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ABSTRACT 

We are designing a software development system 
that implements "what you see is what you get" for pro- 
gramming. The system, called OMEGA, allows software to 
be displayed, processed, and modified, using pictorial 
representations to convey the structure and levels of 
abstraction of the program. 

OMEGA takes advantage of the interactive user 
interface to provide syntax-free input,, user selectable 
display format, and incremental semantic analysis. By 
distinguishing input specification from output display, 
and exploiting interaction in semantic analysis, we are 
able to unify the different abstraction mechanisms 
present in traditional programming environments. 

1. I n t r o d u c t i o n  

Ideas  in p r o g r a m m i n g  languages  (da ta  abs t r ac t ion ,  
overloading,  type  pa r ame te r i z a t i on ) ,  u se r  i n t e r f ace s  
(menus ,  point ing devices,  graphics) ,  and d a t a b a s e  sys- 
t e m s  ( re la t ional  da t a  models ,  r ecurs ive  data,  views) are  
converging on the  p rob l em of managing  large sof tware  
s y s t e m  deve lopment .  We have c o m b i n e d  t h e s e  ideas  in 
the  des ign  of a p r o g r a m m i n g  sys t em,  cal led OMEGA, t h a t  
provides  powerful  m e c h a n i s m s  for c o n s t r u c t i n g  and 
manipula t ing  software.  OMEGA will use a h igh-resolu t ion ,  
color  g raph ics  display with a point ing device to  view and 
modify p r o g r a m  s t r u c t u r e s  t h a t  a re  s t o r e d  in a g en e ra l  
pu rpose  da t abase  sys t em.  

To simplify the  c o n s t r u c t i o n  and manipu la t ion  of 
software,  p r o g r a m m e r s  a b s t r a c t  r e c u r r i n g  c o n c e p t s  into 
r eusab le  pa r t s .  Cu r r en t  p r o g r a m m i n g  languages  provide 
buil t in par t s ,  (e.g., s t a t e m e n t s ,  variables,  da t a  types ,  
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modules) and mechanisms fo r creating new constructs 
(by, e.g., writing a procedure, declaring a variable, 
defining an abstract data type, or instantiating a 
module). These mechanisms allow programs to be 
modified easily, since a change to the definition of a part 
affects all its uses. 

Due to the  independent evolution of program struc- 
tures and their different requirements for parsing in 
conventional programming systems, each has its own 
way (syntax and visual representation) for programmers 
to specify abstractions in terms of simpler elements. 
For example, in some languages, a program may define a 
new kind of integer that can be used just as easily (with 
overloaded operators), efficiently (with inline expansion 
of procedures), and cleanly (with implementation details 
hidden) as the native integer type. However, in most 
languages, it is not possible to define a new kind of for 
loop. Another inconsistency is in overloading of 
identifiers. Although it is oftenpossible to overload pro- 
cedure names based on type, it is not possible to over- 
load variable narf~es in the same way. 

OMEGA is an interactive programming environment 
that provides a single form of abstraction that supports 
the language and database facilities of a software 
environment. The user interface to OMEGA provides a 
simple and powerful mechanism for creating, viewing, 
and modifying abstractions. 

In OMEGA, we employ the concept of "what you see 
is what you get", which has been applied in many appli- 
cations. OMEGA users define visual representations of 
their programs' objects and structure. Thus they can 
directly manipulate objects and immediately observe the 
results of those manipulations. This is in contrast to the 
idea of conventional software development, which builds 
a description of the desired computation that is subse- 
quently compiled. 

2. Other Programming S y s t e m s  

The des ign  of OMEGA has  b e e n  inf luenced  by the  
posit ive and nega t ive  a s p e c t s  of exist ing s y s t ems .  Con- 
c e p t s  such  as abs t r ac t ion ,  extensibi l i ty ,  s t rong  typing.  
in tegra t ion ,  and  b a c k g r o u n d  compi la t ion  a re  i m p o r t a n t  
in suppor t ing  the  p r o g r a m m i n g  process .  In con t r a s t ,  we 
believe m a n y  f e a t u r e s  of exist ing s y s t ems ,  such  as syn- 
tax  e r ro rs ,  r e s e r v e d  words,  ident i f ier  scopes ,  and t r e e -  
s t r u c t u r e d  p r o g r a m  r e p r e s e n t a t i o n s ,  a re  usual ly impedi-  
m e n t s  to p r o g r a m m i n g .  
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In tool-based programming environments such as 
UNIXt [Kernighan and Mashey 81]. each tool has its own 
abstractions that are often not compatible with the pro- 
gramming language or other tools. For example, the 
UNIX command interpreter provides string variables and 
the concatenation operator: the C language does not. 
The C language provides subroutines with variables as 
parameters; the UNIX command interpreter does not. 
Yet each of these features would be useful in both 
environments. 

Integrated programming environments such as 
Interlisp [Teitelman and Masinter 81] do provide uniform 
interfaces to programming facilities. This provides the 
user a consistent way to view and modify programs. 
However, it provides only a single way of viewing program 
structures: as LISP lists. The most limiting problem 
with LISP systems, though, is the difficulty of static 
analysis and checking of the abstraction mechanisms 
due to the weak and dynamic types. 

