RRESULT; 

write: WRESULT) (3.3) 

A user accesses a port in a manager via a use 
construct, in a statement such as 

wresult := us___ee (aMan.write, wrequest) (3.4) 

The parameter aMan.write identifies the manager and 
port being accessed, wrequest brings the required 
input data, and wresult is the destination for the 
output. The use construct merely transfers the 
value wrequest and a reference to wresult to the 
entry of port aMan.write. 

Each entry in a manager has an associated stream, 
where requests are buffered as they are received. 
In a manager created from definition (3.3), for 
example, stream RREQUEST will contain all requests 
received at entry read, while WREQUEST will contain 
those received at entry write. The manager produces 
streams RRESULT and WRESULT, whose components are 
in strict one-to-one correspondence with those of 
RREQUEST and WREQUEST. An implicit communication 
between the entry and exit of each port provides 
for RRESULT i and WRESULTj to be directed to the ~ 
constructs which originated WREQUEST i and 
WREQUESTj, respectively. 

Parameters llke infile can be eliminated from a 
manager definition by a compile-time transformation 
documented in the Id report {3}. Such a 
transformation is not specifically dealt with here, 
but the following manager definition is considered 

to be the general case: 

m~def  : : B ~ 1 ~ ¢ . ~  
(entry name1: X1; ... namen: xn; 
do,.. 
~Zj~_ name1: RI; ... namen: R n) 

(3.5) 
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4]J~ktJ~ofld Resource Managers 

To summarise the previous section, managers may be 
created and used (and also deleted, although we 
shall not consider deletion in this paper) using 
high-level Id constructs. It is intended that a 
manager definition be expanded just once, and that 
all flowgraphs should share this definition without 
their tokens being confused. This section shows how 
token labels can be used to achieve this. 

Implementations of resource managers in the Id base 
language and the Manchester dataflow machine differ 
in two major ways. Firstly, Id postulates complex 
machine-level nodes which implement the base 
language operators, whereas the same effect is 
achieved by macro nodes in the less specialized 
Manchester system. Secondly, the techniques for 
generating unique labels vary. Id forms a new 
colour by concatenating the unique colour and 
address of the calling construct and using this as 
an activation name. This recursive technique is 
appealing, but it is infeasible on a machine with 
fixed label length. In the model presented below, 
consecutive activation names are generated by a 
"counter", local to the manager definition, which 
increments each time a create instruction is 
executed for this manager. The colour assigned to 
tokens referring to a particular instance of the 
manager is derived from the value of the counter at 
the time that instance was created. In both 
implementations, the actions involved in executing 
the base operators are the same. 

create involves: (i) sending a request from the 
calling context to the manager definition, asking 
for an instance of the manager to be created; (ii) 
creation by the definition of an instance of the 
manager, by reserving a colour for that instance; 
and (iii) informing all users of the instance what 
the colour is, and the address of each manager 
entry to which the users can send data when they 
use the instance. 

use involves: (i) sending data from the calling 
context to the appropriate manager entry address 
with the colour of the required instance; 

Y 

I .... [ .... I I 
~°°°.o ,°..~ ~,.,....°o..q 

Y 

i.,.,L,,o 
i x  n ~ 
a.o°l.,,-I 

i RE TI ~ ~ RET n i : :  body : :  

i i 
j ,  J, 

Fig.1 Manager definition flowgraph 

(ii) eventual servicing of this request by the 
manager, in turn with all other requests to this 
instance; and (iii) returning any output from the 
resource to the correct calling context. 

In the Manchester implementation, these actions 
refer to the flowgraph in Fig.l, which corresponds 
to the manager definition (3.5). This definition is 
expanded just once, and is drawn as a dashed box in 
all flowgraphs which share it. With the exception 
of Make, the internal macro nodes are directly 
associated with the high-level constructs they 
implement. Make is the special macro node which is 
used to produce the unique coloured reference to 
the new manager. Its expansion is shown in Fig.2. 

<col : O. O> 

l 
II 

I 
< c o l  : 0 . 0 >  

I 
<addr:Entr rl mf:PG> 

Set Up 

<col:ma.0> 

<col:oc addr:uMan> 
mf: PG 

[ 

II 
I 

< c o l  : o c  a d d r  : uMan> 
mf:ID 

<col:oc addr:uMan> 
col : ma. 0 

<addr : Ent_ry n mf : PG> 

<ord: I> <ord: <ord:n> 

<addr : Entry I mf : PG> 1 { <col : oc addr : uMan> 
ix:1 col:ma.0 [ ix:k col:ma.0 k:1..n} 

| 

< addr : Entry n mf : PG > 
ix:n col :ma.0 

{ <addr : Entry k m f : PG > 
ix:k col:ma.0 I k:1..n} 

I 
Icombine col, addr, mf I 

I 
{<col:ma.0 addr:Entry k mf:PG> 

ix:k col:ma.0 I k:1..n} 

I 
i ! a 

{<col:ma.0 addr:Entry k mf:PG> 
ix:k col:oc addr:uMan I k:1..n} 

Fig.2 The Hake macro node 
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The description of input and output to and from 
Make is as follows 

input : <col:oc addr:man> col:O mf:PG 
output = {<col:ma.O addr:Entry k mf:PG> 

ix:k col:oc addr:man I k:1..n} 

(4.1) 

The input is the colour and address of the node in 
the user flowgraph which is to receive the result 
of the create operation. The output is a structure 
which gives the colour and address of each entry in 
the newly created manager. These values are formed 
from the unique colour generated when the construct 
is executed, together with the static addresses of 
the entries in the definition. 

