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Abstract: This paper shows how the principles of programming 
methodology and language design can help solve the problem of 
specifying and creating interactive display interfaces for softwal:e 
systems. Abstraction techniques, such as abstract data types, can 
support both the specification of display interfaces and the ira- 
plementation of those interfaces in a variety of styles. These 
abstraction techniques also guide the organization of software 
systems that will use display interfaces. We are developing a sys- 
tem that includes specifications, interface description tools, 
prototype organizations, and runtime support. The emphasis is on 
flexibility and on the separation of policy from particular instances. 
Preliminary results from implementations in a prototype domain 
indicate the feasibility of the approach. 

.1. Int roduction 

The Descartes project extends research on abstraction tech- 
niques in programming languages to a new problem domain: the 
design and creation of interactive program interfaces that use 
high-performance displays. The programming-language view- 
point helped us to separate independent issues, to understand the 
degree of generality and flexibility required, and to organize the 
program structure. 

The interface between human users and computers plays a critical 
role in effective computer use, especially for naive users. The 
relative costs of human professional time and computer time have 
shifted to place the premium on professional time, and that profes- 
sional time is currently underutilized. One study showed that in. 
formation retrieval, text processing, and automated calendars 
have high potential for improving the use of professional time [35]. 
Since many professionals are not computer professionals, the 
quality of the user interface is important. 

In the past, interactive interfaces have usually been one- 
dimensional: the user typed a sequence of independent com- 
mands and the program appended input and output text to a 
typescript, or textual record of the session. In contrast, a two- 
dimensional interface presents a variety of information simul. 
taneously and updates it dynamically; a given piece of information 
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can be kept up-to-date and in a rese~ed screen position. Studies 
of text editors [6] and interaction techniques [9, 22] support the 
intuition that two-dimensional displays are better than one- 
dimensional typescripts. Thus, the availability of inexpensive 
high.performance displays provides an opportunity for qualitative 
improvements to interactive interfaces. Unfortunately, sophis- 
ticated display interfaces are currently difficult and expensive to 
develop. 

The specific objective of this project is to simplify the task of 
developing interactive display interfaces by applying the tech- 
niques of abstraction, specification, and programming language 
design. To achieve this, we are developing concepts and models 
for specifying human-computer interactions in a wide variety of 
styles. We emphasize the use of concepts appropriate to the level 
of description -- for example, by describing interactions in terms of 
user-level notions such as "menu" and "scrolling" rather than 
primitive graphics notions such as "picks" and "valuators." We 
are also developing software tools that allow specific interfaces to 
be created easily. We believe it should be easier to construct and 
to use richly interactive two-dimensional interfaces than it cur- 
rently is to use typescripts -- and these display interfaces should 
be so attractive that no one can stand to interact in any other way. 

We are concerned with conceptual and software tools for system 
developers; the entire community of users will benefit if system 
developers can take advantage of display technology quickly and 
efficiently. Our primary emphasis is on high-performance displays 
(high resolution and high bandwidth), but personal computers and 
"smart" character-oriented terminals are also of concern. 

Consider, for example, a program that helps students to under. 
stand finite automata by allowing them to define finite-state 
machines and provide input for simulated execution. Such a 
program supports several kinds of operations: creating and edit- 
ing FSM definitions, saving and restoring these definitions as files, 
simulating execution on specific inputs, and providing instructions 
on the use of the program. A typescript interface can provide this 
functionality; indeed, we developed a typescript-driven FSM 
simulator for class use several years ago. It is easy to imagine 
other alternatives for the interface: One possibility is a textual 
display in which the machine definition, input tape, instructions, 
and so forth occupy fixed positions and are updated indepen. 
dently. Another possibility is a display on which menus are used 
to select operations and the FSM is defined and manipulated 
through a graphical display of its transition matrix. Multiple view- 
ports could be used, for example, to browse through on-line 
course material, communicate with the course instructor, or work 
with more than one machine definition at a time. 
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These options and others are suggested by interfaces that now 
exist. Certainly, the design of the client program (in this example, 
the FSM simulator proper) should be independent of the design of 
the interface, though the application will naturally set the require- 
ments for the interface. We see a modest number of general 
styles for these interfaces and an enormous amount of variation in 
specific details. However, the tools that currently support the 
creation of the interfaces either require the designer to work at a 
very low level of abstraction or else preempt the decision about 
general style and many of the specific details. 

Our objective is to find a unifying framework for these design alter- 
natives and develop a set of supporting tools and design tech- 
niques. These results must allow the interface designer to range 
freely over the design space and to instantiate a design easily for 
any interface device with adequate power. The remainder of this 
paper surveys previous work in programming methodology and 
graphics, discusses interface specification and implementation 
issues, and describes our early implementation results. 

2. B a c k g r o u n d  

Since Descartes draws heavily both on the methods of program- 
ming languages and on the examples and techniques of display 
interfaces, we will briefly review these areas and suggest a basis 
for their interaction. 

2.1. Methodological Basis 

Descartes builds on a substantial history of abstraction techniques 
in programming languages [42]. In the 1970's, work on abstract 
data types refined an intuition.("organize programs around major 
data structures") and some examples into a systematic theory. 
This theory had specific requirements for program organization 
[34], language support [26, 29, 43], formal specification [16], and 

verification [23]. Although the abstract data type provides a good 
paradigm for organizing many programs, it is not suitable for all 
programs. Nevertheless, the process of developing the theory of 
abstract data types can serve as a model. The methodological 
goal of this research is to improve our understanding of how use- 
ful theories about program organizations emerge from•practical 
intuitions. 

The past decade's results on abstract data types offer both 
guidance and stimulation. Whereas abstract data types were ex- 
plored largely in the context of general-purpose programming lan- 
guage design, we are working with specifications, system or- 
ganization, and the special abstractions needed for dynamic inter- 
actions. We believe it is now appropriate to focus on a narrower 
task area, trading generality for problem-specific power. 

