
Resource Management in Dataflow

A.J.Catto

Departamento de Computacao e Estatistica
Universidade Federal de Sao Carlos

Caixa Postal 384
13560 Sao Carlos SP

BRASIL

J.R.Gurd

Department of Computer Science
University of Manchester

Oxford Road
Manchester M13 9PL

ENGLAND

Abstract

Recent proposals for nondeterministic facilities in

high-level dataflow programming systems have

stopped short of giving details of low-level

implementation. The underlying machine is assumed

to provide basic nondeterministic operations which

lead to the required high-level effects. This paper

gives details of a practical implementation of one

such high-level language, Id {3}, for a specific

dataflow computer, the Manchester prototype {11}.

It adds to previous work by the authors {7, 8} in

which implementations of Communicating Processes

{12} and Distributed Processes {5} were proposed.

Id is based on an unravelling dataflow interpreter

which closely resembles the labelled token scheme

used in the Manchester prototype. Thus translation

of Id programs into suitable machine code is

relatively straightforward. However, instead of

requiring complex nondeterministic operators to

support resource managers as in {I}, the existing

simple matching functions of the Manchester system

{8} prove to be adequate.

For the non-specialist reader, the Manchester

labelled dataflow schema and the resource

management constructs of Id are outlined before

details of implementation are given.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981ACMO-89791-060-5/81-10/O077 $00.75

I Introduction

This paper addresses the development of

nondeterministic software for dataflow computers,

using the prototype system being built at

Manchester University {11} as a target for code

generation. To date, the few attempts to exploit

the potential of dataflow machines for

nondeterministic programs have stopped short of

giving implementation details {2, 3, 9, 13}. In

previous papers {7, 8}, the authors have introduced

practical low-level nondeterministic dataflow

primitives and shown them to be applicable to the

implementation of Communicating Processes {12} and

Distributed Processes {5}. However, the efficiency

of such implementations is questionable, mainly

because the languages retain features of the

sequential multiprocessors they were designed for.

In this paper, we report on an implementation of

resource managers in the high-level notation of the

language Id {I, 3}. This language has been

developed from consideration of coloured

(unravelled) dataflow graphs, and is eminently

suitable for the Manchester machine. The

implementation model confirms the natural mapping

that was expected (compared with Distributed

Processes and Communicating Processes), and shows

that the implementation can be achieved without the

specialized nondeterministic machine-level

operators that were originally proposed {3}.

The two following sections outline the Manchester

machine-level notation and resource managers in Id,

respectively. The major section describes the

implementation model and identifies critical areas

for performance.

77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800223.806765&domain=pdf&date_stamp=1981-10-18

2 Machine Level Dataflow Graphs

A machine-level dataflow algorithm is expressed as
a flowgraph. In flowgraphs supported by the
Manchester system, nodes implement functions of one
or two arguments, and arcs convey data tokens
between nodes. In addition to the static arcs
determined by a flowgraph, dynamic arcs may be
created by the run-time action of some nodes (see
section 2.4).

In reentrant flowgraphs, such as loops and user-
defined functions, potential clashes between
unrelated token sets must be prevented. Tokens
could be physically separated, either by preventing
a node from firing while any of its output arcs
holds a token, or by replicating the reentered
subgraph each time it is used. However, the
Manchester dataflow system uses logical separation
implemented by labelling tokens (see section 2.1).
The labelling scheme allows many tokens to wait for
their partners at the same two-input node without
being confused. Alternatively, it can be viewed as
creating several logical instances of the node,
each with a unique label, which effectively unfolds
the flowgraph {I, 3}. This guarantees maximum
asynchronism in execution {I}, and dispenses with
actual copying of the flowgraph.

2.1 Token Labellin~

Labelling of tokens thus allows coexistence of
independent instances of a flowgraph in the sense
of the Id unravelling interpreter. A label is
attached to each token, and only tokens with
identical labels can be used as arguments for each
firing of a node. As currently implemented, the
label comprises three independent fields whose
names reflect their most common usage. An
activation name separates tokens which belong to
distinct activations of a given flowgraph. An
iteration level separates tokens which belong to
distinct cycles of a loop in a flowgraph. It has
the same value for all tokens generated in a
particular cycle. An index separates the scalar "
components of a linear structure. The activation
name and the iteration level together determine the
colour of a token.

