
Visua l A b s t r a c t i o n in a n I n t e r a c t i v e P r o g r a m m i n g E n v i r o n m e n t

Michael L. Powell
Mark A. Linton

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

ABSTRACT

We are designing a software development system
that implements "what you see is what you get" for pro-
gramming. The system, called OMEGA, allows software to
be displayed, processed, and modified, using pictorial
representations to convey the structure and levels of
abstraction of the program.

OMEGA takes advantage of the interactive user
interface to provide syntax-free input,, user selectable
display format, and incremental semantic analysis. By
distinguishing input specification from output display,
and exploiting interaction in semantic analysis, we are
able to unify the different abstraction mechanisms
present in traditional programming environments.

1. I n t r o d u c t i o n

Ideas in p r o g r a m m i n g languages (da ta abs t r ac t ion ,
overloading, type pa r ame te r i z a t i on) , u se r i n t e r f ace s
(menus , point ing devices, graphics) , and d a t a b a s e sys-
t e m s (re la t ional da t a models , r ecurs ive data, views) are
converging on the p rob l em of managing large sof tware
s y s t e m deve lopment . We have c o m b i n e d t h e s e ideas in
the des ign of a p r o g r a m m i n g sys t em, cal led OMEGA, t h a t
provides powerful m e c h a n i s m s for c o n s t r u c t i n g and
manipula t ing software. OMEGA will use a h igh-resolu t ion ,
color g raph ics display with a point ing device to view and
modify p r o g r a m s t r u c t u r e s t h a t a re s t o r e d in a g en e ra l
pu rpose da t abase sys t em.

To simplify the c o n s t r u c t i o n and manipu la t ion of
software, p r o g r a m m e r s a b s t r a c t r e c u r r i n g c o n c e p t s into
r eusab le pa r t s . Cu r r en t p r o g r a m m i n g languages provide
buil t in par t s , (e.g., s t a t e m e n t s , variables, da t a types ,

Resdarch supported by NSF grant MCS-8010686, a State of
California MICRO grant, and Defense Advance Research Pro-
jects Agency (DoD) ARPA Order No. 4031 monitored by Naval
Electronic System Command under Contract No. N00039-82-
C-0235.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-108-3/83/006/0014 $00.75

modules) and mechanisms fo r creating new constructs
(by, e.g., writing a procedure, declaring a variable,
defining an abstract data type, or instantiating a
module). These mechanisms allow programs to be
modified easily, since a change to the definition of a part
affects all its uses.

Due to the independent evolution of program struc-
tures and their different requirements for parsing in
conventional programming systems, each has its own
way (syntax and visual representation) for programmers
to specify abstractions in terms of simpler elements.
For example, in some languages, a program may define a
new kind of integer that can be used just as easily (with
overloaded operators), efficiently (with inline expansion
of procedures), and cleanly (with implementation details
hidden) as the native integer type. However, in most
languages, it is not possible to define a new kind of for
loop. Another inconsistency is in overloading of
identifiers. Although it is oftenpossible to overload pro-
cedure names based on type, it is not possible to over-
load variable narf~es in the same way.

OMEGA is an interactive programming environment
that provides a single form of abstraction that supports
the language and database facilities of a software
environment. The user interface to OMEGA provides a
simple and powerful mechanism for creating, viewing,
and modifying abstractions.

In OMEGA, we employ the concept of "what you see
is what you get", which has been applied in many appli-
cations. OMEGA users define visual representations of
their programs' objects and structure. Thus they can
directly manipulate objects and immediately observe the
results of those manipulations. This is in contrast to the
idea of conventional software development, which builds
a description of the desired computation that is subse-
quently compiled.

2. Other Programming S y s t e m s

The des ign of OMEGA has b e e n inf luenced by the
posit ive and nega t ive a s p e c t s of exist ing s y s t ems . Con-
c e p t s such as abs t r ac t ion , extensibi l i ty , s t rong typing.
in tegra t ion , and b a c k g r o u n d compi la t ion a re i m p o r t a n t
in suppor t ing the p r o g r a m m i n g process . In con t r a s t , we
believe m a n y f e a t u r e s of exist ing s y s t ems , such as syn-
tax e r ro rs , r e s e r v e d words, ident i f ier scopes , and t r e e -
s t r u c t u r e d p r o g r a m r e p r e s e n t a t i o n s , a re usual ly impedi-
m e n t s to p r o g r a m m i n g .

14

http://crossmark.crossref.org/dialog/?doi=10.1145%2F872728.806847&domain=pdf&date_stamp=1983-06-01

In tool-based programming environments such as
UNIXt [Kernighan and Mashey 81]. each tool has its own
abstractions that are often not compatible with the pro-
gramming language or other tools. For example, the
UNIX command interpreter provides string variables and
the concatenation operator: the C language does not.
The C language provides subroutines with variables as
parameters; the UNIX command interpreter does not.
Yet each of these features would be useful in both
environments.