In addition to using specification techniques for abstract data 
types, we can build on existing formal specifications for graphics 
[30], viewports [17] and interactive input [37]. Interactive inter- 
faces have several separable components, including display 
layout, input protocols, computational properties, and the relation 
of the interface to the client program. Thus recent research on 
writing and combining partial specifications[7, 18] is also per- 
tinent. 

In a broad sense, of course, interactive interfaces implement lan- 
guages for controlling programs, so many of the design criteria for 
programming languages also apply to these interfaces. Interfaces 
are much less concerned with complex control flow than are 
general purpose languages, and they are much more concerned 
with input interpretation, output formatting, and ease of use. Con- 

cepts such as data structure, scope, extent, binding, and abstract 
definition apply in both cases. Although programming languages 
provide little guidance about input and output, we can draw on 
related work on output for diagrams [25, 46] and data types 
[32, 47]. 

2:2. Prior Work on Display Interfaces 

A number of hand.crafted systems have explored the potential of 
the display medium, often for a specific app!ication domain such 
as electronic mail handling [3], music synthesis[4], business 
automation [8], or creating documents with both text and graphics 
[10, 21,41]. 

The chief difficulty in developing and evaluating interactive display 
interfaces is that they are hard to build. For example, a study of 
interactive business applications showed that display generation 
and management code typically constitutes a majority of the code 
[44]. This has naturally led to work on systems and tools which aid 
in constructing display interfaces. 

Existing systems for developing display interfaces cover very 
limited domains. Typically, only one interface style is supported, 
such as "form-filling" in a fixed network of forms [40, 39, 20] or a 
"table top" of overlapping viewports on distinct processes 
[41,45]. Substantial control over display appearance is offered, 
but user interaction protocols are predetermined. 

Some principles for organizing interactive systems have been sug- 
gested; they address questions such as ways to compose defini- 
tions of independent components [7], the use of databases and 
assertions about data dependencies [12], global metaphors for in- 
teraction [1, 18], robustness to human error or misunderstanding 
[19], the organization of complex interaction scenarios [38, 49], 
and means for avoiding dependence on specific hardware [1, 89]. 

A variety of graphics support software also exists: the Core 
graphics standard[15] is supported with software packages 
[11,83, 49]; operating systems have been adapted to support in- 

terfaces to several processes through distinct viewports [27, 45]; 
and specialized systems for generating interfaces of specific types 
have been written [2, 8, 24, 28, 49]. 

However, experience with high-performance displays is not yet 
widespread; the available tools usually preempt many decisions 
about the nature of the interaction; and few general, flexible tools 
are available to implementors who want to base user interfaces on 
these displays. 

3.  P r i n c i p l e s  f o r  O r g a n i z i n g  I n t e r a c t i v e  S y s t e m s  

The Descawtes design is driven by three principles concerning 
relations between the underlying application (the client program) 
and the display (as represented by a software module called a 
compositor). 

• Strong linkage between display and client program: At all 
times, the display should reflect the current state of the dis. 
played variables. In general, assignment to a displayed vari- 
able must be thought of as potentially'requiring complete 
regeneration of the display. Naturally, optimizations are 
desirable. 

• Decoupling of application from interface: The input-output 
interface should be separable from the client program. 
Software systems should be organized so that it is 
straightforward to replace one display with another display 
or with a different kind of interface. One implication of this 
principle is the separation of general style from specific 

101 



layout details in the display design; in turn, this separation 
makes it easier to support a variety of styles. 

• Separation of policy from instance: Stylistic uniformity of in- 
terfaces is an advantage, but interface designers need 
guk;lance about style and organization. Conversely, coerc- 
ing designers to a Single style is too rigid; they need freedom 
to choose from a selection of styles. However, freedom 
does not imply complete license; it should be simplest to 
follow an established style. Hence, stylistic policy should be 
separable from the layout decisions for any particular inter- 
face. 

4.  I n t e r f a c e  S p e c i f i c a t i o n  I s s u e s  

Interface specifications, like specifications in general, should be 
written in terms appropriate to the design rather than in terms of 
implementation mechanisms. The specification language must 
therefore capture the constructs and the kinds of variability that 
the designer expects to use. 

Current theories of abstract data types do not deal adequately 
with input-output even in linear text, and the problem becomes 
critical for interactive displays. Before the value of some variable 
is displayed, its internal representation must be converted to a 
human-intelligible literal form. Since there may be many output 
renderings for a given Value, the conversion must also take for- 
matting information into account. For one-dimensional output this 
literal is usually a character string. For two.dimensional output 
the possibilities also include images of various sorts; we call the 
resulting literals icons. 

Even worse, interactive input requires a complex dialogue to 
provide feedback as the human user creates individual input 
values. Even in the simplest case, a "backspace" character 
should remove the offending character from the display instead of 
adding some deletion character to the tail of the string; extremely 
complex dialogues can arise when input involves, for example, 
interactive validation or selection from a collection of dis.ola~ved 
alternatives. We call this dialogue prosody, in an extension of the 
definition of "prosody" as the rhythm, cadence, and emphasis of 
spoken prose. 

Designing an interactive interface involves choosing the infor- 
mation from the client program to display, the ways the user may 
manipulate this information, and the static and dynamic arrange. 
ment of the information on the display. Many of the elements 
included in an interface will be defined in terms of other, more 
primitive elements. We therefore need a formal specification sys- 
tern that supports precise specifications of individual components 
of a display and also generic composition rules that allow the 
creation of new components from existing ones. The major con- 
ceptual problems arise from the dynamic nature of interactive 
computing. We address them here as specification issues. 

• Mode/for specifying display output: Program values must be 
converted to iconic form before they can be displayed. This 
conversion requires knowledge about the representations of 
the program data types as well as knowledge about icons 
and formats. Since most values can be displayed in many 
different ways, a format notation for controlling the conver- 
sion is required, in an interactive system, format control 
cannot be exercised solely by the client program as it con- 
verts values to icons. The compositor and the human user 
may also need to influence format decisions, so an arbitra- 
tion mechanism is needed to resolve conflicts. 

