Visual Abstraction in an Interactive Programming Environment

Michael L. Powell
Mark A. Linton

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

We are designing a software development system
that implements "‘what you see is what you get"' for pro-
gramming. The system, called OMEGA, allows software to
be displayed, processed, and modified, using pictorial
representations to convey the structure and levels of
abstraction of the program.

OMEGA takes advantage of the interactive user
interface to provide syntax-free input, user selectable
display format, and incremental semantic analysis. By
distinguishing input specification from output display,
and exploiting interaction in semantic analysis, we are
able to unify the different abstraction mechanisms
present in traditional programming environments.

1. Introduction

ldeas in programming languages {data abstraction,
overloading, type parameterization), user interfaces
(menus, pointing devices, graphics), and database sys-
tems (relational data models, recursive data, views) are
converging on the problem of managing large software
system development. We have combined these ideas in
the design of a programming system, called OMEGA, that
provides powerful mechanisms for constructing and
manipulating software. OMEGA will use a high-resolution,
color graphics display with a pointing device to view and
modify program structures that are stored in a general
purpose database system.

To simplify the construction and manipulation of
software, programmers abstract recurring concepts into
reusable parts. Current programming languages provide
builtin parts, (e.g., statements, variables, data types,

Research supported by NSF grant MCS-8010686, a State of
California MICRO grant, and Defense Advance Research Pro-
jects Agency (DoD) ARPA Order No. 4031 monitored by Naval
Electronic System Command under Contract No. N00039-82-
C-0235.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-108-3/83/006/0014 $00.75

modules) and mechanisms for creating new constructs
(by, e.g., writing a procedure, declaring a variable,
defining an abstract data type, or instantiating a
module). These mechanisms allow programs to be
modified easily, since a change to the definition of a part
affects all its uses.

Due to the independent evolution of program strue-
tures and their different requirements for parsing in
conventional programming systems, each has its own
way (syntax and visual representation) for programmers
to specify abstractions in terms of simpler elements.
For example, in some languages, a program may define a
new kind of integer that can be used just as easily {with
overloaded operators), efficiently (with inline expansion
of procedures), and cleanly (with implementation details
hidden) as the native integer type. However, in most
languages, it is not possible to define a new kind of for
loop. Another inconsistency is in overloading of
identifiers. Although it is often possible to overload pro-
cedure names based on type, it is not possible to over-
load variable nantes in the same way.

OMEGA is an interactive programming environment
that provides a single form of abstraction that supports
the language and database facilities of a software
environment. The user interface to OMEGA provides a
simple and powerful mechanism for creating, viewing,
and modifying abstractions.

In OMEGA, we employ the concept of “what you see
is what you get', which has been applied in many appli-
cations. OMEGA users define visual representations of
their programs’' objects and structure. Thus they can
directly manipulate objects and immediately observe the
results of those manipulations. This is in contrast to the
idea of conventional software development, which builds
a description of the desired computation that is subse-
quently compiled.

2. Other Programming Systems

The design of OMEGA has been influenced by the
positive and negative aspects of existing systems. Con-
cepts such as abstraction, extensibility, strong typing,
integration, and background compilation are important
in supporting the programming process. In contrast, we
believe many features of existing systems, such as syn-
tax errors, reserved words, identifler scopes, and tree-
structured program representations, are usually impedi-
ments to programming.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F872728.806847&domain=pdf&date_stamp=1983-06-01

In tool-based programming environments such as
UNIXt [Kernighan and Mashey 81], each tool has its own
abstractions that are often not compeatible with the pro-
gramming language or other tools. For example, the
UNIX command interpreter provides string variables and
the concatenation operator; the C language does not.
The C language provides subroutines with variables as
parameters; the UNIX command interpreter does not.
Yet each of these features would be useful in both
environments.

Integrated programming environments such as
Interlisp [Teitelman and Masinter 81] do provide uniform
interfaces to programming facilities. This provides the
user a consistent way to view and modify programs.
However, it provides only a single way of viewing program
structures: as LISP lists. The most limiting problem
with LISP systems, though, is the difficulty of static
analysis and checking of the abstraction mechanisms
due to the weak and dynamic types.