Integrated programming environments such as
Interlisp [Teitelman and Masinter 81] do provide uniform
interfaces to programming facilities. This provides the
user a consistent way to view and modify programs.
However, it provides only a single way of viewing program
structures: as LISP lists. The most limiting problem
with LISP systems, though, is the difficulty of static
analysis and checking of the abstraction mechanisms
due to the weak and dynamic types.

Other systems such as the Cornell Program Syn-
thesizer [Teitelbaum and Raps 81] and the Incremental
Programming Environment [Medina-Mora and Feller 81]
support richer language semantics, but the range of
semantics is fixed. Both these systems are tree-
oriented, in that program construction consists of
adding or changing nodes in a tree. Neither permits
definition of new types of nodes, only instantiation and
composition of the builtin ones. Moreover, a tree struc-
ture is awkward for describing type information and
module dependencies.

3. Goals and Ideas of OMEGA

OMEGA is intended for large software system pro-
gramming using strongly typed language semantics and
executing compiled code. In an interactive system, it iS
desirable to have errors caught as soon as possible.
Furthermore, the system should help users produce
correct software, not simply prevent them from produc-
ing incorrect software. One of the goals of OMEGA is to
take advantage of an interactive user interface by having

• no input syntax

• multiple output formats

• interactive semantic analysis

• multi-threaded program organization

No input syn tax m e a n s tha t the u s e r is not r equ i red
to ca s t the p r o g r a m in one pa r t i cu la r fo rm for a com-
piler. P r o g r a m c o n s t r u c t i o n should be a conver sa t ion
be tween the p r o g r a m m e r and OMEGA. with OMEGA occa-
sionally asking ques t ions and making sugges t ions .
Although the da t abase c o m m a n d language will have a
syntax, it is not a p r o g r a m m i n g language. Thus it does
not p lace cons t r a in t s on the s t r u c t u r e of a p rog ram, bu t
only specif ies t he kinds of ope ra t i ons t h a t may be done
to c r e a t e one.

Support for multiple output formats means that the
user may have program structures displayed in a variety
of ways, depending on the aspect of the program of
interest at the moment. Programming systems typically

I"UNIX is a registered trademark of Bell Laboratories.

use the language as both the input specification and the
displayed form of the program. As a result, comprom-
ises must be made between what can be parsed and what
information should be displayed. Graphical output and
icons should be exploited to convey the most information
in an easily assimilated way. At the minimum, output
formats must support the multiple ways of building pro-
grams, to allow the user to work without mentally
translating between points of ~ew.

Interactive semantic analysis means that a program
is examined as it is being built. Just as oral communica-
tion is more effective than written communication,
because the speaker can adjust to the response of the
listener, the system should provide feedback to the pro-
grammer as the program is built. Errors due to incon-
sistency or ambiguity should be resolved immediately.
In addition, by displaying the structure of the program
as it is being built, it may help the programmer see
higher-level problems that the programming system can-
not detect.

Multi-threaded program organization means that
there may be multiple threads through the program
representation along which manipulations may take
place. Conventional programming systems provide only
one view of a program. The programmer, however, may
see the program in different ways when it is being built,
modified, or debugged. For example, a group of state-
ments might be edited as a unit because they appear in
the s a m e p r o c e d u r e , b e c a u s e t h e y all r e f e r e n c e the
s a m e variable, or b ecau s e t h e y will be e x e c u t e d consecu ,
t ively even though they are in d i f fe rent p r o c e d u r e s .

The r e m a i n d e r of this p a p e r d e s c r i b e s in m o r e
detai l the in te rac t ive u se r in t e r face to t h e OMEGA sys-
t em. We first d e s c r i b e the f ea tu re s of the i n t e r f ace t h a t
allow the u s e r to c r e a t e p rog rams . Then we d i scuss how
this i n t e r f ace enab les the u s e r to con t ro l the display of
p r o g r a m cons t ruc t s . Next we desc r ibe how this in te r -
face i n t e r ac t s with t he p r o g r a m being manipu la ted .
Finally, we give some indicat ion of how a d a t a b a s e could
help s u p p o r t a b s t r a c t i o n in this env i ronment .

4. Use r I n t e r f a c e

The key to lifting the b u r d e n of syn tax ; r o m a pro-
g r ammi n g e n v i r o n m e n t is to s top using t ex t as the
m e d i u m of p r o g r a m cons t ruc t ion . Conventional pro-
g r ammi n g languages and s y s t e m s r e p r e s e n t p r o g r a m
c o n s t r u c t s as te=t, s e q u e n c e s of c h a r a c t e r s forming
words, usually g ro u p ed in lines.