• Model for interpreting interactive input: Client ' programs 
receive input that may include references to the display, 
timing information, and special.device input as well as or- 
dinary characters. As noted above, processing this input" 
may require intermediate feedback to the human user. The 
prosody, o r  protocol for this feedback, plays a role for input 
comparable to the role format plays for output. Like format, 
prosody requires models for specifying elementary 
protocols (e.g., "releasing red button selects an element in 
this viewport" or "a backspace character causes the pre- 
vious character to be deleted") and for combining them into 
more elaborate ones (e.g., selection from a multilevel menu 
or inspection of a document by scrolling). Another problem 
of interactive input is interpreting "point ing" -- that is, deter- 
mining precisely what value is denoted by an input token 
such as a mouse selection of a displayed icon. 

• Specification system: An interface design has several com- 
ponents; each is complex enough to warrant individual at- 
tention. We must therefore be able to develop partial 
specifications for propertiss such as functionality (e.g., 
"selecting ' # '  saves the definition"); geometry (e.g., 
"instructions are displayed at the bottom"); formated ap- 
pearance (e.g., "header is black on gray with white 
border"); and prosodic behavior (e.g., "red button changes 
viewport size"). Creating full specifications from fragments 
that deal with different properties involves checking com- 
patibility and determining interactions as well as simply 
merging the fragments. 

In all these cases, ease and uniformity of design will be improved 
by localizing general policy decisions about format and prosody. 
Following the example of the Scribe text formatting system [36], in 
which document layout policy and physical device characteristics 
are obtained from a database rather than being defined with each 
document, we establish style definitions that provide initial reason- 
able choices for these design decisions. A database for interface 
development must provide for a variety of interface styles that are 
internally coherent, though different style definitions may lead to 
rather different interfaces. When a designer selects a style, 
defaults are established for numerous decisions on format and 
prosody, so the simplest actions for the designer produce uniform, 
usable interfaces. 

4.1. Spec i f i ca t ion  of  Components :  Menus 

A major task in the development qf a system such as Descartes is 
identifying suitable abstractions for interactive communication 
with programs. These abstractions may ultimately be imple- 
mented, for example, with the elementary primitives of the 
graphics standards, but considerable extra structure and support 
is requi:ed before they are suitable for interface design. In this 
example we examine one familiar example of an interface com- 
ponent, the menu. We establish its role in an interface, suggest 
the stylistic variety of menus in various existing systems, and es- 
tablish a design space that largely explains that variety. 

interactive programs often require the user to supply a value from 
a pre-defined set, such as a value for an enumerated type. ~ In 
typescript systems, the user typically supplies the value by typing a 
literal string. In two-dimensional interfaces with pointing devices, 

1The case of a dynamic set is similar prov|ded all values are known when the 
menu is accessed. More generally, it may be desirable to select soveral values 
from an enumeration (i.e., a value from a powerset), but for this example we 
consider only the simpler case. 
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the option of selection from a displayed menu allows the use of 
one precious resource, screen space, to reduce the load on 
another, the user's time and attention. Many variations on the 
menu ".heme exist in current systems [3, 4, 10, 13, 14, 32, 41]. This 
example describes some design alternatives that account for most 
of that variability and hence provide a model for specifying a large 
class of menus. The resulting comparison indicates that no ver. 
sion is clearly superior, but individual designers clearly hold a 
variety of strong opinions. 

Three kinds of information are required to define a menu: linkage 
to the client program, display format, and input prosody. 

• The linkage to the client program has two components: the 
set for which the menu is providing selection and a variable 
to be set by the selection operation. 

• Display format requires format decisions for assembling the 
iconic literals of the menu's elements, including decisions 
about the creation and presentation properties described 
below. An intermediate representation for icons (type glyph, 
described in Section 5.2) provides much of the support for 
these decisicns: for example, the specifications that estab- 
lish the style for viewports should also establish a matching 
style for menus. 

• Prosody requires a selection mechanism that interprets low- 
level user actions such as key transitions and locater posi- 
tions to make the actual selection; this, too, can take advan- 
tage of existing abstractions and the intermediate represen- 
tation. 

The creation properties of a menu describe where, how, and un- 
der what circumstances the menu will be visible. The locations 
and sizes of the viewports to be allocated for the menu are es- 
tablished, possibly on the basis of other information such as the 
current cursor location. A menu may be "visible or "invisible"; if it 
is invisible it is not currently consuming display resources. Crea- 
tion properties include the format rules for those aspects of the 
menu display that are independent of the particular icons for the 
alternatives (e.g., the colors of the background and the border, 
whether the name of the menu is displayed). 

The presentation properties describe the mechanisms used to 
present the items for selection. The straightforward approach is 
to display all the items simultaneously, but this sometimes con- 
sumes too much display space. Therefore, the general menu 
schema must include a way to consider the alternatives selec- 
tively. The common options include: 

• Scrolling: The items are formated into a two-dimensional 
plane, and a window into that plane is shown in the viewport 
of the menu. "Scroll bars" on the menu borders allow pan- 
ning over the plane to bring other items into view. 

• Cycling: A limited amount of space is used to display 
(typically) one item, and the user may examine the alter. 
natives in some fixed order. This option differs from scroll- 
ing chiefly in the fixed order for exhibiting the alternatives. 

• Subdivision and hierarchy: The menu alternatives are par- 
titioned, and partitions may be displayed individually. If the 
menu is hierarchical, selection of an item in one partition 
may activate the menu for another partition. If the partition 
is not hierarchical, the partitions may be displayed indepen- 
dently; they may also share screen space by being "stacked 
up" so that all partitions are partly visible but selections can 
be made only from the top element of the stack. 

The selection properties describe how the user's low-level input 
actions will be interpreted to indicate selection and the feedback 

that supports this. Common existing selection mecl~anisms in- 
clude: 

• Simply typing the literal "name" for the item as a string. 

• Typing, with command completion or spelling correction. 

• Softwar e mapping of function keys to particular items. 
• Screen position of a Iocator device (e.g., a mouse) when a 

button is depressed or released. 

The protocol, if any, for highlighting a tentative selection (e.g., the 
alternative under the cursor when no buttons are pressed) is also 
a selection property. More generally, Descartes prosody 
mechanisms must cover all cases of interest. 