Other systems such as the Cornell Program Syn- 
thesizer [Teitelbaum and Raps 81] and the Incremental 
Programming Environment [Medina-Mora and Feller 81] 
support richer language semantics, but the range of 
semantics is fixed. Both these systems are tree- 
oriented, in that program construction consists of 
adding or changing nodes in a tree. Neither permits 
definition of new types of nodes, only instantiation and 
composition of the builtin ones. Moreover, a tree struc- 
ture is awkward for describing type information and 
module dependencies. 

3. Goals and  Ideas of OMEGA 

OMEGA is intended for large software system pro- 
gramming using strongly typed language semantics and 
executing compiled code. In an interactive system, it iS 
desirable to have errors caught as soon as possible. 
Furthermore, the system should help users produce 
correct software, not simply prevent them from produc- 
ing incorrect software. One of the goals of OMEGA is to 
take advantage of an interactive user interface by having 

• no input syntax 

• multiple output formats 

• interactive semantic analysis 

• multi-threaded program organization 

No input  syn tax  m e a n s  tha t  the  u s e r  is not  r equ i red  
to ca s t  the  p r o g r a m  in one pa r t i cu la r  fo rm for a com-  
piler.  P r o g r a m  c o n s t r u c t i o n  should be a conver sa t ion  
be tween  the  p r o g r a m m e r  and OMEGA. with OMEGA occa-  
sionally asking ques t ions  and making sugges t ions .  
Although the  da t abase  c o m m a n d  language will have a 
syntax,  it  is not  a p r o g r a m m i n g  language.  Thus it does  
not  p lace  cons t r a in t s  on the  s t r u c t u r e  of a p rog ram,  bu t  
only specif ies  t he  kinds of ope ra t i ons  t h a t  may  be done 
to c r e a t e  one. 

Support for multiple output formats means that the 
user may have program structures displayed in a variety 
of ways, depending on the aspect of the program of 
interest at the moment. Programming systems typically 
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use the language as both the input specification and the 
displayed form of the program. As a result, comprom- 
ises must be made between what can be parsed and what 
information should be displayed. Graphical output and 
icons should be exploited to convey the most information 
in an easily assimilated way. At the minimum, output 
formats must support the multiple ways of building pro- 
grams, to allow the user to work without mentally 
translating between points of ~ew. 

Interactive semantic analysis means that a program 
is examined as it is being built. Just as oral communica- 
tion is more effective than written communication, 
because the speaker can adjust to the response of the 
listener, the system should provide feedback to the pro- 
grammer as the program is built. Errors due to incon- 
sistency or ambiguity should be resolved immediately. 
In addition, by displaying the structure of the program 
as it is being built, it may help the programmer see 
higher-level problems that the programming system can- 
not detect. 

Multi-threaded program organization means that 
there may be multiple threads through the program 
representation along which manipulations may take 
place. Conventional programming systems provide only 
one view of a program. The programmer, however, may 
see the program in different ways when it is being built, 
modified, or debugged. For example, a group of state- 
ments might be edited as a unit because they appear in 
the  s a m e  p r o c e d u r e ,  b e c a u s e  t h e y  all r e f e r e n c e  the  
s a m e  variable,  or b ecau s e  t h e y  will be  e x e c u t e d  consecu ,  
t ively even though  they  are  in d i f fe rent  p r o c e d u r e s .  

The r e m a i n d e r  of this  p a p e r  d e s c r i b e s  in m o r e  
detai l  the  in te rac t ive  u se r  in t e r face  to t h e  OMEGA sys- 
t em.  We first  d e s c r i b e  the  f ea tu re s  of the  i n t e r f ace  t h a t  
allow the  u s e r  to c r e a t e  p rog rams .  Then we d i scuss  how 
this  i n t e r f ace  enab les  the  u s e r  to con t ro l  the  display of 
p r o g r a m  cons t ruc t s .  Next we desc r ibe  how this  in te r -  
face i n t e r ac t s  with t he  p r o g r a m  being manipu la ted .  
Finally, we give some indicat ion of how a d a t a b a s e  could 
help s u p p o r t  a b s t r a c t i o n  in this  env i ronment .  

4. Use r  I n t e r f a c e  

The key to lifting the  b u r d e n  of syn tax  ; r o m a  pro-  
g r ammi n g  e n v i r o n m e n t  is to s top  using t ex t  as the  
m e d i u m  of p r o g r a m  cons t ruc t ion .  Conventional  pro-  
g r ammi n g  languages  and s y s t e m s  r e p r e s e n t  p r o g r a m  
c o n s t r u c t s  as te=t, s e q u e n c e s  of c h a r a c t e r s  forming 
words,  usually g ro u p ed  in lines. 

Text h a m p e r s  h u m a n  u n d e r s t an d i n g  b ecause  it is 
not unique visually: "free format" languages allow tokens 
to be placed in many different positions. Text is not an 
optimal internal representation for a program, since 
semantic properties cannot easily be determined 
without converting it to some other form such as a parse 
tree and a symbol table. Text is also not a good 
representation for editing. Logically one wishes to 
operate on program structures (e.g., statements, vari- 
ables, types, etc.); using a text editor one must manipu- 
late some combination of lines, words and characters. 