2.2 Token Matchin~

A token that reaches a two-input node requests a
match, specifying an {s-function, f-function} pair
known as the matching f~nction. If an identically
labelled partner is waiting at the node, the match
succeeds and the s-function specified by the
incoming token is executed. If no partner is
available, the match fails, and the f-function
specified by the incoming token is executed. The
full set of matching functions supported by the
Manchester dataflow system is described elsewhere
{8}. The following are all that are used in this
paper:

(a) {extract. wait~ (EW) is the default two-input
matching function. If the match fails, the
incoming token waits at the node until a
partner arrives. If the match succeeds, the
node fires and both input tokens are consumed.

(b) {increment. defer} (ID) is used to count
passing tokens. If the match fails, the counter
has not yet been preset, and so the incoming
token is temporarily withdrawn, to try again
later. If the match succeeds, the node fires
and the incoming token is consumed, while the
partner has its value incremented and then
remains waiting at the node.

(c) {preserve. ~enerate} (PG) is used in
conjunction with a branch on empty node (see
section 2.4), to isolate the first token to
traverse an arc. For the first token the match
fails, a value of type empty is substituted for
the missing partner, the node fires and the
incoming token is consumed, meanwhile a copy of
it is generated at the partner input. For each
subsequent token the match succeeds, the node
fires and the incoming token is consumed, while
the generated partner remains waiting at the
node.

2.3 Representation of Data

A token carries a typed value in a data field, and
has control fields which define its index, co]our,
destination address and matching function. A token
represented as:

<T:V> ix:I col:C addr:N.P mf:F
carries a value V of type T, has index I and colour
~, is destined to go to input port P at node N,. and
specifies matching function F. The colour of a
token may be written as an.il, to make explicit its
activation name a__nn and iteration level i__~l.

A linear structure is similar to an Id stream {3},
and has its component tokens represented within
curly brackets, e.g.

{<Tk:Sk> ix:k col:C addr:N.P mf:F I k:1...}.

In this paper, valid data types ~ are the control
types introduced above (col, addr, mf), the
combinations [addr, mf] and [col, addr, mf], the
nonnegative integers (ord) and empty. The type of
user-defined data is not specified, but may be
thought of as (e.g.) integer. We will omit default
field values wherever this simplifies the text and
diagrams.

2.4 Representation of Code

Code is represented as flowgraphs in which nodes
are specified by the form of their inputs and
outputs. There are two types of node; machine-level
nodes and macro nodes. The machine-level nodes are
specified below. Subscripts on inputs and outputs
stand for lefthand and £ighthand arcs, as dra~ in
the later flowgraph figures.

78

combine col. addr. mf - specifies a dynamic arc for
exit from a shared node (a dynamic arc is set up at
run-time, rather than compile-time):

input = <addr:A mf:F> col:C
output = <col:C addr:A mf:F> col:C

seDarate structure - isolates the first component
of a structure:

input = {<Si> ix:i I i:I...}
output I = <$I> ix:O
output r = {<Si+1> ix:i Z i:I...}

set col - sets the colour of its data input to a
given control value:

data input = <val> col:C
control input = <col:C'> col:C
output = <val> col:C'

set ix, s~t il - similar to set col

set col. addr. mf - sends its data input along a
given coloured dynamic arc:

data input = <val> col:C
control input = <col:C' addr:A' mf:F'> col:C
output = <val> col:C' addr:A' mf:F'

proliferate - creates a bounded linear structure:
data input = <val> ix:O
control input = <ord:N> ix:O
output = {<val> ix:i I i:1..N}

synchronize - forces synchronization of tokens on a
pair of arcs:

input I = <val1>
input r = <val2>
output I = <val1>
output r = <val2>

sway ix. il - swaps the index and iteration level
of its input token:

input = <val> ix:i col:a.J
output = <val> ix:j col:a.i

branch on empty - routes its data input according
to the type of its control input:

data input = <val>
control input = <x>
output I : if (x : ~mDtv) then <val>
output r : if (x <> emPtY) then <val>

In the flowgraph figures, data input arcs are
directed to the top of the nodes, control input
arcs to one side. Output arcs always emerge from
the bottom. Machine-level nodes are drawn as solid
boxes, macro nodes as double-walled boxes. Dotted
macro node boxes represent expansions which are not
defined in the text, either because they are
trivial, or because they are beyond the scope of
this paper. Dashed macro node boxes represent
shared nodes which are expanded once only. Where
arcs are referred to by name in the text, the name
is written in a simple dotted box in the figure.
Global inputs to" each flowgraph are drawn O, and
literal-valued inputs to all nodes are drawn T.