The examples of Figure 1 show how menus in several existing 
systems fit into this design space. Figure la  shows the Star 
system's menu [31,41]. This statically allocated menu contains 
varied items, some of which have internal structure. When icons 
are selected, they "display their contents" in a form of submenu 
(e.g., a folder opens to show the files inside). The user selects an 
icon by pointing and clicking with the mouse. Figure l b  shows 
some "pop-up" menus in the Mesa debugger [32]. Debugging 
commands are partitioned into several submenus. When the 
debugging menu is requested, a set of submenus appears at the 
current cursor location. The mouse is used.to select the "banner" 
of a partition to access that submenu, then again to choose an 
item within that submenu. Tentative selection is indicated by high- 
lighting (in this case, with reverse video as long as the mouse 
button is depressed). Figure l c  shows a scrollable menu from the 
Toronto music system [4]. The object named in the small Window 
on the menu is displayed in the adjacent panel. The menu can be 
scrolled; it can also be switched from temporary to permanent 
objects. 

4.2. Speci f icat ion of a Complete In ter face  

In this section we return to the example at the beginning of the 
paper: an FSM simulator. We discuss the development of the 
display layout for this application in terms of abstract composition 
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rules and of components such as menus. In this example, we are 
concerned only with format .- the display layout -- and with the 
level of abstraction appropriate to the task. Specifications for 
overall style, prosody, and detailed functionality are not addressed 
here; they should be separable so that the interface designer can 
focus on specifying the desired viewport layout, leaving details of 
the layout to the system and dealing separately with functionality 
and interaction protocols. 

Since display interfaces are highly visual, the designer should be 
able to develop a specification interactively with the help of 
software tools that illustrate the current layout of the interface at 
the same time as the formal specification is defined. Although we 
have only begun to prototype these tools, we can describe how we 
would expect them to be used for developing a very simple inter- 
face for the FSM simulator. 

, I n f o  

' F S M  

' D i a l o g  

Figure 2a: Initial Layout 
of Design Sketch 

[ 
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Figure 2b: Addition of More 

Specification Structure 

The interface designer might begin by deciding that the interface 
will consist of a "frame" that provides fixed information about the 
system and contains three components: one for system identifica- 
tion, one for displaying the current FSM definition, and the last for 
handling the user interaction. The designer might represent these 
decisions as in Figure 2a, by designating the major components 
and indicating their relative positions. The development tool, in 
turn, provides policies for dividing the available space among the 
several components. At this stage, with no information about the 
contents of the components, it is reasonable to allocate each sub- 
component equal space. As the makeup of a component is es- 
tablished, it becomes possible to refine the allocation on the basis 
of the requirements of individual components. 

Each component of this general description might be refined as in 
Figure 2b. The "lnfo" component contains constant system iden- 
tification. The "FSM" component contains input and output 
tapes, current state, and the machine definition. The "Dialog" 
component contains simple input and output buffers, the com- 
mand menu, and a typescript of documentation. Some of the ele- 
ments of this refinement are associated with character string vari- 
ables; the portion of the screen allocated to each of these might 
now be constrained to provide for a single line of text. 

Section 4.1 presented a model that leads to a generic definition of 
menu;, one possible incarnation is used here for the command 
menu. The association of scrolling with a body of information is 
similarly generic, .and the help region can appeal to a predefined 
schema for scrolling. In both cases, the actions required of the 
designer should be selecting the appropriate composition rule and 
associating it with the display region and the corresponding data 
structure in the application program. An interface constructed 
along these lines in the current Descartes system is illustrated in 
Section 6. 

During the specification process, the design tool will construct a 
definition of the interface. The graphical form that is manipulated 
interactively by the designer is only one representation of that 
definition. The definition must also be represented in a form that 
becomes part of the compositor; this might be either tables or 
code fragments. Further, it is highly desirable to have a static, 
textual version of the formal specification. 

As an example of a suitable form for this formal specification, we 
can show specifications for Ihe example above. The purpose of 
this example is to illustrate the structure of a specification. 
Precise semantics are also essential; both the syntax and the 
semantics are still under development. 

We will specify each element in the form: 

<name>: <m/e> of <components> wi th  <formal decisions> 

In this template, <name> is an arbitrary (optional) identifier. <Rule> 
indicates that the named icon is produced either directly from 
program data (e.g., PgmVar, Text) or by various forms of composi- 
tion (e.g., Compose, Menu, Scroll) of the named icons. The 
of clause lists the components of the element being defined; these 
components are all constructed with composition rules. The 
w i th  clause provides format information; defaults for many of the 
attributes controlled b y  these clauses are pre-specified by an in- 
terrace style with a use rule in a separate style specification. 
These defaults are established in the form: 

fo r  <rule> use <format decisions> 

The FSM simulator interface described above can now be formally 
specified as: 

Simulator: Compose of Info, FSM, Dialog w i th  Align = Vert 
Info: Compose of 

[PgmVar of Logo wi th Format = StickFigure] 
[PgmVar of Version] 

w i th  Format = Plain, Align = Vert 

FSM: Compose of 
[Compose of InTape, OutTape, Mach w'ith Align = Vert], 
State 

w i th  BkGrnd = Grey, Align = Horiz 
InTape: Compose of 

[Text of "Input: "], 
[PgmVar of InputTape w i th  BkGrnd = Red] 

w i th  Format = Plain, Align = Horiz 
OutTape: Compose of 

[Text of  "Output: "], 
[PgmVar of OutputTape w i th  BkGrnd = Red] 

w i th  Format = Plain, Align = Horiz 
Mach: PgmVar of FSMDef 
State: Compose of 

[Text of "Current State"], 
[PgmVar of CurState w i th  Format = Char, BkGrnd = Red] 

w i th  Align = Vert 
Dialog: Compose of Command, Help w i th  Align = Horiz 
Command: Compose of 

[PgmVar of Prompt], 
[PgmVar 0f Response wi th  Prosody = FullLine], 
[Menu of [PgmVar of Options]] 

w i th  Align = Vert 
Help: Scroll of [PgmVar of HelpText] 