Text h a m p e r s h u m a n u n d e r s t an d i n g b ecause it is
not unique visually: "free format" languages allow tokens
to be placed in many different positions. Text is not an
optimal internal representation for a program, since
semantic properties cannot easily be determined
without converting it to some other form such as a parse
tree and a symbol table. Text is also not a good
representation for editing. Logically one wishes to
operate on program structures (e.g., statements, vari-
ables, types, etc.); using a text editor one must manipu-
late some combination of lines, words and characters.

OMEGA resolves the different needs for program
representation by allowing the program to be entered,
displayed, editted, and analyzed in different formats.
This flexibil i ty is p rovided by sepa ra t ing the p ic tor ia l
r e p r e s e n t a t i o n of an ob jec t f rom the ob jec t itself, by

15

pointing rather than typing to identify objects, and by
using multiple windows to allow pieces of programs to be
constructed independently.

• 1 ~ e ~ g m p h s

Most programming environments do not distinguish
between an object and tee pictorial representation of
that object. In OMEGA. program structures are
displayed consistently as pictogrr, phs. A pictograph is a
view of the object displayed on the screen. Pictographs
may be arbitrarily assigned to objects; different picto-
graphs for the same object may be selected when
different aspects of the object are to be emphasized.

A p i c t o g r a p h cons i s t s of l e t t e r s or icons a r r a n g e d in
a two-d imens iona l a rea . The o p t i m a l d i sp lay dev ice is a
h igh - r e so lu t i on color g r a p h i c s device, wh ich would allow
color, in tens i ty , and n o n - c h a r a c t e r g r a p h i c s to be used .
The p r inc ip l e s of p i c t o g r a p h s apply to lower reso lu t ion ,
b l a c k a n d white, or c h a r a c t e r - o n l y displays. However,
ex is t ing 1920 c h a r a c t e r CRTs p r o b a b l y hold too l i t t le
i n f o r m a t i o n for t h e s e ideas to be u s e d on any s igni f icant
scale.

A pictograph is the visual object that a programmer
sees and manipulates. Shapes and spatial relationships
help convey structural information. An important
feature of a pictograph is that parts of it can be used to
represent slots into which parameters are placed.

Figure 1 shows an example pictograph for a table
search. A table search is a two-exit control structure,
since the desired element may or may not be in the
table. The slots in the pictograph show places where
parameters may be inserted for the table to be searched
(Tabts), the key for the desired entry (Key), and the vari-
able to point to the object desired (Element). Note that
Element has a default value; use of the pictograph
defines an object if no other one is substituted.

1
Table S e a r c h

Table

I]
Key

I_ I

F o u n d ~ / ~ °tFound

Figure 1. Graph i ca l Table S e a r c h P i c t o g r a p h

Figure 2 shows another pictograph for the same
control structure. This shows more details of the imple-
mentation and is in the traditional text form. This
lower-level view of the control structure reveals aspects
that are hidden by the higher-level view. In Figure 1, the
parameters to the pictograph are represented by boxes;
in Figure 2, by italicized words.

l a b e l NotFound, Found

c a r e lemen t : s u b s c r i p t of Table

i f empty(Table) then goto NotFound
element := first(Table)
loop

if element.key = Key then goto Found
if element = last(Table) then gore NotFound
element := next(Table,element)

endloop

Figure 2. Text- l ike Table S e a r c h P i c t o g r a p h

An important collection of pictographs are those
representing objects in the program. These pictographs
may appear in the program structure, but also may
appear in a glosssry. A glossary is simply a list of picto-
graphs and their meanings. Figure 3 shows a glossary
that might exist in a program using the table search of
Figure 2.

E~ployees

InlratName

Ourrent ~nployee

array of EmployeeRecord,
table of all employees
EmployeeName. name of
employee just read
Employeelndex, points to
the record of the current
employee

Figure 3. A sample glossary

4 . 2 I t / s P o l i t e T o P o i n t

Our alternative to entering text is to display
relevant pictographs on the screen and have the user
point at, pick up, and put down the corresponding
objects using a pointing device (e.g., a mouse, light pen,
finger, etc.). "Picking up" and "putting down" generally
mean pointing at something and pressing a key or but-
ton. The act of picking up an object and putting it down
someplace may have different effects based on the
objects and the parts of the pictograph pointed at. Pick-
ing up the EmployeeRecord pictograph in the glossary in
Figure 3 and pressing the "what is this?" button would
cause a description of the type EmployeeRecord to be
displayed. Picking up the Employees pictograph and
putting it down in the Table box of Figure 1 makes
Employees the actual parameter of the Table Search pic-
tograph.

16

For example, consider the search procedure in Fig-
ure I. The pictograph in Figure i might be displayed as
a result of a query asking for search procedures. To use
the TsbleSearch control structure in the program, we
first pick up a copy of it by moving the mouse to the pic-
tograph and pressing the pick up button. We place it at
the desired point in the statement list we are working on
by moving the mouse just below the statement we wish it
to follow and pressing the put down button. This causes
the entry line of the pictograph to be connected to the
previous statement.