Other systems such as the Cornell Program Syn-
thesizer {Teitelbaum and Reps 81] and the Incremental
Programming Environment [Medina-Mora and Feiler 81]
support richer language semantics, but the range of
semantics is fixed. Both these systems are tree-
oriented, in that program construction consists of
adding or changing nodes in a tree. Neither permits
definition of new types of nodes, only instantiation and
composition of the builtin ones. Moreover, a tree struc-
ture is awkward for describing type information and
module dependencies.

3. Goals and 1deas of OMEGA

OMEGA is intended for large software system pro-
gramming using strongly typed language semantics and
executing compiled code. In an interactive system, it is
desirable to have errors caught as soon as possible.
Furthermore, the system should help users produce
correct software, not simply prevent them from produc-
ing incorrect software. One of the goals of OMEGA is to
take advantage of an interactive user interface by having

* no input syntax

+ multiple output formats

+ interactive semantic analysis

e multi-threaded program organization

No input syntax means that the user is not required
to cast the program in one particular form for a com-
piler. Program construction should be a conversation
between the programmer and OMEGA, with OMEGA occa-
sionally asking questions and making suggestions.
Although the database command language will have a
syntax, it is not a programming language. Thus it does
not place constraints on the structure of a program, but
only specifies the kinds of operations that may be done
to create one.

Support for multiple output formats means that the
user may have program structures displayed in a variety
of ways, depending on the aspect of the program of
interest at the moment. Programming systems typically

$tUNIX is a registered trademark of Bell Laboratories.

15

use the language as both the input specification and the
displayed form of the program. As a resuit, comprom-
ises must be made between what can be parsed and what
information should be displayed. Graphical output and
icons should be exploited to convey the most information
in an easily assimilated way. At the minimum, output
formats must support the multiple ways of building pro-
grams, to allow the user to work without mentally
translating between points of view.

Interactive semantic analysis means that a program
is examined as it is being built. Just as oral communica-
tion is more eflective than written communication,
because the speaker can adjust to the response of the
listener, the system should provide feedback to the pro-
grammer as the program is built. Errors due to incon-
sistency or ambiguity should be resolved immediately.
In addition, by displaying the structure of the program
as it is being built, it may help the programmer see
higher-level problems that the programming system can-
not detect.

Multi-threaded program organization means that
there may be multiple threads through the program
representation along which manipulations may take
place. Conventional programming systems provide only
one view of a program. The programmer, however, may
see the program in different ways when it is being built,
modified, or debugged. For example, a group of state-
ments might be edited as a unit because they appear in
the same procedure, because they all reference the
same variable, or because they will be executed consecu-
tively even though they are in diflerent procedures.

The remainder of this paper describes in more
detail the interactive user interface to the OMEGA sys-
tem. We first describe the features of the interface that
allow the user to create programs. Then we discuss how
this interface enables the user to control the display of
program constructs. Next we describe how this inter-
face interacts with the program being manipulated.
Finally, we give some indication of how a database could
help support abstraction in this environment.

4. User Interface

]

The key to lifting the burden of syntax from a pro-
gramming environment is to stop using text as the
medium of program construction. Conventional pro-
gramming languages and systems represent program
constructs as tezt, sequences of characters forming
words, usually grouped in lines.

Text hampers human understanding because it is
not unique visually; ‘‘free format’ languages allow tokens
to be placed in many different positions. Text is not an
optimal internal! representation for a program, since
semantic properties cannot easily be determined
without converting it to some other form such as a parse
tree and a symbol table. Text is also not a good
representation for editing. Logically one wishes to
operate on program structures (e.g., statements, vari-
ables, types, etc.); using a text editor one must manipu-
late some combination of lines, words and characters.

OMEGA resolves the different needs for program
representation by allowing the program to be entered,
displayed, editted, and analyzed in different formats.
This flexibility’ is provided by separating the pictorial
representation of an object from the object itself, by

pointing rather than typing to identify objects, and by
using multiple windows to allow pieces of programs to be
constructed independently.