OMEGA resolves the different needs for program 
representation by allowing the program to be entered, 
displayed, editted, and analyzed in different formats. 
This flexibil i ty is p rovided  by sepa ra t ing  the  p ic tor ia l  
r e p r e s e n t a t i o n  of an ob jec t  f rom the  ob jec t  itself, by 
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pointing rather than typing to identify objects, and by 
using multiple windows to allow pieces of programs to be 
constructed independently. 

• 1 ~ e ~ g m p h s  

Most programming environments do not distinguish 
between an object and tee pictorial representation of 
that object. In OMEGA. program structures are 
displayed consistently as pictogrr, phs. A pictograph is a 
view of the object displayed on the screen. Pictographs 
may be arbitrarily assigned to objects; different picto- 
graphs for the same object may be selected when 
different aspects of the object are to be emphasized. 

A p i c t o g r a p h  cons i s t s  of l e t t e r s  or  icons  a r r a n g e d  in 
a two-d imens iona l  a rea .  The o p t i m a l  d i sp lay  dev ice  is a 
h igh - r e so lu t i on  color  g r a p h i c s  device,  wh ich  would allow 
color,  in tens i ty ,  and  n o n - c h a r a c t e r  g r a p h i c s  to  be  used .  
The p r inc ip l e s  of p i c t o g r a p h s  apply  to  lower reso lu t ion ,  
b l a c k  a n d  white,  or  c h a r a c t e r - o n l y  displays.  However,  
ex is t ing  1920 c h a r a c t e r  CRTs p r o b a b l y  hold  too  l i t t le  
i n f o r m a t i o n  for t h e s e  ideas  to  be  u s e d  on any  s igni f icant  
scale.  

A pictograph is the visual object that a programmer 
sees and manipulates. Shapes and spatial relationships 
help convey structural information. An important 
feature of a pictograph is that parts of it can be used to 
represent slots into which parameters are placed. 

Figure 1 shows an example pictograph for a table 
search. A table search is a two-exit control structure, 
since the desired element may or may not be in the 
table. The slots in the pictograph show places where 
parameters may be inserted for the table to be searched 
(Tabts), the key for the desired entry (Key), and the vari- 
able to point to the object desired (Element). Note that 
Element has a default value; use of the pictograph 
defines an object if no other one is substituted. 

1 
Table  S e a r c h  

Table  

I ] 
Key 

I_ . . . . . . . . . . .  I 

F o u n d ~ / ~  °tFound 

Figure  1. Graph i ca l  Table S e a r c h  P i c t o g r a p h  

Figure 2 shows another pictograph for the same 
control structure. This shows more details of the imple- 
mentation and is in the traditional text form. This 
lower-level view of the control structure reveals aspects 
that are hidden by the higher-level view. In Figure 1, the 
parameters to the pictograph are represented by boxes; 
in Figure 2, by italicized words. 

l a b e l  NotFound, Found 

c a r  e lemen t  : s u b s c r i p t  of Table 

i f  empty(Table) then goto NotFound 
element := first(Table) 
loop 

if element.key = Key then goto Found 
if element = last(Table) then gore NotFound 
element := next(Table,element) 

endloop 

Figure  2. Text- l ike Table S e a r c h  P i c t o g r a p h  

An important collection of pictographs are those 
representing objects in the program. These pictographs 
may appear in the program structure, but also may 
appear in a glosssry. A glossary is simply a list of picto- 
graphs and their meanings. Figure 3 shows a glossary 
that might exist in a program using the table search of 
Figure 2. 

E~ployees 

InlratName 

Ourrent ~nployee 

array of EmployeeRecord, 
table of all employees 
EmployeeName. name of 
employee just read 
Employeelndex, points to 
the record of the current 
employee 

Figure 3. A sample glossary 

4 . 2  I t / s  P o l i t e  T o  P o i n t  

Our alternative to entering text is to display 
relevant pictographs on the screen and have the user 
point at, pick up, and put down the corresponding 
objects using a pointing device (e.g., a mouse, light pen, 
finger, etc.). "Picking up" and "putting down" generally 
mean pointing at something and pressing a key or but- 
ton. The act of picking up an object and putting it down 
someplace may have different effects based on the 
objects and the parts of the pictograph pointed at. Pick- 
ing up the EmployeeRecord pictograph in the glossary in 
Figure 3 and pressing the "what is this?" button would 
cause a description of the type EmployeeRecord to be 
displayed. Picking up the Employees pictograph and 
putting it down in the Table box of Figure 1 makes 
Employees the actual parameter of the Table Search pic- 
tograph. 
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For example, consider the search procedure in Fig- 
ure I. The pictograph in Figure i might be displayed as 
a result of a query asking for search procedures. To use 
the TsbleSearch control structure in the program, we 
first pick up a copy of it by moving the mouse to the pic- 
tograph and pressing the pick up button. We place it at 
the desired point in the statement list we are working on 
by moving the mouse just below the statement we wish it 
to follow and pressing the put down button. This causes 
the entry line of the pictograph to be connected to the 
previous statement. 

The p a r a m e t e r s  are  filled in by picking up the  
ob jec t s  and put t ing  t h e m  down in the  boxes.  The two 
possible  exi ts  arc  now s i tes  for addi t ional  s t a t e m e n t s  to 
be connec t ed .  In this  manne r ,  the  TableSsarch cont ro l  
s t r u c t u r e  is i n s e r t e d  into the  p rogram.  