All program variables named by the rule PgmVar must be supplied 
by either the compositor or the client. The types of these variables 
are not at issue, for they are converted to a common intermediate 
representation before they reach the compositor. 
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In this example, the composition rules are governed by the follow- 
ing default formatting decisions. Collections of such rules define 
"styles" and can be provided in a library. 

for Compose use Format = Framed, Font = TimesRoman, 
AIIocPolicy = Fair, BkGrnd = White 

for  PgmVar use Format = String, Prosody = NoWrite 
for Menu use Create = Static, Present = All, Select = Mouse 
for Scroll use Heading = "Option Meaning", BarPos = Left, 

BarUp = Always, Prosody = Mouse 

The format language used in this example is a variant of Scribe's 
environment definition language for text documents [36]. The 
definition of Compose should capture the policy for dividing the 
available space among the components; in this case the rule 
reserves space for fixed-sized elements and divides the remainder 
evenly among variable-sizod elements. The Menu and Scroll com- 
position rules must be defined in terms of primitives and of other 
abstractions. Format information in the use or w i th  clauses is 
inherited by subcomponents unless explicitly overriden; it may 
qualify the way a composition rule is used for rendering images.. 

The organization of this formalization is quite similar to the 
descriptions of interfaces now preserlted in user manuals (e.g., 
p. 8 of [3], p. 41 of [5]). 

This specification does not address the actual functionality of the 
program or the protocols for input, field selection, menu selection, 
or scrolling. Although the range of possibilities for the display 
layout interacts with decisions about those other properties, we 
be!ieve that the decisions are largely independent and hence that 
the specifications should be largely separable. 

5 .  S o f t w a r e  O r g a n i z a t i o n  I s s u e s  

Descartes must support implementation as well as specification of 
display interfaces. To that end, the organization of an application 
developed under Descartes reflects the principles of Section 3: 
strong linkage between client and display, decoupling of applica. 
tion and interface, and separation ot policy and instance. In ac- 
cordance with the first principle, Descartes provides a s impleway 
for a client application to make selected variables available for 
interaction; the interaction is managed by a client-specific module 
called a compositor. In accordance with the second principle, 
Descartes is organized so that the use of these variables by the 
compositor is almost transparent to the client. In accordance with 
the third principle, the Descartes system will provide tools for the 
interactive graphical development of the specifications for the in- 
terface; these tools will make use of a data base with mechanisms 
for sharing general definitions. 

The code in a system with a display interface includes the modules 
of the client application itself, a compositor developed specifically 
for the application, and some utility code shared by all Descartes 
interfaces. The organization of a system with a Descartes inter- 
face is illustrated in Figure 3. Note that the display utility is com- 
mon to all systems; all other modules are specific to one applica-. 
tion. 

The compositor is responsible for screen layout and for mediating 
between the client program and the user. It binds the specific 
decisions about layout, format and prosody made in the interface 
specification to the internal data structure that represents the dis- 
play. Since the shape of this internal data structure mirrors the 
structure of a specification, preliminary results indicate that it may 
be possible to generate a substantial portion of the compositor 
code automatically from the interface specification. 

Figure 3: Organization of a system with a Descartes interface. 

The shared utilities include a number of largely-independent com- 
ponents that maintain the state of the display and address issues 
of interaction: 

• Interactive extension of ordinary types: Both primitive and 
user.defined types must be extended to produce iconic out- 
put and to interpret a user's reference to the displayed icon. 
Some types are supported by the utility package, but the 
input-output extensions for newly defined types must be 
created before the types can be incorporated directly in in. 
terfaces. 

• Intermediate representation to support icon construction: A 
new data type, glyph, is used for intermediate represen- 
tation of the information that will become a screen icon. 

• Input Handling: Routines must be provided to translate low- 
level input events into values of the respective types. Some 
of this code is type-specific, but other problems are com- 
mon to all types. 

• Format and prosody specification: Notations (and run-time 
representations of those notations) for describing format 
and prosody are important components of a system; our 
current implementations are extremely simple. 

• Basic graphics supporh The virtual graphics device 
provides low-level primitives; it is responsible for actual 
generation of the display. 

The remainder of this section presents the design of the Descartes 
implementation: Sections 5.1 to 5.4 discuss the shared utilities; 
Section 5.5 deals with the ways the development tools and the 
data base help to implement a compositor. The current status of 
the prototype implementation is discussed in Section 6. 

5.1.  In te rac t i ve  Extens ions of the User 's  Types 

Two of the principles central to Descartes concern the relation- 
ships between an application and its interface. As discussed in 
section 3, the principle of strong linkage implies that the display 
should reflect the current state of those variables being displayed, 
and the principle of decoupling implies that it should be possible 
to link several different interfaces to the same application 
program. This section discusses how the implementation sup- 
ports these objectives. 

The use of a display interface should have minimal impact on the 
client program. In Descartes, each compositor that builds an in- 
terface for a client determines which program variables will be 
displayed (e.g. finite-state machine tape), what the display at- 
tributes will be (e.g. color, font, position), and how necessary 
values will be obtained (e.g. typing, selection). To maintain the 
strong linkage principle, a compositor associates display com- 
ponents corresponding variables so that every assignment to a 
displayed variable automatically triggers an appropriate update of 
the display. 
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We view this consistency requirement as an invariant constraint 
on program execution that must be maintained by the system: 
Descartes supports a class of such invariants between arbitrary 
program variables. The most interesting use of these invariants is 
to establish the relation that a display component reflects the cur- 
rent value of its associated variable. This can be achieved by 
triggering a display update whenever the value of the variable 
cnanges. 2 No other restrictions are placed on an application 
program. 

Each data type whose values may be displayed must also provide 
a set of extensions to support interactive two-dimensional input 
and output. The compositor uses these extended operations to 
establish the display invariants connecting variables and display 
components, to construct images, and to interpret input events. 
Many of these routines require no special knowledge about the 
data type and can therefore be generic. Naturally, the routines 
that construct intermediate representations of icons (i.e., glyphs) 
and interpret references to the resulting icons require substantial 
type-specific knowledge and must be constructed individually. 
These routines may use other utility support such as image con- 
struction and ASCII string collection operations. By assigning the 
responsibility of these routines to the individual types, we can ach- 
ieve a clean decomposition of the Descartes system. 