The p a r a m e t e r s are filled in by picking up the
ob jec t s and put t ing t h e m down in the boxes. The two
possible exi ts arc now s i tes for addi t ional s t a t e m e n t s to
be connec t ed . In this manne r , the TableSsarch cont ro l
s t r u c t u r e is i n s e r t e d into the p rogram.

4.3 What Is In A N a m e ?

Ident i f iers in p r o g r a m s serve two funct ions: t hey
provide a visual tag tha t the r e a d e r uses to a s soc ia t e
t o g e t h e r d i f ferent i n s t ances of the s ame object , and t h e y
provide a m n e m o n i c desc r ip t ion nf some p r o p e r t i e s of
the object . In t rad i t iona l sys t ems , t h e s e two p u rp o s e s
run aga ins t each other . Shor te r , m o r e d i s t inc t
ident i f ie rs are eas ie r to resolve visually, ye t longer
ident i f iers t h a t of ten may be s imilar are m o r e desc r ip -
tive. In OMEGA, t h e s e two funct ions are separable . Pic-
t og raphs may be ass igned to ob jec t s a rb i t ra r i ly to
improve the visual r e p r e s e n t a t i o n of the p rogram; pro-
p e r t i e s of t he ob jec t a re ins tan t ly access ib le (and may
be d isp layed on pa r t of the s c r e e n as a glossary) f rom
the da tabase .

The ability to name by point ing adds signif icant
power to the p r o g r a m m i n g env i ronment . For ins tance , it
is no t n e c e s s a r y for d isplayed p i c tog raphs to be unique.
If it is n e c e s s a r y to d i sambigua te a name , the use r s im-
ply poin ts to the i n t e n d e d p i c tog raph in t he g lossary (or
somewhere else on the screen). Since the system always
references objects and merely displays pictographs for
the convenience of the user, the same pictograph may
be used in different parts of the program without causing
confusion about what object they refer to.

In conventional programming sys t ems , the case
often arises that the best name for an instance of a data
structure is the name of the type of the data structure.
This must usually be solved by adding a prefix or suffix
the one or the other of the names. A similar problem
occurs here; when pointing to a pictograph, it may be
meaningful to pick up either the actual object or a new
instance of the object. Such problems are easily avoided
by allowing several pick up keys. For example, after
pointing to a variable, the user might choose to pick up
the variable itself, the variable's type or value, or even a
new variable of the same type as that variable.

4.4 Rome Was Not Built In A Day

One of the advan tages t ex t -o r i en t ed i n t e r f ace s have
had in the pas t is the suppo r t of par t i a l ly - formed pro-
g rams . Since no examina t ion of the p r o g r a m occurs
until the u se r r e q u e s t s it, it is easy to leave loose ends to
be fixed up later . T ree -o r i en ted sys tems , in par t icu la r ,
of ten have res t r i c t ions , for example , t ha t nodes m u s t be
added top-down. Moreover, the t r a n s f o r m a t i o n s poss ible
on t ex t are Limited only by the power of the t ex t ed i to r

and the imagination of the user. Structure-oriented edi-
tors often make some transformations difficult; for
example, it may not be possible to to change one kind of
a node to another without first deleting and then
recreating the node's children.

There are some transformations that can be accom-
plished only with text-oriented systems. For example,
moving delimiters to make what used to be a string or
comment into program statements requires parsing.
"Commenting out" code is a meaningful and straightfor-
ward transformation in OMEGA, however, and it is not
necessary to resort to text tricks to accomplish it.

Programs are not represented linearly on the
screen in OMEGA. It is possible to build several program
fragments independently in different windows and con-
nect them together by picking up and moving around
pictographs. For instance, in the previous section, it
would have been equally possible to assign the parame-
ters to the TableSsarch construct before inserting it into
the program as a statement.

One freedom a pointing interface does not allow is
that of referring to an object that is not yet defined.
This is not so bad since the parameters of an operation
can be defined without defining its implementation. For
example, one cannot create a call to procedure f before
creating the procedure, but one can create f and refer
to it before specifying its body. Eventually, the program
will reach a state in which all necessary objects and
attributes have been specified, and then be ready to run.

4.5 An k~Ample

Figure 4 shows what the screen might look like dur-
ing an OMEGA session.

Catalog windows are the primary /hearts of search-
ing for information in the database. Standard queries
will allow users to locate previously defined operations,
objects, and program fragments that they can use.
Things in the catalog may be displayed in different ways.
For example, the lower right window shows operations on
booleans; the middle right window shows operations used
to read from a file.