4.3  What Is In A N a m e ?  

Ident i f iers  in p r o g r a m s  serve  two funct ions:  t hey  
provide a visual tag tha t  the  r e a d e r  uses  to a s soc ia t e  
t o g e t h e r  d i f ferent  i n s t ances  of the  s ame  object ,  and t h e y  
provide a m n e m o n i c  desc r ip t ion  nf some p r o p e r t i e s  of 
the object .  In t rad i t iona l  sys t ems ,  t h e s e  two p u rp o s e s  
run  aga ins t  each  other .  Shor te r ,  m o r e  d i s t inc t  
ident i f ie rs  are  eas ie r  to resolve visually, ye t  longer  
ident i f iers  t h a t  of ten  may  be s imilar  are  m o r e  desc r ip -  
tive. In OMEGA, t h e s e  two funct ions  are  separable .  Pic- 
t og raphs  may  be ass igned  to ob jec t s  a rb i t ra r i ly  to 
improve  the  visual r e p r e s e n t a t i o n  of the  p rogram;  pro-  
p e r t i e s  of t he  ob jec t  a re  ins tan t ly  access ib le  (and may  
be d isp layed on pa r t  of the  s c r e e n  as a glossary)  f rom 
the  da tabase .  

The ability to name  by point ing adds  signif icant  
power  to the  p r o g r a m m i n g  env i ronment .  For  ins tance ,  it 
is no t  n e c e s s a r y  for d isplayed p i c tog raphs  to be unique. 
If it is n e c e s s a r y  to d i sambigua te  a name ,  the  use r  s im- 
ply poin ts  to  the  i n t e n d e d  p i c tog raph  in t he  g lossary  (or 
somewhere else on the screen). Since the system always 
references objects and merely displays pictographs for 
the convenience of the user, the same pictograph may 
be used in different parts of the program without causing 
confusion about what object they refer to. 

In conventional programming sys t ems ,  the case 
often arises that the best name for an instance of a data 
structure is the name of the type of the data structure. 
This must usually be solved by adding a prefix or suffix 
the one or the other of the names. A similar problem 
occurs here; when pointing to a pictograph, it may be 
meaningful to pick up either the actual object or a new 
instance of the object. Such problems are easily avoided 
by allowing several pick up keys. For example, after 
pointing to a variable, the user might choose to pick up 
the variable itself, the variable's type or value, or even a 
new variable of the same type as that variable. 

4.4 Rome Was Not Built In A Day 

One of the advan tages  t ex t -o r i en t ed  i n t e r f ace s  have 
had in the  pas t  is the  suppo r t  of par t i a l ly - formed pro-  
g rams .  Since no examina t ion  of the  p r o g r a m  occurs  
until  the  u se r  r e q u e s t s  it, it is easy  to leave loose ends  to 
be fixed up later .  T ree -o r i en ted  sys tems ,  in par t icu la r ,  
of ten  have res t r i c t ions ,  for example ,  t ha t  nodes  m u s t  be 
added  top-down. Moreover, the  t r a n s f o r m a t i o n s  poss ible  
on t ex t  are  Limited only by the  power  of the  t ex t  ed i to r  

and the imagination of the user. Structure-oriented edi- 
tors often make some transformations difficult; for 
example, it may not be possible to to change one kind of 
a node to another without first deleting and then 
recreating the node's children. 

There are some transformations that can be accom- 
plished only with text-oriented systems. For example, 
moving delimiters to make what used to be a string or 
comment into program statements requires parsing. 
"Commenting out" code is a meaningful and straightfor- 
ward transformation in OMEGA, however, and it is not 
necessary to resort to text tricks to accomplish it. 

Programs are not represented linearly on the 
screen in OMEGA. It is possible to build several program 
fragments independently in different windows and con- 
nect them together by picking up and moving around 
pictographs. For instance, in the previous section, it 
would have been equally possible to assign the parame- 
ters to the TableSsarch construct before inserting it into 
the program as a statement. 

One freedom a pointing interface does not allow is 
that of referring to an object that is not yet defined. 
This is not so bad since the parameters of an operation 
can be defined without defining its implementation. For 
example, one cannot create a call to procedure f before 
creating the procedure, but one can create f and refer 
to it before specifying its body. Eventually, the program 
will reach a state in which all necessary objects and 
attributes have been specified, and then be ready to run. 

4.5 An k~Ample  

Figure 4 shows what the screen might look like dur- 
ing an OMEGA session. 

Catalog windows are the primary /hearts of search- 
ing for information in the database. Standard queries 
will allow users to locate previously defined operations, 
objects, and program fragments that they can use. 
Things in the catalog may be displayed in different ways. 
For example, the lower right window shows operations on 
booleans; the middle right window shows operations used 
to read from a file. 