3 High Level Resource Managers i__n_nI__~ {3, 5}

A manager is a means of enforcing an access policy,
to ensure that the state of a resource shared by
independent users follows a valid history. Such an
access policy is expressed in Id by a definition,
from which managers can be created and associated
with particular resources. For instance, the
definition

FileMan := manager (infile)

(...) (3.1)

might specify a general file managing policy, from
which the statements

aMan := create (FileMan, a);
bMan := create (FileMan, b) (3.2)

create two uniquely named file managers, aMan and
bMan, where the formal parameter infile of the
definition is initialized with file values a and b,
respectively.

A definition specifies named ports, via which
managers and users interact, e.g.

FileMan := manager (infile)
(entry read: RREQUEST;

write: WREQUEST
do ...
exit read: RRESULT;

write: WRESULT) (3.3)

A user accesses a port in a manager via a use
construct, in a statement such as

wresult := us___ee (aMan.write, wrequest) (3.4)

The parameter aMan.write identifies the manager and
port being accessed, wrequest brings the required
input data, and wresult is the destination for the
output. The use construct merely transfers the
value wrequest and a reference to wresult to the
entry of port aMan.write.

Each entry in a manager has an associated stream,
where requests are buffered as they are received.
In a manager created from definition (3.3), for
example, stream RREQUEST will contain all requests
received at entry read, while WREQUEST will contain
those received at entry write. The manager produces
streams RRESULT and WRESULT, whose components are
in strict one-to-one correspondence with those of
RREQUEST and WREQUEST. An implicit communication
between the entry and exit of each port provides
for RRESULT i and WRESULTj to be directed to the ~
constructs which originated WREQUEST i and
WREQUESTj, respectively.

Parameters llke infile can be eliminated from a
manager definition by a compile-time transformation
documented in the Id report {3}. Such a
transformation is not specifically dealt with here,
but the following manager definition is considered

to be the general case:

m~def : : B ~ 1 ~ ¢ . ~
(entry name1: X1; ... namen: xn;
do,..
~Zj~_ name1: RI; ... namen: R n)

(3.5)

79

4]J~ktJ~ofld Resource Managers

To summarise the previous section, managers may be
created and used (and also deleted, although we
shall not consider deletion in this paper) using
high-level Id constructs. It is intended that a
manager definition be expanded just once, and that
all flowgraphs should share this definition without
their tokens being confused. This section shows how
token labels can be used to achieve this.

Implementations of resource managers in the Id base
language and the Manchester dataflow machine differ
in two major ways. Firstly, Id postulates complex
machine-level nodes which implement the base
language operators, whereas the same effect is
achieved by macro nodes in the less specialized
Manchester system. Secondly, the techniques for
generating unique labels vary. Id forms a new
colour by concatenating the unique colour and
address of the calling construct and using this as
an activation name. This recursive technique is
appealing, but it is infeasible on a machine with
fixed label length. In the model presented below,
consecutive activation names are generated by a
"counter", local to the manager definition, which
increments each time a create instruction is
executed for this manager. The colour assigned to
tokens referring to a particular instance of the
manager is derived from the value of the counter at
the time that instance was created. In both
implementations, the actions involved in executing
the base operators are the same.

create involves: (i) sending a request from the
calling context to the manager definition, asking
for an instance of the manager to be created; (ii)
creation by the definition of an instance of the
manager, by reserving a colour for that instance;
and (iii) informing all users of the instance what
the colour is, and the address of each manager
entry to which the users can send data when they
use the instance.

use involves: (i) sending data from the calling
context to the appropriate manager entry address
with the colour of the required instance;

Y

I [.... I I
~°°°.o ,°..~ ~,.,....°o..q

Y

i.,.,L,,o
i x n ~
a.o°l.,,-I

i RE TI ~ ~ RET n i : : body : :

i i
j , J,

Fig.1 Manager definition flowgraph

(ii) eventual servicing of this request by the
manager, in turn with all other requests to this
instance; and (iii) returning any output from the
resource to the correct calling context.

In the Manchester implementation, these actions
refer to the flowgraph in Fig.l, which corresponds
to the manager definition (3.5). This definition is
expanded just once, and is drawn as a dashed box in
all flowgraphs which share it. With the exception
of Make, the internal macro nodes are directly
associated with the high-level constructs they
implement. Make is the special macro node which is
used to produce the unique coloured reference to
the new manager. Its expansion is shown in Fig.2.