Glossary windows are created in conjunction with
program windows. The glossary is the place where the
two functions-of traditional identifiers, tags and descrip-
tions, are brought together. It displays the pictograph
for objects and descriptions of what the objects are.
Normally, the glossary associated with a program window
will contain entries for each object displayed in the pro-

A window typically belongs to one of four classes. A
cQtalo~ window displays a subset of the available opera-
tions that are defined, including objects, control struc-
tures, operations, etc. A prsgrafrt window displays possi-
bly partiall~" assembled program fragments. A glossarl/
window displays information about pictographs on some
part of the screen, usually in a program construction
window. A response window displays output from some
command or program, e.g., an error message.

The deta i l s of window m a n a g e m e n t are beyond the
scope of th is paper . However, we are developing
au toma t i c window m a n a g e m e n t s t r a teg ies , and e x p e c t
near ly all dec is ions about where to pu t in fo rmat ion to be
m a d e by the window manage r .

17

p r o c e d u r e r e a d d a t a fi les

in i t i a l i ze

while no t full ~ do

t r ap :-- n e w ~ T ~

s e t c o n t e n t s of t m p h e r e]

e n d while

B and no t eof 0

readLtmpi from O

glossary for readdata

[] T ~ : a g g r e g a t e

O : fi le of t e x t

t m p : e l e m e n t of

B : boo l ean

r e a d f rom file
wr i te to file

data structures

'fill data structure

s o r t r '

sort

r e a d f r o m file

ee l O : b o o l e a n

e o l n O : boo l ean

readi'"i,......, f r o m O

r e a d l n 0

r e s e t O

b o o l e a n o p e r a t i o n s

B and B : B

BorB:B

not B : B

Figure 4: Sample OMEGA s c r e e n .

gram window. Of course, it is possible to have some of
the well-known entries omitted.

The top three windows on the left show program
fragments under construction. The third window shows a
statement that will probably be moved to replace the
comment in the top window.

Thus far, we have re l i ed on t he r e a d e r ' s i n tu i t i on for
an u n d e r s t a n d i n g of what will h a p p e n when p i c t o g r a p h s
a re p u t t o g e t h e r . In t h e nex t sec t ion , we d e s c r i b e m o r e
de ta i l s of t he a b s t r a c t i o n s t h a t p i c t o g r a p h s r e p r e s e n t .

5. A b s t r a c t i o n s

We use the term abstraction to refer to the general
class of things that pictographs represent. An abstrac-
tion may be a program object such as a variable, type,
control structure, or operation; it may be a program
constructor such as a variable deelarator, procedure
template, or type former; or it may be a program mani-
pulation command such as a query, configuration
definition, or directive. Abstractions are defined using
.other abstractions.

There will be a b s t r a c t i o n s ca l led vwr/able, package ,
p r o c e d u r e , and type t h a t a re u sed to c r e a t e typ ica l pro-
g r a m objec t s . An o p e r a t i o n t h a t p l aces or i n s t a n t i a t e s
an a b s t r a c t i o n c a u s e s some s e m a n t i c c h a n g e s to t h e
p r o g r a m d a t a b a s e . For example , i n s t a n t i a t i n g a va r i ab l e
a b s t r a c t i o n c a u s e s e n t r i e s to be m a d e in t h e d a t a b a s e to
i nd i ca t e t h a t a new va r i ab l e of t h e spec i f ied t y p e h a s
b e e n c r e a t e d .

An a b s t r a c t i o n ha s t h r e e p a r t s : t h e p i c t o g r a p h t h a t
r e p r e s e n t s it, t h e p a r a m e t e r s (a n d how t h e y a p p e a r in
t he p i c t o g r a p h) , a n d t h e s e m a n t i c s of the o p e r a t i o n on
the dataSase. The pictograph determines what the user
will see, and what the visual interaction is. The parame-
ters specify what kinds of objects can be connected to
the abstraction and how that is done using the picto-
graph. We will not discuss the semantics of the database
in th i s pape r , e x c e p t to give an idea of how t h e d a t a b a s e
will be m a n i p u l a t e d by a b s t r a c t i o n s . The o p e r a t i o n s pe r -
f o r m e d a re s imi la r to t h o s e done du r ing s y n t a c t i c and
s e m a n t i c ana lys i s of c o n v e n t i o n a l p r o g r a m m i n g
l anguages .

5.1 Def in ing a n d Us ing A b s t r a c t i o n s

Cons ider t h e following s imple a b s t r a c t i o n for c r e a t -
ing var iab les .

Abstraction:
Pictograph:
Parameters:

declare a variable
var ~ : flips
~ r n ~ is a pictograph
type is a type object

Actions: Create a new variable object
Set the variable's pictograph to ~ u z ~
Set the variable's type to ~lDe

The p i c t o g r a p h in the example is s imi la r to d e c l a r a -
t ions in c o n v e n t i o n a l l anguages . Note t h a t s imply by
chang ing t he p i c t o g r a p h in t he d s e l m ' s a ~ a r i a b l e
a b s t r a c t i o n to be " t l /pe vtc~rr~e;", d e c l a r a t i o n s would be
d i sp l ayed in a C-like f o r m a t i n s t e a d of a Pasca l - l ike one.