The input passes through a Set Up macro node which 
merely initializes the colour generator the first 
time it is reached (see Appendix). The colour 
generator is a set col node accessed with 
{increment, defer} matching function. This 
guarantees that no token clashes will occur there, 
regardless of the rate of access to the macro node, 
and that no two such accesses will produce the same 
result. After a unique colour ma.O has been 
produced for the new manager, the output is 
straightforwardly produced. 

? 
<col:0 addr:Make mf:PG> col:oc <addr:uMan> 

I T 
II II 

i ! 
{<col:ma.O addr:Entry k mf:PG> 

ix:k col:oc addr:uMan I k:1..n} 

p..o...L..°.q 
" uMan 

Fig.3 The manager owner flowgraph 

4.1 Creation o__~f g Manager 

Recall that a manager is created from definition 
(3.5) by a statement of the form 

uMan := create (mandef) (4.2) 

The create construct is implemented by a Create 
macro in the user flowgraph, as shown in Fig.3. It 
is supplied with the access address and colour 
(zero) of the Make macro node in the appropriate 
mandef, and returns the output of Make as the value 
of the "variable" uMan. 

The Create macro node, expanded in Fig.4, is 
specified as 

input I = <col:O addr:Make mf:PG> col:oc 
input r = <addr:uMan> col:oc 
output = {<col:ma.O addr:Entry k mf:PG> 

ix:k col:oe addr:uMan I k:1..n} 

(4.3) 

The values of both inputs to this macro node are 
known at compile time, and its output is the same 
as that of Make. 

<col:0 addr:Make mf:PG> 
col :oc 

I 
synchronize 

T 
<addr:uMan> 

col:oc 

I 
I 

I 
<addr :uMan> c o l : o c  

I 
Icolbine ool,  addr, mf I 

I 
<col:oc addr:uMan> col:oc 

I 
co ,  ddr, of I 

i 
! 
i 

<col:oc addr:uMan> 
col:0 addr:~ke mf:PG 

I 

ManDef 

! 

{<col:ma.0 addr:~a~try k mf:PG> 
ix:k col:oc addr:uMan I k:1..n} 

Fig.4 The Cr~te macro node 
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4.2 Us___ge ofg Manager Instance 

A user accesses a port in a manager by means of a 
statement such as 

outdata :: use (uMan.nameJ, indata) (4.4) 

Expression uMan.nameJ is equivalent to uMan[J]; 
i.e. the component in structure uMan with index J. 
The argument indata is the input required from the 
user by the manager. 

The use construct is implemented in the user 
flowgraph by a Use macro node, which replaces the U 
and U -I base language operators of Id {3}, as shown 
in Fig.5. It accepts the required input data, 
together with the colour ue and address arg of the 
manager entry being accessed, and eventually yields 
the result of the activation. 

4.3 Manager Entry and Exit 

The interaction between a Use macro node and a port 
nameJ in a manager occurs via the pair of 
corresponding EntryJ and ExitJ macro nodes shown 
earlier in Fig.1. Each input to EntryJ is used to 
retrieve the corresponding argument structure which 
is broken down into its two components; i.e. return 
information (colours and addresses) and input data. 
These are placed in corresponding positions in two 
separate structures, RET3 and X3, respectively, 
which are built during the lifetime of the manager. 
Each related use contributes an additional 
component to each structure. The body of the 
manager processes the data input structure, xJ, and 
eventually produces a result structure RJ. ExitJ 
directs each component of RJ to the appropriate 
node in the user flowgraph, using the information 
supplied by the corresponding component of RETJ. 

Y Y 
<col:ma.0 addr:EntryJ mf:PG> <indata> 

col :uc col :uc 

i I 
ii .se 

i 
<res> col:uc 

........ k.....,.., 

[outgat ! 

Fig.5 The manager user graph 

Use is specified as 

input I : <col:ma.0 addr:EntryJ mf:PG> col:uc 
input r = <indata> col:uc 
output = <res> col:uc addr:outdata 

(4.5) 

Fig.6 shows the expansion of this macro node. The 
Store macro node {4} saves a structure containing 
the input data and the 'address r of the set ix 
node. The colour and address of the node where the 
structure is saved are passed to the appropriate 
entry in the manager. The result returned by the 
manager to the set ix node has an index which is 
spurious to the user, and this is cleared before 

exiting. 