<col : O. O>

l
II

I
< c o l : 0 . 0 >

I
<addr:Entr rl mf:PG>

Set Up

<col:ma.0>

<col:oc addr:uMan>
mf: PG

[

II
I

< c o l : o c a d d r : uMan>
mf:ID

<col:oc addr:uMan>
col : ma. 0

<addr : Ent_ry n mf : PG>

<ord: I> <ord: <ord:n>

<addr : Entry I mf : PG> 1 { <col : oc addr : uMan>
ix:1 col:ma.0 [ix:k col:ma.0 k:1..n}

|

< addr : Entry n mf : PG >
ix:n col :ma.0

{ <addr : Entry k m f : PG >
ix:k col:ma.0 I k:1..n}

I
Icombine col, addr, mf I

I
{<col:ma.0 addr:Entry k mf:PG>

ix:k col:ma.0 I k:1..n}

I
i ! a

{<col:ma.0 addr:Entry k mf:PG>
ix:k col:oc addr:uMan I k:1..n}

Fig.2 The Hake macro node

80

The description of input and output to and from
Make is as follows

input : <col:oc addr:man> col:O mf:PG
output = {<col:ma.O addr:Entry k mf:PG>

ix:k col:oc addr:man I k:1..n}

(4.1)

The input is the colour and address of the node in
the user flowgraph which is to receive the result
of the create operation. The output is a structure
which gives the colour and address of each entry in
the newly created manager. These values are formed
from the unique colour generated when the construct
is executed, together with the static addresses of
the entries in the definition.

The input passes through a Set Up macro node which
merely initializes the colour generator the first
time it is reached (see Appendix). The colour
generator is a set col node accessed with
{increment, defer} matching function. This
guarantees that no token clashes will occur there,
regardless of the rate of access to the macro node,
and that no two such accesses will produce the same
result. After a unique colour ma.O has been
produced for the new manager, the output is
straightforwardly produced.

?
<col:0 addr:Make mf:PG> col:oc <addr:uMan>

I T
II II

i !
{<col:ma.O addr:Entry k mf:PG>

ix:k col:oc addr:uMan I k:1..n}

p..o...L..°.q
" uMan

Fig.3 The manager owner flowgraph

4.1 Creation o__~f g Manager

Recall that a manager is created from definition
(3.5) by a statement of the form

uMan := create (mandef) (4.2)

The create construct is implemented by a Create
macro in the user flowgraph, as shown in Fig.3. It
is supplied with the access address and colour
(zero) of the Make macro node in the appropriate
mandef, and returns the output of Make as the value
of the "variable" uMan.

The Create macro node, expanded in Fig.4, is
specified as

input I = <col:O addr:Make mf:PG> col:oc
input r = <addr:uMan> col:oc
output = {<col:ma.O addr:Entry k mf:PG>

ix:k col:oe addr:uMan I k:1..n}

(4.3)

The values of both inputs to this macro node are
known at compile time, and its output is the same
as that of Make.

<col:0 addr:Make mf:PG>
col :oc

I
synchronize

T
<addr:uMan>

col:oc

I
I

I
<addr :uMan> c o l : o c

I
Icolbine ool, addr, mf I

I
<col:oc addr:uMan> col:oc

I
co , ddr, of I

i
!
i

<col:oc addr:uMan>
col:0 addr:~ke mf:PG

I

ManDef

!

{<col:ma.0 addr:~a~try k mf:PG>
ix:k col:oc addr:uMan I k:1..n}

Fig.4 The Cr~te macro node

81

4.2 Us___ge ofg Manager Instance

A user accesses a port in a manager by means of a
statement such as

outdata :: use (uMan.nameJ, indata) (4.4)

Expression uMan.nameJ is equivalent to uMan[J];
i.e. the component in structure uMan with index J.
The argument indata is the input required from the
user by the manager.

The use construct is implemented in the user
flowgraph by a Use macro node, which replaces the U
and U -I base language operators of Id {3}, as shown
in Fig.5. It accepts the required input data,
together with the colour ue and address arg of the
manager entry being accessed, and eventually yields
the result of the activation.