18

Suppose we wish to define the exponen t i a t ion opera-
tor. The following a b s t r a c t i o n would be used:

Abstraction:
Pictograph:

declare a function
function ~ m # (p~'~meters) : Qlpe

body

Parameters: ~ m # is a pictograph
pa~m~tsT'$ is a parameter list object
tFp# is a type object
body is a s ta tement list object

Database: Create a function object
Set its parameter list to parameters
Set its re turn type to ~ s
Set its body to bodll
Define its database semantics to insert a

call to the function body

As one migh t expec t , t h e r e a re also a b s t r a c t i o n s for
s t a t e m e n t s , p a r a m e t e r lists, and o the r p r o g r a m s t ruc -
tures . If we wish to define the exponen t i a t ion
abs t rac t ion , we would p e r f o r m the following s teps:

Crea te a new funct ion by poin t ing at the " d e c l a r e
a func t ion" p i c tog raph and pushing the " n e w "
but ton . The p i c tog raph for t he definit ion of t he
new funct ion will be displayed in a newly allo-
c a t e d window.

Cons t ruc t its p a r a m e t e r speci f ica t ions using the
"bui ld a p a r a m e t e r l ist" abs t rac t ion . It would
p r e s u m a b l y conta in a real p a r a m e t e r cal led base
and an in tege r p a r a m e t e r cal led ezpoTtent.

* Connect the p a r a m e t e r list to the pargTr~eters
p a r t of the funct ion definition.

• Pick up a r e f e r e n c e to the da ta type " r e a l " picto-
g raph and place it on type.

Cons t ruc t the funct ion body in t he body slot by
c rea t ing and connec t ing the n e c e s s a r y dec la ra -
t ions and s t a t e m e n t s .

Build a p i c tog raph for exponen t i a t i on r e f e renc ing
the base and ez'poneTtt p ic tog raphs and place it in
the name slot.

Once the exponen t ia t ion func t ion has been defined,
we may install it in the catalog. This would be done using
the " c r e a t e catalog e n t r y " abs t rac t ion , which migh t
have p a r a m e t e r s such as the p i c tog raph for t he funct ion
and a list of a t t r i b u t e s on which to index the funct ion. A
s u b s e q u e n t r e f e r e n c e to the funct ion c r e a t e s an
i n s t ance of the funct ion abs t r ac t ion , which will cause the
specif ied da t abase opera t ions to be p e r f o r m e d when all
of the p a r a m e t e r s have been bound.

5.2 S e m a n U c E r r o r De teeUon

As the use r man ipu l a t e s abs t r ac t ions , u p d a t e s are
m a d e to the da t abase . Note t ha t th is does not neces -
sari ly imply a change to t he resu l t ing p rog ram. Any
change, such as defining a variable or c rea t ing a new
s t a t e m e n t , modif ies t h e da t abase . The p r o g r a m will be
a l t e r ed only when the s t a t e m e n t or variable is c o n n e c t e d
to t he p rog ram. Moreover, t he p r o g r a m will be ch an g ed
only when a comple t e , cons i s t en t , and c o r r e c t
modif ica t ion has been made .

Once the a b s t r a c t i o n has b e e n c o m p l e t e d (i.e., all
p a r a m e t e r s a re specif ied) , t he u p d a t e s speci f ied by the
a b s t r a c t i o n are a t t e m p t e d . This upda t ing t akes place as
a t r a n s a c t i o n on the d a t a b a s e sys tem. Er roneous
t r a n s a c t i o n s will no t c o m p l e t e and i m p r o p e r ob jec t s will
not a p p e a r as p a r t of t he p rog ram. For example , a
s t a t e m e n t may r e f e r to variable ob jec t s whose type has
not ye t b e e n specified: The inse r t ion of such a s t a t e -
m e n t would not take effect until the type is defined.
When the type ge ts defined, all r e f e r e n c e s to the var iable
are c h e c k e d to be sure t hey are cons i s t en t with t he type.
If t hey are, t he s t a t e m e n t s are a d d e d to the p rogram;
otherwise , t he s t a t e m e n t s , though in the da tabase , do
no t ye t af fect the p rogram.

Each t ime an ob jec t is c o n n e c t e d to a p a r a m e t e r , a
check is m a d e to see if t he ob jec t m e e t s the p a r a m e t e r ' s
specif icat ions . If it does not, the ob jec t is not c o n n e c t e d
and an e r r o r m e s s a g e is g e n e r a t e d . For example , con-
nec t ing a variable ob jec t to the tlfpe p a r a m e t e r in
"def ine a func t ion" would r e su l t in an er ror . This is so r t
of a " s q u a r e peg into a round hole" approach: the use r
canno t bind an objec t to a p a r a m e t e r if doing so would
re su l t in a type violation.