Glossary windows are created in conjunction with 
program windows. The glossary is the place where the 
two functions-of traditional identifiers, tags and descrip- 
tions, are brought together. It displays the pictograph 
for objects and descriptions of what the objects are. 
Normally, the glossary associated with a program window 
will contain entries for each object displayed in the pro- 

A window typically belongs to one of four classes. A 
cQtalo~ window displays a subset of the available opera- 
tions that are defined, including objects, control struc- 
tures, operations, etc. A prsgrafrt window displays possi- 
bly partiall~" assembled program fragments. A glossarl/ 
window displays information about pictographs on some 
part of the screen, usually in a program construction 
window. A response window displays output from some 
command or program, e.g., an error message. 

The deta i l s  of window m a n a g e m e n t  are  beyond  the  
scope  of th is  paper .  However, we are  developing 
au toma t i c  window m a n a g e m e n t  s t r a teg ies ,  and e x p e c t  
near ly  all dec is ions  about  where  to pu t  in fo rmat ion  to  be 
m a d e  by the  window manage r .  
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p r o c e d u r e  r e a d d a t a  fi les 

in i t i a l i ze  

while  no t  full ~ do 

t r ap  :-- n e w ~ T ~  

s e t  c o n t e n t s  of t m p  h e r e  ] 

e n d  while 

B and  no t  eof 0 

readLtmpi from O 

glossary for readdata 

[ ] T ~  : a g g r e g a t e  

O : fi le of t e x t  

t m p  : e l e m e n t  of 

B : boo l ean  

r e a d  f rom file 
wr i te  to file 

data structures 

'fill data structure 

s o r t  r ' .  . . . . . .  

sort 

r e a d  f r o m  file 

ee l  O : b o o l e a n  

e o l n O  : boo l ean  

readi'"i,......, f r o m  O 

r e a d l n  0 

r e s e t  O 

b o o l e a n  o p e r a t i o n s  

B and B : B 

BorB:B 

not B : B 

Figure  4: Sample  OMEGA s c r e e n .  

gram window. Of course, it is possible to have some of 
the well-known entries omitted. 

The top three windows on the left show program 
fragments under construction. The third window shows a 
statement that will probably be moved to replace the 
comment in the top window. 

Thus far, we have  re l i ed  on t he  r e a d e r ' s  i n tu i t i on  for  
an  u n d e r s t a n d i n g  of what  will h a p p e n  when  p i c t o g r a p h s  
a re  p u t  t o g e t h e r .  In t h e  nex t  sec t ion ,  we d e s c r i b e  m o r e  
de ta i l s  of t he  a b s t r a c t i o n s  t h a t  p i c t o g r a p h s  r e p r e s e n t .  

5. A b s t r a c t i o n s  

We use the term abstraction to refer to the general 
class of things that pictographs represent. An abstrac- 
tion may be a program object such as a variable, type, 
control structure, or operation; it may be a program 
constructor such as a variable deelarator, procedure 
template, or type former; or it may be a program mani- 
pulation command such as a query, configuration 
definition, or directive. Abstractions are defined using 
.other abstractions. 

There  will be  a b s t r a c t i o n s  ca l led  vwr/able,  package ,  
p r o c e d u r e ,  and  type  t h a t  a re  u sed  to c r e a t e  typ ica l  pro-  
g r a m  objec t s .  An o p e r a t i o n  t h a t  p l aces  or  i n s t a n t i a t e s  
an  a b s t r a c t i o n  c a u s e s  some  s e m a n t i c  c h a n g e s  to t h e  
p r o g r a m  d a t a b a s e .  For  example ,  i n s t a n t i a t i n g  a va r i ab l e  
a b s t r a c t i o n  c a u s e s  e n t r i e s  to  be  m a d e  in t h e  d a t a b a s e  to 
i nd i ca t e  t h a t  a new va r i ab l e  of t h e  spec i f ied  t y p e  h a s  
b e e n  c r e a t e d .  

An a b s t r a c t i o n  ha s  t h r e e  p a r t s :  t h e  p i c t o g r a p h  t h a t  
r e p r e s e n t s  it, t h e  p a r a m e t e r s  ( a n d  how t h e y  a p p e a r  in 
t he  p i c t o g r a p h ) ,  a n d  t h e  s e m a n t i c s  of the  o p e r a t i o n  on 
the dataSase. The pictograph determines what the user 
will see, and what the visual interaction is. The parame- 
ters specify what kinds of objects can be connected to 
the abstraction and how that is done using the picto- 
graph. We will not discuss the semantics of the database 
in th i s  pape r ,  e x c e p t  to  give an  idea  of how t h e  d a t a b a s e  
will be  m a n i p u l a t e d  by  a b s t r a c t i o n s .  The o p e r a t i o n s  pe r -  
f o r m e d  a re  s imi la r  to  t h o s e  done  du r ing  s y n t a c t i c  and  
s e m a n t i c  ana lys i s  of c o n v e n t i o n a l  p r o g r a m m i n g  
l anguages .  

5.1 Def in ing  a n d  Us ing  A b s t r a c t i o n s  

Cons ider  t h e  following s imple  a b s t r a c t i o n  for  c r e a t -  
ing var iab les .  