4.1 Pictographs

Most programming environments do not distinguish
between an object and the pictorial representation of
that object. In OMEGA, program structures are
displayed consistently as pictographs. A pictograph is a
view of the object displayed on the screen. Pictographs
may be arbitrarily assigned to objects; different picto-
graphs for the same object may be selected when
different aspects of the object are to be emphasized.

A pictograph consists of letters or icons arranged in
a two-dimensional area. The optimal display device is a
high-resolution color graphics device, which would allow
color, intensity, and non-character graphics to be used.
The principles of pictographs apply to lower resolution,
black and white, or character-only displays. However,
existing 1920 character CRTs probably hold too little
information for these ideas to be used on any significant
scale.

A pictograph is the visual object that a programmer
sees and manipulates. Shapes and spatial relationships
help convey structural information. An important
feature of a pictograph is that parts of it can be used to
represent slots into which parameters are placed.

Figure 1 shows an example pictograph for a table
search. A table search is a two-exit control structure,
since the desired element may or may not be in the
table. The slots in the pictograph show places where
parameters may be inserted for the table to be searched
(Table), the key for the desired entry (Key). and the vari-
able to point to the object desired (Element). Note that
Element has a default value; use of the pictograph
defines an object if no other one is substituted.

|

Table Search
Table
Key e _
‘ :tElement':
. i
Found otFound

Figure 1. Graphical Table Search Pictograph

16

Figure 2 shows another pictograph for the same
control structure. This shows more details of the imple-

- mentation and is in the traditional text form. This

lower-level view of the control structure reveals aspects
that are hidden by the higher-level view. In Figure 1, the
parameters to the pictograph are represented by boxes;
in Figure 2, by italicized words.

label NotFound, Found
var element : subscript of Table

if empty(Table) then goto NotFound

element := first(Table)

loop
if element. key = Key then goto Found
if element = last(Table) then goto NotFound
element = next(Table,element)

endloop

Figure 2. Text-like Table Search Pictograph

An important collection of pictographs are those
representing objects in the program. These pictographs
may appear in the program structure, but also may
appear in a glossary. A glossary is simply a list of picto-
graphs and their meanings. Figure 3 shows a glossary
that might exist in a program using the table search of
Figure 2.

Employees array of EmployeeRecord,
table of all employees

InputName EmployeeName, name of
employee just read

Current Employee Employeelndex, points to

the record of the current
employee

Figure 3. A sample glossary

4.2 It Is Polite To Point

Our alternative to entering text is to display
relevant pictographs on the screen and have the user
point at, pick up, and put down the corresponding
objects using a pointing device (e.g., a mouse, light pen,
finger, etc.). "Picking up' and “putting down’ generally
mean pointing at something and pressing a key or but-
ton. The act of picking up an object and putting it down
someplace may have different eflects based on the
objects and the parts of the pictograph pointed at. Pick-
ing up the EmployeeRecord pictograph in the glossary in
Figure 3 and pressing the “‘what is this?" button would
cause a description of the type EmployeeRecord to be
displayed. Picking up the Employees pictograph and
putting it down in the Table box of Figure 1 makes
Employees the actual parameter of the Table Search pic-
tograph.

For example, consider the search procedure in Fig-
ure 1. The pictograph in Figure 1 might be displayed as
a result of a query asking for search procedures. To use
the TableSearch control structure in the program, we
first pick up a copy of it by moving the mouse to the pic-
tograph and pressing the pick up button. We place it at
the desired point in the statement list we are working on
by moving the mouse just below the statement we wish it
to follow and pressing the put down button. This causes
the entry line of the pictograph to be connected to the
previous statement. ;

The parameters are fllled in by picking up the
objects and putting them down in the boxes. The two
possible exits are now sites for additional statements to
be connected. In this manner, the TableSearch control
structure is inserted into the program.

4.3 What Is In A Name?

Identifiers in programs serve two functions: they
provide a visual tag that the reader uses to associate
together different instances of the same object, and they
provide a mnemonic description of some properties of
the object. In traditional systems, these two purposes
run against each other. Shorter, more distinct
identifiers are easier to resolve visually, yet longer
identiflers that often may be similar are more descrip-
tive. In OMEGA, these two functions are separable. Pic-
tographs may be assigned to objects arbitrarily to
improve the visual representation of the program; pro-
perties of the object are instantly accessible (and may
be displayed on part of the screen as a glossary) from
the database.