5.2. Glyphs: Intermediate Representat ion of I cons  

Display images have a rich, composite structure. They may be 
composed of subimages that have specific relationships both with 
program data (e.g., displaying a value) and among themselves 
(e.g., one image is immediately below another). It is not only 
necessary to build, compose and manipulate these images, but it 
is also necessary to propagate information about formatting and 
interpretation decisions around the composite structure. 

The data structure chosen to represent the information necessary 
to exhibit a program's data on a screen is called a glyph. The 
glyph structure is designed to represent structural relaticns 
among display components, format and prosody policies for these 
components, and dynamic visual attributes of the display. In the 
following paragraphs, we describe the glyph data structure, its 
important properties, and the operations provided to manipulate it. 

In order to achieve the desired flexibility for the specification of 
display characteristics, a glyph is structured as an inheritance 
tree. 3 The display attributes (e.g., color, font, position) at any 
given node in the tree may be left underspecified. Complete 
values for these attributes are calculated by inheriting values from 
the node's ancestors and combining them with the partial (or non- 
existent) value given at the node. Thus, the composito r may ach- 
ieve a uniformity of style by specifying that various display charac- 
teristics are to be inherited by descendent components. 

Stylistic uniformity for interfaces also involves making consistent 
dynamic changes in the display attributes when the program state 
changes. These attribute changes are achieved by storing in each 
glyph node several sets of display attribute values and some in- 
dication of which set is currently active. By resetting which value 
set is active, visual cues may be given to indicate the current ap- 

2In the absence of user-defined assignment, we have had to resort to procedure 
calls in place of assignment to achieve this. 

3Although strict hierarchies are usually too restrictive, display interfaces seem 
to be organized such that every screen region is entirely contained by some other 
screen region. Therefore, we currently assume that th{3 will be the case for 
Descartes interfaces. 

plication program state. For instance, when a screen button is 
"pushed" indicating that some command is to be executed, the 
background color of the region may change. By allowing a com- 
positor to choose how the different regions of an interface react to 
changes in program state and how display attribute values are 

inherited, style and policy can be separated from the particular 
instances of display attribute values. 

A value for a display attribute may be specified in several ways 
with regard to how it interacts with the inheritance mechanism. 
The important decision determines whether the value is absolute 
(no need for inheritance), relative (must be combined in some way 

with the value from the node's parent), or absent (must either be 

replaced totally with the value of the parent or left completely 
unspecified). In addition, each attribute must provide the rules by 
which relative values are combined. The following specification of 
the function PropertyOf defines the basic inheritance mechanism 
for determining the value of an attribute of a node in the glyph 
tree: 
function PropertyOf(G: llypho P: Property) returns 

if HssProperty(G, P) then 
if IsRelative(GetProperty(G. P)) then 

if HasParent(G) then 
Combine(PropertyOr(Parent(G). P), GetProporty(G. P)) 

else 
Combine(OefaultValue(P). Get, Property(G, P)) 

else 
GetProperty(G, P) 

else 
if HasParent(G) then 

Proper tyOf(Psrsnt(G), P) 
else 

Oefaul tValue(P) 

Of the operations used in the definition, HasPropetty and 

/sRe/ative indicate whether a glyph's value for a given property is 
absent, relative, or absolute; Combine describes how to merge 
relative values of a given type; and GetProperty produces the local 
value associated with a given property for a glyph node. The 

actual problem is somewhat more complex than the one 
presented here, and the actual mechanism is correspondingly 

more compex. 

Much of the function of the glyph structure deals with displaying 
the current state of a program's variables. In particular, we are 

interested in maintaining the invariant that the screen reflects the 
current value of displayed variables. Each program variable being 
displayed must therefore be associated with a glyph node. Since 
assignment to a variable may trigger an update of the screen, the 
set of gtyphs that display the variable must be explicitly associated 
with the variable. Thus, every glyph node either has no associated 
variable or is a member of the set of nodes connected to a vari- 
able. 

When a new type of component becomes available -- especially 
one that involves extensive implementation, such as a document 
preparation system -- it should be easy to incorporate instances of 
that component as elements of interfaces. The best mechanism 
for this extension is still an open problem. 

The glyph structure also allows a compositor to arrange the 
screen and interpret users' references to displayed information. 
An important decision is the policy used to determine what gets 
displayed when two components share the same screen position. 
This display policy affects the algorithm used to map between a 
user-generated position input and a particular node in the glyph 
structure (see Section 5.3). 

So far, the glyph data structure has proven adequate in represent- 
ing the program data to be shown on a screen, in flexibly describ- 
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ing the display attributes of exhibited information, and in simple 
composition and ktput tasks. We expect tl~at glyphs will ~dso 
prove useful in the composition of more complex icons and in the 
definition of sophisticated input interpretation. 

5.3, Input handling and control organization 

The other side of constructing two-dimensional interfaces involves 
furnishing the means to define the complex dialogues that provide 
input to the application and feedback to the user. Issues include 
where control over the input process resides, how user input is 
interpreted, and how the interaction between input and echoing is 
defined. We present the issues below and describe the 
mechanisms in the current Descartes system that address them. 

A variety of program organizations can be used to coordinate the 
client application with the interactive user. At one end of the 
spectrum is the control-driven organization used in a data-entry 
program. The program asks for the values it needs in a particular 
order and the user is constrained to supply each value as it is 
requested. At the other end of the scale are data-driven programs 
which wait fOr any user input and respond to it, as in a screen- 
oriented text editor. Data-driven programs may be characterized 
by tables of <input, action> pail's, whereas control-driven 
programs are more easily described by the code that implements 
them. 

Most programs, however, are a mixture of the two types. For ex- 
ample, the text editor may ask for a parameter to a command and 
disallow other input while collecting that parameter. Thus, it is 
important that systems provide a description mechanism that al- 
lows easy blending of the two styles when needed. 