An applicat ion-level d a t ab as e t r a n s a c t i o n m e c h a n -
ism is used to manage par t ia l u p d a t e s to the p rog ram.
Since the comple t ion of one u p d a t e may t r igge r the ini-
t ia t ion of o the r s , it is essen t ia l t h a t mul t ip le t r an sac -
t ions be allowed at once. Note t ha t t h e s e t r a n s a c t i o n s
are built on top of the s t a n d a r d lower-leval t r a n s a c t i o n
m e c h a n i s m , which e n s u r e s t he re l iable and cons i s t en t
s to rage of the s t a t e of the p r o g r a m m i n g env i ronment ,
even if t h a t s t a t e de sc r ibe s a par t ia l or i n c o r r e c t pro-
gram.

The s e m a n t i c analysis n e c e s s a r y to d e t e r m i n e if a
p a r a m e t e r " f i t s" is equivalent to t h a t done in a compi le r
a f t e r n a m e s have b e e n reso lved to objects . Although the
use r may give an objec t a n a m e by pu t t ing an ident i f ier
in its p ic tograph , r e f e r e n c e s to a p i c tog raph lead
d i rec t ly to the a s soc i a t ed abs t rac t ion . This e l imina tes
the p r o b l e m of resolving overloading for p r o c e d u r e s
s ince the u se r poin ts at t he ac tua l p rocedu re , no t the
n a m e of a p r o c e d u r e .

Because the s e m a n t i c e r r o r d e t e c t i o n is done as the
p r o g r a m is c o n s t r u c t e d , e r r o r s are d e t e c t e d and fixed
by the use r in t he co n t ex t in which they occur red , not
a f t e r some per iod of t ime during which the u se r has for-
go t t en why the mis take was made . Many sor t s of e r r o r s
(missing p a r a m e t e r s , undef ined var iables) s imply canno t
occu r due to the s eq u en ce of ope ra t ions n e c e s s a r y to
c r e a t e t he p rog ram.

Global ch an g es t h a t affect m a n y p a r t s of the pro-
g r a m may be p e r f o r m e d m o r e re l iably b ecau s e OMEGA
can d e t e c t i ncomple t e changes . If it is n e c e s s a r y to add
a p a r a m e t e r to an opera t ion , the s y s t e m can find and
r e q u e s t modif ica t ion of each ins tance . Of course , it is
no t r eq u i r ed tha t all i n s t ances be fixed immedia te ly .
Such t e m p o r a r y incons i s t enc ies or a b s t r a c t i o n invoca-
t ions wi thout all of the i r p a r a m e t e r s forms a task list of
work to be p e r f o r m e d by the user .

The i m p l e m e n t a t i o n of a b s t r a c t i o n s d e p e n d s crit i-
cally on the under ly ing d a t a b a s e sys tem. In the nex t
sec t ion, we desc r ibe some p r o p e r t i e s of the da t abase
n e c e s s a r y to s u p p o r t p i e tog raphs and abs t r ac t ions .

19

6. Mul t i -Threaded Da tabase

The user sees a program as a collection of objects
(variables, procedures, types, statements), which are the
traditional program components, and a collection of
abstractions (declare something, compose something,
create something), which are "parameterized recipes"
for program construction.

Unlike conventional programming languages and
environments that enforce a strong structure on how
these objects and abstractions are manipulated, OMEGA
permits the user to arrange them in the manner most
suited to the task at hand. Although it is possible for
programs to be organized by procedures according to
some hierarchy, It is also possible for other organiza-
tions to be used.

One example of such organization is that used in
most layered network protocols. Each layer is usually
divided into different functions. It is difficult, however,
to edit similar functions in different layers together,
since traditional program organization would make each
layer a module, and each function a submodule of its
layer. Such cross-sectional organization is important
when modifications are being made to large, multi-
function soRware systems.

In OMEGA, the same program may be manipulated
according to several different organizations. If we are
changing the whole link-level protocol, we will work with
a "horizontal" thread: if we are changing error process-
ing, we will work with a "vertical" thread; if we are
changing the buffer data structure, we will want a thread
through all modules that manipulate the buffers.

For u s e r s of c onven t i ona l p r o g r a m m i n g l anguages , a
h i e r a r c h i c a l s t r u c t u r e m a y be m o s t famil iar . R e c e n t
d e v e l o p m e n t s in p r o g r a m m i n g l anguages have favored
m o d u l a r s t r u c t u r e s , wi th r e s t r i c t i o n s on which ob jec t s
and o p e r a t i o n s a r e avai lable to which modules . OMEGA
not only makes such constraints easy to describe and
check, but allows auditing of usage in a natural way.

Languages such as Ads t require the programmer to
describe modules twice - once from the perspective of
t h e implementor, and once from t h e perspective of a
user. OMEGA needs only one description, plus indica-
tions of what parts should be available to users. In feet.
it is easy to generalize the notion to allow different
classes of users to have different levels of access to the
implementation of the module.