The ability to name by pointing adds significant
power to the programming environment. For instance, it
is not necessary for displayed pictographs to be unique.
If it is necessary to disambiguate a name, the user sim-
ply points to the intended pictograph in the glossary (or
somewhere else on the screen). Since the system always
references objects and merely displays pictographs for
the convenience of the user, the same pictograph may
be used in different parts of the program without causing
confusion about what object they refer to.

In conventional programming systems, the case
often arises that the best name for an instance of a data
structure is the name of the type of the data structure.
This must usually be solved by adding a prefix or suffix
the one or the other of the names. A similar problem
occurs here; when pointing to a pictograph, it may be
meaningful to pick up either the actual object or a new
instance of the object. Such problems are easily avoided
by allowing several pick up keys. For example, after
pointing to a variable, the user might choose to pick up
the variable itself, the variable's type or value, or even a
new variable of the same type as that variable.

4.4 Rome Was Not Built In A Day

One of the advantages text-oriented interfaces have
had in the past is the support of partially-formed pro-
grams. Since no examination of the program occurs
until the user requests it, it is easy to leave loose ends to
be fixed up later. Tree-oriented systems, in particular,
often have restrictions, for example, that nodes must be
added top-down. Moreover, the transformations possible
on text are limited only by the power of the text editor

17

and the imagination of the user. Structure-oriented edi-
tors often make some transformations difficult; for
example, it may not be possible to to change one kind of
a node to another without first deleting and then
recreating the node’s children.

There are some transformations that can be accom-
plished only with text-oriented systems. For example,
moving delimiters to make what used to be a string or
comment into program statements requires parsing.
**Commenting out’’ code is a meaningful and straightfor-
ward transformation in OMEGA, however, and it is not
necessary to resort to text tricks to accomplish it.

‘Programs are not represented linearly on the
screen in OMEGA. It is possible to build several program
fragments independently in different windows and con-
nect them together by picking up and moving around
pictographs. For instance, in the previous section, it
would have been equally possible to assign the parame-
ters to the TableSearch construct before inserting it into
the program as a statement.

One freedom a pointing interface does not allow is
that of referring to an object that is not yet defined.
This is not so bad since the parameters of an operation
can be defined without defining its implementation. For
example, one cannot create a call to procedure f before
creating the procedure, but one can create f and refer
to it before specifying its body. Eventually, the program
will reach a state in which all necessary objects and
attributes have been specified, and then be ready to run.

4.5 An Example

Figure 4 shows what the screen might look like dur-
ing an OMEGA session.

Catalog windows are the primary means of search-
ing for information in the database. Standard queries
will allow users to locate previously defined operations,
objects, and program fragments that they can use.
Things in the catalog may be displayed in different ways.
For example, the lower right window shows operations on
booleans; the middle right window shows operations used
to read from a file.

Glossary windows are created in conjunction with
program windows. The glossary is the place where the
two functions-of traditional identifiers, tags and descrip-~
tions, are brought together. It displays the pictograph
for objects and descriptions of what the objects are.
Normally, the glossary associated with a program window
will contain entries for each object displayed in the pro-

A window typically belongs to one of four classes. A
catalog window displays a subset of the available opera-
tions that are defined, including objects, control struc-
tures, operations, etc. A program window displays possi-
bly partially assembled program fragments. A glossary
window displays information about pictographs on some
part of the screen, usually in a program construction
window. A response window displays output from some
command or program, e.g., an error message.

The details of window management are beyond the
scope of this paper. However, we are developing
automatic window management strategies, and expect
nearly all decisions about where to put information to be
made by the window manager.

procedure readdata

files

initialize []]]]]]
while not full [[[[]]]do

new]

tmp :

end while

§ set contents of tmp here }

read from file
write to file

data structures
fill data structure

sorl{ ommm

sort OO

B and not eof O

read from file

glossary for readdata

m]]]] : aggregate
O : file of text
tmp : element of

: boolean

(I

boolean operations
B and B: B
BorB:B

not B: B

Figure 4: Sample OMEGA screen.

gram window. Of course, it is possible to have some of
the well-known entries omitted.