Descartes supports a variety of control organizations: the main 
thread of ¢o ntro_l c~n be distributecl !n various ways between the 
application proper (for the control-driven styie) and the com- 
positor (for the data-driven style). At present, there are no 
description tools for the data-driven organization. 

The second issue, interpretation of user input, can be approached 
by organizing the input facilities as a set of transducers. Each 
transducer takes inputs at one level of complexity and produces 
(usually fewer) outputs at a higher level of complexity. The 
granularity of these transducers makes it easy to provide libraries 
of abstractions such as scroll bars and menus. 

A low.level transducer might provide a "lexical analysis" facility 
for user input events. Many interactive programs have conven- 
tions that cause a small number of low-level events to be inter- 
preted as a single higher-level event. For example, a mouse but- 
ton typically provides an indication when it is released as well as 
when it is depressed. Programs often use this to indicate tentative 
selection of an option. However, the client using this facility would 
like to receive only an "option has been picked" indication. 

The current facilities for these transducers are quite primitive. We 
provide a transducer that supports the usual backspace and line 
deletion ope;ations on string input. The null transducer gives the 
compositor direct access to the sequence of keystrokes and but- 
ton clicks from the user. We also provide a transducer for each 
data type (as part of the type extension) that translates a sequence 
of low level events into a value of that type. Input formats provide 
some control over the behaviour of these transducers. - 

A third problem is that of integrating the input facilities with the 
output facilities. The input routines must echo the user's input to 
provide feedback to the user. To do this, they will need access to 
tl'ie same output facilites that Descartes clients use. Also, the 

glyph tree contains information useful for input event routing 
among the various transducers. 

In the current system, this integration is limited. For instance, 
when a type transducer is invoked, it is given a screen region 
associated with a glyph node in which to echo user input. Also, 
the glyph tree may be used to interpret pointing at a program 
variable. We do not fully understand how this interaction between 
input and output will evolve in future versions of Descartes. 

We are slowly beginning to understand the issues concerning 
program control and input interpretation. Our goal is to achieve 
the same level of understanding that we currently have about the 
issues dealing with image construction and display. 

5.4. Graph ics  suppor t  

A small set of graphics routines form the interface to the physical 
display device. They allow the drawing of graphical primitives at 
the level of line, character string, filled polygon, and so on, with a 
variety of attributes such as color, line style, etc. Input events are 
provided at the lowest ("rawest") level under the assumption that 
higher-level transducers will translate them into more abstract 
tokens or lexemes. 

5.5. Achieving "style" 

The compositor realizes the specification of the application's in- 
teractive user interface by maintaining details of display layout, 
icon format, and input prosody, it does this on the basis of par- 
ticular definitions of the rules and format decisions used in the 
specification. The vehicle for this administration its the inter. 
mediatedata type glyph. 

A set of these definitions constitutes a "style." A style serves two 
purposes: 8y providing, th~ definitions of" composition rules, a 
style determines what role a component plays in the interface. 
The definition of compose determines how its components are 
placed in a display; the definitions of Menu and PgmVar must also 
say something about the kind of interaction allowed. By providing 
the definitions of format and prosody decisions, a style determines 
how a component is to fulfill its role. Applied to the root of the 
glyph tree, a style may be inherited by the entire display, enforcing 
a consistent appearance and consistent prosody on the entire 
structure. Thus changing the style of the root may effect a major 
change in the appearance and prosody of the entire display. 

Following the model of Scribe [36], we intend to provide a library 
of styles. The library will consist of a data base together with a 
mechanism that allows general definitions to be shared. In most 
cases, we expect that the designer of an application will be able to 
select a style from this libr.~ry without modification. In some 
cases, however, this will not be possible; we intend to provide a 
means for the designer of an application to modify or extend the 
library. In particular, we must establish guidelines for adding the 
format and prosody rules in a notation or representation that can 
be interpreted by user-defined types. It should be possible for the 
designer to add new rules, to add new meanings to the rules, or 
provide new sets of options for formatting and prosody. 

At present, the compositor is a hand-written module, typically con- 
taining the series of calls to create individual glyphs, initialize their 
state vectors, register their variables and compose them into glyph 
trees. Style is embedded in these calls. We believe the code for 
most compositors will be highly patterned; if not amenable to 
automatic generation, our experience suggests that the code can 
be forged by rote: 
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6. Prototype Implementat ion 

We are exploring Descartes design and implementation problems 
by building software support for small prototype domains. There 
have been two such domains to date. The first was extremely 
primitive; it was primarily useful for exploring program organize- 
tion and sharpening our notions about separability of definitions. 
The second is a bit more ambitious; it incorporates elementary 
graphics as well as text, and it allows us to work with more realistic 
examples. This section discusses the two domains and the state 
of implementation in April 1983. 

6.1. First  P ro to type  

For the initial investigation, we selected an extremely restricted 
problem domain. The purpose of the restrictions was to allow us 
to concentrate on system structure instead of implementation 
diversity; we tried to avoid taking unfair advantage of the restricted 
character of the domain. 

For out initial prototype domain we chose 24x80 character 
"smart" terminals with cursor addressing and a keypad for cursor 
control; screen configurations based on regular rectangular com- 
position operators with layouts normally bound at definition t ime;  
primitive elements including string, integer, float, enumeration and 
date (a user-defined type); icon formatting including hierarchical 
inclusion, normal and highlighted depiction; and several varieties 
of prosody. The software is written in SubAda. 4 it runs on VAXes 
under Unix with "smart"" terminals and on PEROs under POS, 
where it.does not take advantage of the bitmap display, but it does 
use the Canvas graphics support [2] in anticipation of a larger 
problem domain. 

Four small clients run on VAXes and PERQs. They are organized 
as described in Section 5: display updating is handled th rough 
property lists associated with program variables and interaction is 
handled in a separate compositor module. The basic utility sup- 
port has a common interface for VAXes and PERQs. It provides 
extensions for data types, types for intermediate representations, 
and a high-level virtual terminal in a form somewhat different from 
that described in Section 5. The VAX implementation of this sup- 
port manipulates the terminal directly and the PERQ implemen- 
tation uses Canvas [2]. 