Abstraction: 
Pictograph: 
Parameters: 

declare a variable 
var ~ : flips 
~ r n ~  is a pictograph 
type is a type object 

Actions: Create a new variable object 
Set the variable's pictograph to ~ u z ~  
Set the variable's type to ~lDe 

The p i c t o g r a p h  in the  example  is s imi la r  to  d e c l a r a -  
t ions  in c o n v e n t i o n a l  l anguages .  Note t h a t  s imply  by  
chang ing  t he  p i c t o g r a p h  in t he  d s e l m ' s  a ~ a r i a b l e  
a b s t r a c t i o n  to  be  " t l /pe  vtc~rr~e;", d e c l a r a t i o n s  would be  
d i sp l ayed  in a C-like f o r m a t  i n s t e a d  of a Pasca l - l ike  one. 
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Suppose  we wish to define the  exponen t i a t ion  opera-  
tor.  The following a b s t r a c t i o n  would be used: 

Abstraction: 
Pictograph: 

declare a function 
function ~ m #  (p~'~meters) : Qlpe 

body 

Parameters: ~ m #  is a pictograph 
pa~m~tsT'$ is a parameter  list object 
tFp# is a type object 
body is a s ta tement  list object 

Database: Create a function object 
Set its parameter  list to parameters 
Set its re turn type to ~ s  
Set its body to bodll 
Define its database semantics to insert a 

call to the function body 

As one migh t  expec t ,  t h e r e  a re  also a b s t r a c t i o n s  for 
s t a t e m e n t s ,  p a r a m e t e r  lists, and  o the r  p r o g r a m  s t ruc -  
tures .  If we wish to define the  exponen t i a t ion  
abs t rac t ion ,  we would p e r f o r m  the  following s teps:  

Crea te  a new funct ion by poin t ing  at  the  " d e c l a r e  
a func t ion"  p i c tog raph  and pushing the  " n e w "  
but ton .  The p i c tog raph  for t he  definit ion of t he  
new funct ion will be displayed in a newly allo- 
c a t e d  window. 

Cons t ruc t  its p a r a m e t e r  speci f ica t ions  using the  
"bui ld  a p a r a m e t e r  l ist" abs t rac t ion .  It would 
p r e s u m a b l y  conta in  a real  p a r a m e t e r  cal led base 
and an in tege r  p a r a m e t e r  cal led ezpoTtent. 

* Connect  the  p a r a m e t e r  list to  the  pargTr~eters 
p a r t  of the  funct ion  definition. 

• Pick up a r e f e r e n c e  to the da ta  type  " r e a l "  picto-  
g raph  and place  it on type. 

Cons t ruc t  the  funct ion  body in t he  body slot by 
c rea t ing  and connec t ing  the  n e c e s s a r y  dec la ra -  
t ions  and s t a t e m e n t s .  

Build a p i c tog raph  for exponen t i a t i on  r e f e renc ing  
the  base and ez'poneTtt p ic tog raphs  and place it in 
the  name slot. 

Once the  exponen t ia t ion  func t ion  has been  defined,  
we may  install  it in the  catalog.  This would be done using 
the  " c r e a t e  catalog e n t r y "  abs t rac t ion ,  which migh t  
have p a r a m e t e r s  such  as the  p i c tog raph  for t he  funct ion  
and  a list of a t t r i b u t e s  on which to index the  funct ion.  A 
s u b s e q u e n t  r e f e r e n c e  to the  funct ion  c r e a t e s  an 
i n s t ance  of the  funct ion abs t r ac t ion ,  which will cause  the  
specif ied da t abase  opera t ions  to  be p e r f o r m e d  when all 
of the  p a r a m e t e r s  have been  bound.  

5.2 S e m a n U c  E r r o r  De teeUon  

As the  use r  man ipu l a t e s  abs t r ac t ions ,  u p d a t e s  are  
m a d e  to  the  da t abase .  Note t ha t  th is  does  not  neces -  
sari ly imply a change  to t he  resu l t ing  p rog ram.  Any 
change,  such  as defining a variable or c rea t ing  a new 
s t a t e m e n t ,  modif ies  t h e  da t abase .  The p r o g r a m  will be  
a l t e r ed  only when the  s t a t e m e n t  or  variable is c o n n e c t e d  
to  t he  p rog ram.  Moreover,  t he  p r o g r a m  will be ch an g ed  
only when a comple t e ,  cons i s t en t ,  and c o r r e c t  
modif ica t ion has  been  made .  

Once the  a b s t r a c t i o n  has  b e e n  c o m p l e t e d  (i.e., all 
p a r a m e t e r s  a re  specif ied) ,  t he  u p d a t e s  speci f ied  by the  
a b s t r a c t i o n  are  a t t e m p t e d .  This upda t ing  t akes  place as 
a t r a n s a c t i o n  on the  d a t a b a s e  sys tem.  Er roneous  
t r a n s a c t i o n s  will no t  c o m p l e t e  and i m p r o p e r  ob jec t s  will 
not  a p p e a r  as p a r t  of t he  p rog ram.  For  example ,  a 
s t a t e m e n t  may  r e f e r  to  variable ob jec t s  whose type  has  
not  ye t  b e e n  specified: The inse r t ion  of such  a s t a t e -  
m e n t  would not  take  effect  until  the  type  is defined. 
When the  type  ge ts  defined, all r e f e r e n c e s  to the  var iable  
are  c h e c k e d  to be sure  t hey  are  cons i s t en t  with t he  type.  
If t hey  are,  t he  s t a t e m e n t s  are  a d d e d  to the  p rogram;  
otherwise ,  t he  s t a t e m e n t s ,  though  in the  da tabase ,  do 
no t  ye t  af fect  the  p rogram.  