The top three windows on the left show program
fragments under construction. The third window shows a
statement that will probably be moved to replace the
comment in the top window.

Thus far, we have relied on the reader's intuition for
an understanding of what will happen when pictographs
are put together. In the next section, we describe more
details of the abstractions that pictographs represent.

5. Abstractions

We use the term abstraction to refer to the general
class of things that pictographs represent. An abstrac-
tion may be a program object such as a variable, type,
control structure, or operation; it may be a program
constructor such as a variable declarator, procedure
template, or type former: or it may be a program mani-
pulation command such as a query, confijguration
definition, or directive. Abstractions are defined using
other abstractions.

There will be abstractions called variable, package,
procedure, and type that are used to create typical pro-
gram objects. An operation that places or instantiates
an abstraction causes some semantic changes to the
program database. For example, instantiating a variable
abstraction causes entries to be made in the database to
indicate that a new variable of the specified type has
been created.

18

An abstraction has three parts: the pictograph that
represents it, the parameters (and how they appear in
the pictograph), and the semantics of the operation on
the database. The pictograph determines what the user
will see, and what the visual interaction is. The parame-
ters specify what kinds of objects can be connected to
the abstraction and how that is done using the picto-
graph. We will not discuss the semantics of the database
in this paper, except to give an idea of how the database
will be manipulated by abstractions. The operations per-
formed are similar to those done during syntactic and
semantic analysis of conventional programming
languages.

5.1 Defining and Using Abstractions

Consider the following simple abstraction for creat-
ing variables.

Abstraction: declare a variable
Pictograph: var name : type
Parameters: name is a pictographb

type is a type object
Actions: Create a new variable object

Set the variable’s pictograph to name
Set the variable’s type to type

The pictograph in the example is similar to declara-
tions in conventional languages. Note that simply by
changing the pictograph in the declare a wvariable
abstraction to be ‘type name;"”, declarations would be
displayed in a C-like format instead of a Pascal-like one.

Suppose we wish to define the exponentiation opera-
tor. The following abstraction would be used:

Abstraction: declare a function
Pictograph: function name (parameters) : type
dody
Parameters: name is a pictograph
parameters is a parameter list object
type is a type object
dody is a statement list object
Database: Create a function object

Set its parameter list to parameters

Set its return type to type

Set its body to body

Define its database semantics to insert a
call to the function body

As one might expect, there are also abstractions for
statements, parameter lists, and other program struc-
tures. If we wish to define the exponentiation
abstraction, we would perform the following steps:

¢ Create a new function by pointing at the ‘‘declare
a function' pictograph and pushing the '‘new’”
button. The pictograph for the definition of the
new function will be displayed in a newly allo-
cated window.

o Construct its parameter specifications using the
“build a parameter list”" abstraction. It would
presumably contain a real parameter called base
and an integer parameter called ezponent.

« Connect the parameter list to the parameters
part of the function definition.

» Pick up a reference to the data type ‘‘real” picto-
graph and place it on fype.

e Construct the function body in the body slot by
creating and connecting the necessary declara-
tions and statements.

« Build a pictograph for exponentiation referencing
the base and exponent pictographs and place it in
the name slot.

Once the exponentiation function has been defined,
we may install it in the catalog. This would be done using
the ‘‘create catalog entry” abstraction, which might
have parameters such as the pictograph for the function
and a list of attributes on which to index the function. A
subsequent reference to the function creates an
instance of the function abstraction, which will cause the
specified database operations to be performed when all
of the parameters have been bound.

5.2 Semantic Error Detection

As the user manipulates abstractions, updates are
made to the database. Note that this does not neces-
sarily imply e change to the resulting program. Any
change, such as defining a variable or creating a new
statement, modifies the database. The program will be
altered only when the statement or variable is connected
to the program. Moreover, the program will be changed
only when a complete, consistent, and correct
modification has been made.