4.3 Manager Entry and Exit

The interaction between a Use macro node and a port
nameJ in a manager occurs via the pair of
corresponding EntryJ and ExitJ macro nodes shown
earlier in Fig.1. Each input to EntryJ is used to
retrieve the corresponding argument structure which
is broken down into its two components; i.e. return
information (colours and addresses) and input data.
These are placed in corresponding positions in two
separate structures, RET3 and X3, respectively,
which are built during the lifetime of the manager.
Each related use contributes an additional
component to each structure. The body of the
manager processes the data input structure, xJ, and
eventually produces a result structure RJ. ExitJ
directs each component of RJ to the appropriate
node in the user flowgraph, using the information
supplied by the corresponding component of RETJ.

Y Y
<col:ma.0 addr:EntryJ mf:PG> <indata>

col :uc col :uc

i I
ii .se

i
<res> col:uc

........ k.....,..,

[outgat !

Fig.5 The manager user graph

Use is specified as

input I : <col:ma.0 addr:EntryJ mf:PG> col:uc
input r = <indata> col:uc
output = <res> col:uc addr:outdata

(4.5)

Fig.6 shows the expansion of this macro node. The
Store macro node {4} saves a structure containing
the input data and the 'address r of the set ix
node. The colour and address of the node where the
structure is saved are passed to the appropriate
entry in the manager. The result returned by the
manager to the set ix node has an index which is
spurious to the user, and this is cleared before

exiting.

Y
<indata> col:uc <addr:r>

I T
I I

I I
<indata> c o l ' u e <addr : r> eo l : uc

I
I combine col , addr,

I
<col:uc addr:r> co].:uc

I
U to,e II

I
<col:uc addr:arg> col:uc

<col:ma.0 addr :F .n t ryJ mf:PG>
col : uc

I [set, eo l , adde, mf I
!

<col:uc addr:arg> col:ma.0 addr:EntryJ mf:PG

!

11 II ,,ManDef,,
*4...t..-M

I
I |

<res> ix:? col:uc addr:r

<ord:0> I

|

<res> col:uc

Fig.6 The Use macro node

82

The nondeterministic Entry macro (Fig.7) is
specified as

input : {<argk> col:ma.O mf:PG I k:1...}
output I = {<ool:UCk addr:rk>

ix:k eol:ma.O I k:1...}
output r = {<yk > ix:k col:ma.O I k:1...}

(4.6)

All inputs to an Entry have the same colour and
must be separated before two-input nodes can be
used without risk of a token clash. Entry creates a
sequence from the requests it receives by setting
their iteration levels to unique values. This is
done at the set il node, which is initialized by
Set Up (see Appendix) and safely accessed with
{increment, defer} matching function.

Once the requests are separated in this way, a
Fetch macro {4} can be used to yield a sequence of
argument structures. The first separate structure
node yields a sequence of input tokens, which is
converted into structure X, and a remainder
structure. This is also separated, yielding a
sequence of return colours and addresses, which is
converted into structure RET.

The Exit macro simply returns the appropriate
results. It is shown in Fig.8, and is specified as

input I = {<col:uc k addr:rk>
ix:k col:ma.O I k:1...}

input r = {<Rk> ix:k col:ma.O I k:1...}
output = {<Rk> ix:k col:uc k addr:r k I k:1...}

(4.7)

V
{ <col : uc k add r : argk>

<ord:1> col:ma.0 mf:PG I k:1...}

T I
I !

<ord :k> {<col :uc k addr :argk>
col:ma.0 col:ma.0 mf:ID I k:1...}

{<col:uc k addr:argk> col:ma.k I k:1...}

~i Fetch ~

{{<yk >, <ool:uc k addr:rk>} col:ma.k I k:1...}

I
I separate structure I

I
{{<col:uc k addr:rk>}

col:ma.k I k:1...}

I
col:ma.k I k:1...} ~ separate strueture, {<yk >

I l
{<col:uc k addr:rk>
col:ma.k I k:1...}

I
I

I
{<co l :uc k a d d r : r k >

i x : k ool :ma.O I k : l . . . }

I
{<yk > ix:k col:ma.0 I k:1...} |

r . . . L - !
x ~ ~RET~

Fig.7 The Entry macro node

V
{<col:uc k addr:r k > {<Rk> ix:k col:ma.O

ix:k col:ma.O I k:1...} I k:1...}

I set , ,

{<Rk> ix:k col:uc k addr:r k

i

Fig.8 The Exit macro node

I k:1...}

5 Conclusions

Id is a suitable high-level nondeterministic
language for dataflow machines because it is based
on parallel data driven semantics. Translation of
programs is relatively straightforward, and the
resultant object code makes good use of the
parallel hardware. On the other hand, the Id
notation is at a lower level than that of
Communicating Processes {9}, and it involves the
programmer in more tedious detail than may be
necessary. This suggests that Id might be upgraded
usefully, as long as this could be achieved without
damaging the underlying data driven nature.