Each t ime  an ob jec t  is c o n n e c t e d  to a p a r a m e t e r ,  a 
check  is m a d e  to see  if t he  ob jec t  m e e t s  the  p a r a m e t e r ' s  
specif icat ions .  If it does  not, the  ob jec t  is not  c o n n e c t e d  
and an e r r o r  m e s s a g e  is g e n e r a t e d .  For  example ,  con- 
nec t ing  a variable ob jec t  to  the  tlfpe p a r a m e t e r  in 
"def ine  a func t ion"  would r e su l t  in an er ror .  This is so r t  
of a " s q u a r e  peg into a round  hole"  approach:  the  use r  
canno t  bind an objec t  to a p a r a m e t e r  if doing so would 
re su l t  in a type  violation. 

An applicat ion-level  d a t ab as e  t r a n s a c t i o n  m e c h a n -  
ism is used  to manage  par t ia l  u p d a t e s  to the  p rog ram.  
Since the  comple t ion  of one u p d a t e  may  t r igge r  the  ini- 
t ia t ion of o the r s ,  it is essen t ia l  t h a t  mul t ip le  t r an sac -  
t ions  be allowed at  once.  Note t ha t  t h e s e  t r a n s a c t i o n s  
are  built  on top  of the  s t a n d a r d  lower-leval t r a n s a c t i o n  
m e c h a n i s m ,  which e n s u r e s  t he  re l iable  and cons i s t en t  
s to rage  of the  s t a t e  of the  p r o g r a m m i n g  env i ronment ,  
even if t h a t  s t a t e  de sc r ibe s  a par t ia l  or i n c o r r e c t  pro-  
gram.  

The s e m a n t i c  analysis  n e c e s s a r y  to d e t e r m i n e  if a 
p a r a m e t e r  " f i t s"  is equivalent  to t h a t  done in a compi le r  
a f t e r  n a m e s  have b e e n  reso lved  to  objects .  Although the  
use r  may  give an objec t  a n a m e  by pu t t ing  an ident i f ier  
in its p ic tograph ,  r e f e r e n c e s  to a p i c tog raph  lead 
d i rec t ly  to the  a s soc i a t ed  abs t rac t ion .  This e l imina tes  
the  p r o b l e m  of resolving overloading for p r o c e d u r e s  
s ince  the  u se r  poin ts  at  t he  ac tua l  p rocedu re ,  no t  the  
n a m e  of a p r o c e d u r e .  

Because  the  s e m a n t i c  e r r o r  d e t e c t i o n  is done  as the  
p r o g r a m  is c o n s t r u c t e d ,  e r r o r s  are  d e t e c t e d  and fixed 
by the  use r  in t he  co n t ex t  in which they  occur red ,  not  
a f t e r  some per iod  of t ime  during which the  u se r  has for- 
go t t en  why the  mis take  was made .  Many sor t s  of e r r o r s  
(missing p a r a m e t e r s ,  undef ined  var iables)  s imply canno t  
occu r  due to the  s eq u en ce  of ope ra t ions  n e c e s s a r y  to 
c r e a t e  t he  p rog ram.  

Global ch an g es  t h a t  affect  m a n y  p a r t s  of the  pro-  
g r a m  may  be p e r f o r m e d  m o r e  re l iably b ecau s e  OMEGA 
can  d e t e c t  i ncomple t e  changes .  If it is n e c e s s a r y  to  add 
a p a r a m e t e r  to an opera t ion ,  the  s y s t e m  can  find and 
r e q u e s t  modif ica t ion of each  ins tance .  Of course ,  it is 
no t  r eq u i r ed  tha t  all i n s t ances  be fixed immedia te ly .  
Such t e m p o r a r y  incons i s t enc ies  or a b s t r a c t i o n  invoca- 
t ions  wi thout  all of the i r  p a r a m e t e r s  forms  a task  list of 
work to be p e r f o r m e d  by the  user .  

The i m p l e m e n t a t i o n  of a b s t r a c t i o n s  d e p e n d s  crit i-  
cally on the  under ly ing d a t a b a s e  sys tem.  In the  nex t  
sec t ion,  we desc r ibe  some p r o p e r t i e s  of the  da t abase  
n e c e s s a r y  to s u p p o r t  p i e tog raphs  and abs t r ac t ions .  
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6. Mul t i -Threaded  Da tabase  

The user sees a program as a collection of objects 
(variables, procedures, types, statements), which are the 
traditional program components, and a collection of 
abstractions (declare something, compose something, 
create something), which are "parameterized recipes" 
for program construction. 

Unlike conventional programming languages and 
environments that enforce a strong structure on how 
these objects and abstractions are manipulated, OMEGA 
permits the user to arrange them in the manner most 
suited to the task at hand. Although it is possible for 
programs to be organized by procedures according to 
some hierarchy, It is also possible for other organiza- 
tions to be used. 

One example of such organization is that used in 
most layered network protocols. Each layer is usually 
divided into different functions. It is difficult, however, 
to edit similar functions in different layers together, 
since traditional program organization would make each 
layer a module, and each function a submodule of its 
layer. Such cross-sectional organization is important 
when modifications are being made to large, multi- 
function soRware systems. 