19

Once the abstraction has been completed (i.e., all
parameters are specified), the updates specified by the
abstraction are attempted. This updating takes place as
a transaction on the database system. Erroneous
transactions will not complete and improper objects will
not appear as part of the program. For example, a
statement may refer to variable objects whose type has
not yet been specified. The insertion of such a state-
ment would not take eflect until the type is deflned.
When the type gets defined, all references to the variable
are checked to be sure they are consistent with the type.
If they are, the statements are added to the program;
otherwise, the statements, though in the database, do
not yet aflect the program.

Each time an object is connected to a parameter, a
check is made to see if the object meets the parameter’s
specifications. If it does not, the object is not connected
and an error message is generated. For example, con-
necting a variable object to the type parameter in
‘‘deflne a function'’ would result in an error. This is sort
of a ‘'square peg into a round hole’ approach: the user
cannot bind an object to a parameter if doing so would
result in a type violation.

An application-level database transaction mechan-
ism is used to manage partial updates to the program.
Since the completion of one update may trigger the ini-
tiation of others, it is essential that multiple transac-
tions be allowed at once. Note that these transactions
are built on top of the standard lower-level transaction
mechanism, which ensures the reliable and consistent
storage of the state of the programming environment,
even if that state describes a partial or incorrect pro-
gram.

The semantic analysis necessary to determine if a
parameter “fits' is equivalent to that done in a compiler
after names have been resolved to objects. Although the
user may give an object a name by putting an identifler
in its pictograph, references to a pictograph lead
directly to the associated abstraction. This eliminates
the problem of resolving overloading for procedures
since the user points at the actual procedure, not the
name of a procedure.

Because the semantic error detection is done as the
program is constructed, errors are deterted and fixed
by the user in the context in which they occurred, not
after some period of time during which the user has for-
gotten why the mistake was made. Many sorts of errors
(missing parameters, undefined variables) simply cannot
occur due to the sequence of operations necessary to
create the program.

Global changes that affect many parts of the pro-
gram may be performed more reliably because OMEGA
can detect incomplete changes. If it is necessary to add
a parameter to an operation, the system can find and
request modification of each instance. Of course, it is
not required that all instances be fixed immediately.
Such temporary inconsistencies or abstraction invoca-
tions without all of their parameters forms a task list of
work to be performed by the user.

The implementation of abstractions depends criti-
cally on the underlying database system. In the next
section, we describe some properties of the database
necessary to support pictographs and abstractions.

8. Multi-Threaded Database

The user sees a program as a collection of objects
(variables, procedures, types, statements), which are the
traditional program components, and a collection of
abstractions (declare something, compose something,
create something), which are ‘‘parameterized recipes”
for program construction.

Unlike conventional programming languages and
environments that enforce a strong structure on how
these objects and abstractions are manipulated, OMEGA
permits the user to arrange them in the manner most
suited to the task at hand. Although it is possible for
programs to be organized by procedures according to
some hierarchy, it is also possible for other organiza-
tions to be used.

One example of such organization is that used in
most layered network protocols. Each layer is usually
divided into different functions. It is difficult, however,
to edit similar functions in different layers together,
since traditional program organization would make each
layer a module, and each function a submodule of its
layer. Such cross-sectional organization is important
when modifications are being made to large, multi-
function software systems.

In OMEGA, the same program may be manipulated
according to several different organizations. If we are
changing the whole link-level protocol, we will work with
a "horizontal’ thread; if we are changing error process-
ing, we will work with a ‘'vertical" thread: if we are
changing the buffer data structure, we will want a thread
through all modules that manipulate the buffers.

For users of conventional programming languages, a
hierarchical structure may be most familiar. Recent
developments in programming languages have favored
modular structures, with restrictions on which objects
and operations are available to which modules. OMEGA
not only makes such constraints easy to describe and
check, but allows auditing of usage in a natural way.

Languages such as Adat require the programmer to
describe modules twice — once from the perspective of
the implementor, and once from the perspective of a
user. OMEGA needs only one description, plus indica-
tions of what parts should be available to users. In fact,
it is easy to generalize the notion to allow different
classes of users to have different levels of access to the
implementation of the module.