Experiments to evaluate the performance of this and
earlier implementation models are now being carried
on the Manchester prototype dataflow system
emulator. However, the major test of these ideas
will come when the hardware for the system is
completed, and a pilot compiler has been written.

For the present, this work demonstrates that a
dataflow system can accommodate both deterministic
and nondetermlnistic computation in much the same
way as a conventional machine, without resorting to
specialized hardware and with the attendant
benefits of parallel data driven execution.

83

Acknowledgements

We wish to acknowledge the stimulus provided by our
colleagues in the Dataflow Research Group at
Manchester. We are also indebted to Arvind and
Keshav Pingali of M.I.T. for their helpful comments
on, and sugestions for revision of, the original
manuscript. Arthur Catto was supported by CAPES of
the Ministry of Education of Brazil. Construction
of the prototype dataflow computer is being funded
by the Science and Engineering Research Council of
Great Britain, under its Distributed Computing
Systems Programme.

APPendix

A.I The Set gp macro

Subgraphs are normally initialized by means of a
tri~er, which is generated by the system at the
outermost flowgraph level and then propagated to
all inner subgraphs. The Set Up macro (Fig.9) is an
alternative approach, which initializes subgraphs
on demand. Arguments arg~ are directed with
{preserve, generate} matchin~ function to a branch
on empty node whose control input port is
unconnected. The subscripts refer to the arbitrary
time order in which the arguments reach the branch
node. By the {preserve, generate} matching action
described in section 2.2, the first token is
directed to the left output of the branch node to
generate the initial value val, whilst subsequent
tokens are directed to the right.

<val> <argk>

Y V
<val> <argk> mf:PG I k:1...

I IhToh on
<arg I >

I <argk> k:2...

k:1...

Fig.9 The Set Up macro node

R~ferences

{i} Arvind and K.P.Gostelow, A Computer Capable of
Exchanging Processors for Time, Information
Processing 77, North Holland, 1977, 849-853.

{2} Arvind, K.P.Gostelow and W.PLcuffe,
Indeterminacy, Monitors and Dataflow,
Proceedings of lhe Sixth S~oosi~ On
Operatin~ Systems Princioles, November 1977,

159-169.

{3} Arvind, K.P.Gostelow and W.Plouffe, An
Asynchronous Programming Language and
Computing Machine, Department of Information
and Computer Science, University of
California, Irvine, December 1978.

{4} D.L.Bowen, Implementation of Data Structures
on a Dataflow Computer, Ph.D. Thesis,
University of Manchester, June 1981.

{5} P.Brinch Hansen, Distributed Processes: A
Concurrent Programming Concept, Communications
of the ACM, voi.21, no.11, November 1978,

934-941.

{6}

{7}

A.J.Catto, Nondeterministlc Programming in a
Dataflow Environment, Ph.D. Thesis, University
of Manchester, July 1981.

A.J.Catto and J.R.Gurd, Nondeterministic
Dataflow Graphs, Information Processing 80,
North Holland, 1980, 251-256.

{8} A.J.Catto, J.R.Gurd and C.C.Kirkham,
Nondeterministic Dataflow Progrmming,
Proceedings of the Sixth ACM Europe~nRegional
Conference, March 1981, 435-444.

{9} N.De Francesco et.al., On the Feasibility of
Nondetermlnistic and Interprocess Constructs
in Dataflow Computing Systems, Proceedinggof
the First Euronean Conference on Parallel and
Distributed Processing, February 1979, 93-100.

{10} J.R.Gurd, J.R.W.Glauert and C.C.Kirkham,
Generation of Dataflow Graphical Object Code
for the Lapse Programming Language, Lecture
Notes in C m _ ~ Sclence, voi.111, June 1981,

155-168.

{11} J.R.Gurd and I.Watson, Data Driven System for
High Speed Parallel Computing, C__omouter
Design, vol.9, nos.6 and 7, June and July

1980, 91-100 and 97-106.

{12} C.A.R.Hoare, Communicating Sequential
Processes, ~&~t~L~of the ACM, voi.21,

no.8, August 1978, 666-677.

{13} P.R.Kosinski, A Dataflow Language for
Operating Systems Programming, ACM SigDlan
Notices, vol.8, no.9, September 1973, 89-94.

84