In OMEGA, the same program may be manipulated 
according to several different organizations. If we are 
changing the whole link-level protocol, we will work with 
a "horizontal" thread: if we are changing error process- 
ing, we will work with a "vertical" thread; if we are 
changing the buffer data structure, we will want a thread 
through all modules that manipulate the buffers. 

For  u s e r s  of c onven t i ona l  p r o g r a m m i n g  l anguages ,  a 
h i e r a r c h i c a l  s t r u c t u r e  m a y  be  m o s t  famil iar .  R e c e n t  
d e v e l o p m e n t s  in  p r o g r a m m i n g  l anguages  have  favored  
m o d u l a r  s t r u c t u r e s ,  wi th  r e s t r i c t i o n s  on which  ob jec t s  
and  o p e r a t i o n s  a r e  avai lable  to  which modules .  OMEGA 
not only makes such constraints easy to describe and  
check, but allows auditing of usage in a natural way. 

Languages such as Ads t require the programmer to 
describe modules twice - once from the perspective of 
t h e  implementor, and once from t h e  perspective of a 
user. OMEGA needs only one description, plus indica- 
tions of what parts should be available to users. In feet. 
it is easy to generalize the notion to allow different 
classes of users to have different levels of access to the 
implementation of the module. 

The details of the program database are presented 
in [Linton B3]. Difficult problems that are being resolved 
include the storage of graphical data for pictographs, 
convenient and efficient storage and access of program 
data structures, as well as a more complete implementa- 
tion of the mechanisms described above. 

7. Implementation Status 

We have begun implementing OMEGA by building a 
program to view and modify objects in the database. To 
initially create a database of programs, we have built a 
parser that takes text for the MODEL programming 
language [Morris 80] and stores the internal represents- 

tAda is a registered t rademark  of the  Department  of Defense. 

lion in the database. The current prototype displays 
textual pictographs, processes simple queries and makes 
simple updates to the program. Colleagues are defining 
database semantics and figuring out how to generate 
code from the database. 

The overal l  goals  of OMEGA e l i m i n a t e  t he  poss ib i l i ty  
of a c o m p l e t e  working s y s t e m  for  s eve ra l  years .  Our 
a p p r o a c h  is to  iden t i fy  i m p o r t a n t  s u b p r o b l e m s  and  bui ld  
p r o t o t y p e s  to  e x p e r i m e n t  with  so lu t ions  to  t h o s e  p a r t i c -  
u l a r  p r o b l e m s .  As work by  o t h e r s  in  d a t a b a s e  s y s t e m s ,  
g raph ic s ,  a n d  p r o g r a m  s e m a n t i c s  p r o g r e s s e s ,  we will 
i n c o r p o r a t e  t h e i r  r e s u l t s  in to  t h e  s y s t e m .  We a r e  also 
wa tch ing  for  d e v e l o p m e n t s  in h a r d w a r e  s y s t e m s  t h a t  will 
p rovide  an  a p p r o p r i a t e  vehic le  for  a p r o d u c t i o n  OMEGA 
sys t em.  

A problem that we are partially addressing is the 
introduction of existing software and programmers to 
OMEGA. Though we have proposed a "syntax-free" form 
of input, a traditional textual interface could be provided 
using an incremental parser with associated semantic 
actions. One alternative would be to try to match the 
syntax of existing pictographs; this would require the 
definition of a set of pictographs that are parsable. 
Another approach Would be to have a -sirrlple 
specification language such as is found in most LISP sys- 
tems. Regardless of the format in which a program is 
entered, it can be displayed subsequently according to 
any available pictographs. 

Our current solution completely parses a program 
and enters it into the database. This permits us to start 
with substantial programs, and to rapidly enter pro- 
grams into the database. 

6. Conclus ions  

The fundamental problems of supporting software 
development are communication and information 
management. The communication aspect involves 
interactions with a user. The information being managed 
includes various properties of the program as well as its 
structure and contents. 

Graphical input and output provides efficient and 
effective ways of expressing and representing the rela- 
tionships between different program elements. Rather 
than forcing the programmer to express the program in 
terms of character-string tokens that are easy to parse, 
we provide a structural interface to allow the program- 
mer to build the program. Instead of using unique 
identifiers for objects, which requires rules for resolu- 
tion. we separate the picture of an object from the 
object itself. 

OMEGA provides a simple model for how program 
information is manipulated and uses a general-purpose 
database system to store it. By leaving issues such as 
consistency, error recovery, query optimization, and 
efficient storage management to the database system 
(whose authors spend most of their time worrying about 
them), we can concentrate on the difficult issues facing 
software developers. Because the partially constructed 
program is stored in a database, it is possible to immedi- 
ately check for programmer errors. Moreover, because 
the program is built rather than typed, a variety of com- 
mon errors cannot be made. Storing the program in a 

20 



database also allows it to be viewed differently depending 
on how it is being manipulated. 

Abstraction is the mechanism that humans use to 
organize and manage information. By designing OMEGA 
around a powerful abstraction mechanism, we provide 
tools that  mimic and support human programming 
processes rather  than simply helping the human pro- 
grammer cope With the machine. 
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