The details of the program database are presented
in [Linton B3]. Difficult problems that are being resolved
include the storage of graphical data for pictographs,
convenient and efficient storage and access of program
data structures, as well as a more complete implementa-
tion of the mechanisms described above.

7. Implementation Status

We have begun implementing OMEGA by building a
program to view and modify objects in the database. To
initially create a database of programs, we have built a
parser that takes text for the MODEL programming
language [Morris 80] and stores the internal represents-

tAda is a registered t rademark of the Department of Defense.

lion in the database. The current prototype displays
textual pictographs, processes simple queries and makes
simple updates to the program. Colleagues are defining
database semantics and figuring out how to generate
code from the database.

The overal l goals of OMEGA e l i m i n a t e t he poss ib i l i ty
of a c o m p l e t e working s y s t e m for s eve ra l years . Our
a p p r o a c h is to iden t i fy i m p o r t a n t s u b p r o b l e m s and bui ld
p r o t o t y p e s to e x p e r i m e n t with so lu t ions to t h o s e p a r t i c -
u l a r p r o b l e m s . As work by o t h e r s in d a t a b a s e s y s t e m s ,
g raph ic s , a n d p r o g r a m s e m a n t i c s p r o g r e s s e s , we will
i n c o r p o r a t e t h e i r r e s u l t s in to t h e s y s t e m . We a r e also
wa tch ing for d e v e l o p m e n t s in h a r d w a r e s y s t e m s t h a t will
p rovide an a p p r o p r i a t e vehic le for a p r o d u c t i o n OMEGA
sys t em.

A problem that we are partially addressing is the
introduction of existing software and programmers to
OMEGA. Though we have proposed a "syntax-free" form
of input, a traditional textual interface could be provided
using an incremental parser with associated semantic
actions. One alternative would be to try to match the
syntax of existing pictographs; this would require the
definition of a set of pictographs that are parsable.
Another approach Would be to have a -sirrlple
specification language such as is found in most LISP sys-
tems. Regardless of the format in which a program is
entered, it can be displayed subsequently according to
any available pictographs.

Our current solution completely parses a program
and enters it into the database. This permits us to start
with substantial programs, and to rapidly enter pro-
grams into the database.

6. Conclus ions

The fundamental problems of supporting software
development are communication and information
management. The communication aspect involves
interactions with a user. The information being managed
includes various properties of the program as well as its
structure and contents.

Graphical input and output provides efficient and
effective ways of expressing and representing the rela-
tionships between different program elements. Rather
than forcing the programmer to express the program in
terms of character-string tokens that are easy to parse,
we provide a structural interface to allow the program-
mer to build the program. Instead of using unique
identifiers for objects, which requires rules for resolu-
tion. we separate the picture of an object from the
object itself.

OMEGA provides a simple model for how program
information is manipulated and uses a general-purpose
database system to store it. By leaving issues such as
consistency, error recovery, query optimization, and
efficient storage management to the database system
(whose authors spend most of their time worrying about
them), we can concentrate on the difficult issues facing
software developers. Because the partially constructed
program is stored in a database, it is possible to immedi-
ately check for programmer errors. Moreover, because
the program is built rather than typed, a variety of com-
mon errors cannot be made. Storing the program in a

20

database also allows it to be viewed differently depending
on how it is being manipulated.

Abstraction is the mechanism that humans use to
organize and manage information. By designing OMEGA
around a powerful abstraction mechanism, we provide
tools that mimic and support human programming
processes rather than simply helping the human pro-
grammer cope With the machine.

9. References

[Kernighan and Mashey 81]
Kernighan, D., and Mashey, J., "The Unix Pro-
gramming Environment", Computer. Vol. 14, No.
4, April 1981.

[Linton 83]
hinton, M. A., "Queries and Views of Programs
Using a Relational Database System". Ph.D.
Thesis, in progress, Computer Science Division,
Univ. of Ca/.. Berkeley.

[Morris 80]
Morris, J. B., A Manual for the MODEL Program-
ming LanguQgs, February 1980.

[Medina-Mora and Feiler 81]
Medina-Mora, R., and Feller, P.. "An Incremental
Programming Environment", IEEE Trwnsactions
oJ' Soft,#ore ~tFiTtee~-irtg, Vol. SE-7. No. 5. Sep-
tember 1981.

[Teitelbaum and Reps 81]
Teitelbaum. T.. and Reps. T., "The Cornell Pro-
gram Synthesizer: A Syntax-directed Program-
ming Environment", Co'n~m.'u.'wiccd'i.ons of the ACM,
VoL 24, No. 9, September 1981.

[Teitelman and Masinter.B1]
Teitelman, W., and Masinter, L.. "The Interlisp
Programming Environment", Computer, Vol. 14,
No. 4, April 1981.

21