Y 
<indata> col:uc <addr:r> 

I T 
I I 

I I 
<indata> c o l ' u e  <addr : r>  eo l : uc  

I 
I combine col ,  addr, 

I 
<col:uc addr:r> co].:uc 

I 
U  to,e II 

I 
<col:uc addr:arg> col:uc 

<col:ma.0 addr :F .n t ryJ  mf:PG> 
col : uc 

I [set, eo l ,  adde, mf I 
! 

<col:uc addr:arg> col:ma.0 addr:EntryJ mf:PG 

! 

11 II ,,ManDef,, 
*4...t..-M 

I 
I | 

<res> ix:? col:uc addr:r 

<ord:0> I 

| 

<res> col:uc 

Fig.6 The Use macro node 
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The nondeterministic Entry macro (Fig.7) is 
specified as 

input : {<argk> col:ma.O mf:PG I k:1...} 
output I = {<ool:UCk addr:rk> 

ix:k eol:ma.O I k:1...} 
output r = {<yk > ix:k col:ma.O I k:1...} 

(4.6) 

All inputs to an Entry have the same colour and 
must be separated before two-input nodes can be 
used without risk of a token clash. Entry creates a 
sequence from the requests it receives by setting 
their iteration levels to unique values. This is 
done at the set il node, which is initialized by 
Set Up (see Appendix) and safely accessed with 
{increment, defer} matching function. 

Once the requests are separated in this way, a 
Fetch macro {4} can be used to yield a sequence of 
argument structures. The first separate structure 
node yields a sequence of input tokens, which is 
converted into structure X, and a remainder 
structure. This is also separated, yielding a 
sequence of return colours and addresses, which is 
converted into structure RET. 

The Exit macro simply returns the appropriate 
results. It is shown in Fig.8, and is specified as 

input I = {<col:uc k addr:rk> 
ix:k col:ma.O I k:1...} 

input r = {<Rk> ix:k col:ma.O I k:1...} 
output = {<Rk> ix:k col:uc k addr:r k I k:1...} 

(4.7) 

V 
{ <col : uc k add r : argk> 

<ord:1> col:ma.0 mf:PG I k:1...} 

T I 
I ! 

<ord :k> {<col :uc k addr :argk> 
col:ma.0 col:ma.0 mf:ID I k:1...} 

{<col:uc k addr:argk> col:ma.k I k:1...} 

~i Fetch ~ 

{{<yk >, <ool:uc k addr:rk>} col:ma.k I k:1...} 

I 
I separate structure I 

I 
{{<col:uc k addr:rk>} 

col:ma.k I k:1...} 

I 
col:ma.k I k:1...} ~ separate strueture, {<yk > 

I l 
{<col:uc k addr:rk> 
col:ma.k I k:1...} 

I 
I 

I 
{<co l :uc  k a d d r : r k >  

i x : k  ool :ma.O I k : l . . . }  

I 
{<yk > ix:k col:ma.0 I k:1...} | 

r . . . L - !  . . . . . .  
x ~ ~RET~ 

Fig.7 The Entry macro node 

V 
{<col:uc k addr:r k > {<Rk> ix:k col:ma.O 

ix:k col:ma.O I k:1...} I k:1...} 

I set , , 

{<Rk> ix:k col:uc k addr:r k 

i 

Fig.8 The Exit macro node 

I k:1...} 

5 Conclusions 

Id is a suitable high-level nondeterministic 
language for dataflow machines because it is based 
on parallel data driven semantics. Translation of 
programs is relatively straightforward, and the 
resultant object code makes good use of the 
parallel hardware. On the other hand, the Id 
notation is at a lower level than that of 
Communicating Processes {9}, and it involves the 
programmer in more tedious detail than may be 
necessary. This suggests that Id might be upgraded 
usefully, as long as this could be achieved without 
damaging the underlying data driven nature. 

Experiments to evaluate the performance of this and 
earlier implementation models are now being carried 
on the Manchester prototype dataflow system 
emulator. However, the major test of these ideas 
will come when the hardware for the system is 
completed, and a pilot compiler has been written. 

For the present, this work demonstrates that a 
dataflow system can accommodate both deterministic 
and nondetermlnistic computation in much the same 
way as a conventional machine, without resorting to 
specialized hardware and with the attendant 
benefits of parallel data driven execution. 
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APPendix 

A.I The Set gp macro 

Subgraphs are normally initialized by means of a 
tri~er, which is generated by the system at the 
outermost flowgraph level and then propagated to 
all inner subgraphs. The Set Up macro (Fig.9) is an 
alternative approach, which initializes subgraphs 
on demand. Arguments arg~ are directed with 
{preserve, generate} matchin~ function to a branch 
on empty node whose control input port is 
unconnected. The subscripts refer to the arbitrary 
time order in which the arguments reach the branch 
node. By the {preserve, generate} matching action 
described in section 2.2, the first token is 
directed to the left output of the branch node to 
generate the initial value val, whilst subsequent 
tokens are directed to the right. 

<val> <argk> 

Y V 
<val> <argk> mf:PG I k:1... 

I IhToh on 
<arg I > 

I <argk> k:2... 

k:1... 

Fig.9 The Set Up macro node 
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