The details of the program database are presented
in [Linton 83]. Difficult problems that are being resolved
include the storage of graphical data for pictographs,
convenient and eflicient storage and access of program
data structures, as well as a more complete implementa-
tion of the mechanisms described above.

7. Implementation Status

We have begun implementing OMEGA by building a
program to view and modify objects in the database. To
initially create a database of programs, we have built a
parser that takes text for the MODEL programming
language [Morris 80] and stores the internal representa-

tAda is a registered trademark of the Department of Defense.

20

tion in the database. The current prototype displays
textual pictographs, processes simple queries and makes
simple updates to the program. Colleagues are defining
database semantics and figuring out how to generate
code from the database.

The overall goals of OMEGA eliminate the possibility
of a complete working system for several years. Our
approach is to identify important subproblems and build
prototypes to experiment with solutions to those partic-
ular problems. As work by others in database systems,
graphics, and program semantics progresses, we will
incorporate their results into the system. We are also
watching for developments in hardware systems that will
provide an appropriate vehicle for a production OMEGA
system.

A problem that we are partially addressing is the
introduction of existing software and programmers to
OMEGA. Though we have proposed a ‘‘syntax-free’” form
of input, a traditional textual interface could be provided
using an incremental parser with associated semantic
actions. One alternative would be to try to match the
syntax of existing pictographs; this would require the
definition of a set of pictographs that are parsable.
Another approach would be to have a simple
specification language such as is found in most LISP sys-
tems. Regardless of the format in which a program is
entered, it can be displayed subsequently according to
any available pictographs.

Our current solution completely parses a program
and enters it into the database. This permits us to start
with substantial programs, and to rapidly enter pro-
grams into the database.

8. Conclusions

The fundamental problems of supporting software
development are communication and information
management. The communication aspect involves
interactions with a user. The information being managed
includes various properties of the program as well as its
structure and contents.

Graphical input and output provides efficient and
effective .ways of expressing and representing the rela-
tionships between different program elements. Rather
than forcing the programmer to express the program in
terms of character-string tokens that are easy to parse,
we provide a structural interface to allow the program-
mer to build the program. Instead of using unique
identifiers for objects, which requires rules for resolu-
tion, we separate the picture of an object from the
object itself.

OMEGA provides a simple model for how program
information is manipulated and uses a general-purpose
database system to store it. By leaving issues such as
consistency, error recovery, query optimization, and
eflicient storage management to the database system
{whose authors spend most of their time worrying about
them), we can concentrate on the difficuit issues facing
software developers. Because the partially constructed
program is stored in a database, it is possible to immedi-
ately check for programmer errors. Moreover, because
the program is built rather than typed, a variety of com-
mon errors cannot be made. Storing the program in a

database also allows it to be viewed differently depending
on how it is being manipulated.

Abstraction is the mechanism that humans use to
organize and manage information. By designing OMEGA
around a powerful abstraction mechanism, we provide
tools that mimic and support human programming
processes rather than simply helping the human pro-
grammer cope with the machine.

9. References

[Kernighan and Mashey 81]
Kernighan, B., and Mashey, J., 'The Unix Pro-
gramming Environment', Computer, Vol. 14, No.
4, April 1981.

[Linton 83}
Linton, M. A., "Queries and Views of Programs
Using a Relational Database System', Ph.D.
Thesis, in progress, Computer Science Division,
Univ. of Cal., Berkeley.

[Morris 80)
Morris, J. B., A Manual for the MODEL Program-
ming Language, February 1980.

[Medina-Mora and Feiler 81]
Medina-Mora, R., and Feiler, P., “An Incremental
Programming Environment”, IEEE Transactions
of Software Engineering, Vol. SE-7, No. 5, Sep-
tember 1981.

[Teitelbaumn and Reps 81]
Teitelbaum, T., and Reps, T., “The Cornell Pro-
gram Synthesizer: A Syntax-directed Program-
ming Environment'’, Communications of the ACH,
Vol. 24, No. 9, September 1881.

[Teitelman and Masinter.81]
Teitelman, W., and Masinter, L., “The Interlisp
Programming Environment”, Computer, Vol. 14,
No. 4, April 1981,

21