Finally, a prototype of a PERQ-based interactive development tool 
for 24x80 character displays has been constructed. It does not 

• support editing or formal specifications, but it does generate code 
for setting up complex hierarchical interfaces. 

Although this domain is quite restricted, we were able to get sub- 
stantial experience wifi~ certain aspects of the program organiza- 
tion, including modutarization and control alternatives, data struc- 
tures, and prosodic options. This served as the basis for the 
design described in Section 5 and for the second prototype. 

6.2. Second Prototype 

The second prototype closely reflects the design presented in sec- 
tion 5. We are concentrating on the design of the type glyph, on 
the representation of interactive variables, and on the 
mechanisms that support specifying and building composite dis- 
play structures. The type glyph is central to the prototype; we 
have simplified the association between interactive variables and 

4SubAda is an Ada.like extension of Pascal; it would be an AdS. subset if Ade 
had subsets. 

glyphs and have experimented with the construction of composite 
components such as menus. To date, output format and input 
prosody descriptions remain very primitive; we have incorporated 
enough to test the apparatus, but we have yet to tackle the full 
problem. 

This prototype runs on PERQs; it is implemented in PERQ pascal. 
Since the experience with the first prototype provided experience 
with device-independence, we have in this case concentrated on 
the use of the PERQ bitmap display rather than on independence 
from the display capabilities, though we continue to avoid 
gratuitous dependence on the device. 

We have implemented the data type glyph, a generic interactive 
type support pr(/cedure, with specific support for a few common 
types, and an interface (to Canvas) that supports the graphic con- 
cepts imbedded in glyph. As an example of the kinds of interfaces 
we are able to support, Figure 4 shows an interface constructed 
for the FSM simulator that we discussed in Sections 1 and 4.2. 
The simulator was converted directly from the original typescript 
interface and the conversion is not complete (some operations 
that are not yet available are stricken out on the display). Impor- 
tantly, the client application has not, at this point, been changed 
from the typescript version, though to complete the conversion, 
minor changes will be necessary to undo some heavy dependency 
on typescripts that was built into the client. 
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Figure 4: sample Descartes Interface for FSM Simulator 

7 .  I m p a c t  o f  P r o g r a m m i n g  L a n g u a g e  I d e a s  ... 

The Descartes project is investigating certain issues of program- 
ming methodology in the context of design for intera, ctive display 
interfaces. Our emphasis has been on the ideas about abstrac- 
tion, specification, and separation of concerns that have arisen in 
programming language design. We summarize by noting the 
direct effect some of these ideas have had on the Descartes 
design. 

7.1 . . . .  on In te r face  Design 

Programming languages are often designed in order to codify and 
regularize some aspect of programming methodology. A good 
design does so without unduly restricting the programmer's 
design alternatives. Similarly, we are codifying some strategies for 
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designing and implementing display interfaces. Our objective is a 
unifying framework, not merely software tools. Support for the 
resulting methodology will include canonical program organiza- 
tions, specification techniques, development tools, and runtime 
software utilities. 

It does not seem appropriate for us to design a programming lan- 
guage per se, but many of the strategies of language design are 
useful. We must, for example, specify dynamic processes of input 
and output -- and of their interaction, as when an input is trans- 
mitted by selecting some portion of an image on the screen. 
Indeed, the most important distinctions between abstract data 
types and display interfaces arise from the introduction of two- 
dimensional, dynamic interaction. 

Programming language design often emphasizes "separation of 
concerns." Such separations occur in Descartes in several ways. 
The most obvious is the independence of the specifications of 
output format and of input prosody. Our software organization 
encourages the separability of the display-control module from the 
client program. Moreover, we recognize several useful strategies 
or general styles for organizing a display interface, so it is not 
adequate to provide support for a single strategy. We therefore 
maintain a strong separation between general policy decisions 
and specific instances of interfaces; this is comparable to the 
separation between a document and a document style definition in 
the Scribe document formatting system [86]. 

Much of the recent emphasis in programming methodology has 
been on specification techniques and on the separation of 
abstract properties from particular realizations. On the other 
hand, the emphasis in the area of user interfaces has been on 
construction of particular classes of interfaces and evaluation of 
the results. Descartes shows the influence of the programming- 
language ideas in the view of an interface as a restricted language 
and its emphasis on abstract specification of interface com- 
ponents. 

Any user interface implements a language. Although the inter. 
action is highly dynamic, its syntax obeys certain rules. Similarly, 
the various syntactic units have semantics that correspond either 
tO operations by the client program or to manipulation of the inter- 
face itself. It is not surprising, then, that language design prin- 
ciples such as simplicity, regularity, and well-definedness apply to 
display interfaces as well as to general-purpose programming lan- 
guages. 

In Descartes, we capture the syntactic rules in definitions of 
prosody. The composition rules car~'y much of the burden of the 
semantics of the interface proper; naturally the client program 
supplies the substantial semantics for the application. By collect- 
ing consistent sets of definitions in "styles," we support the 
development of simple, uniform interfaces without forcing all 
designers to adopt a single style. The use of generic composition 
rules helps to assure well.defined interfaces by providing design 
tools that cope with many low-level details. The language in- 
fluence is also clear in the way various sets of concerns have been 
separated: policy from instance, definition from use, functionality 
from inte:face design, and interface code from client program 
code. 

The influence of the abstract data type is also clear. We rely 
heavily on the linguistic technique of identifying abstract con- 
structs appropriate to the problem domain and defining them in 
terms of primitives and other composite definitions. For example, 
we combine the concept of a menu with that of a scrollable region 

of information (both non-primitive constructs in their own rights) tO 
form a menu with a scrollable set of selections. The design of type 
glyph itself and the uniform extensions of all types for interaction 
also show the influence of abstract data types. 

7.2  . . . .  on S y s t e m  Organ iza t ion  

The Descartes software shows the influence of abstract data 
types, both in its philosophy and in the implementation of par- 
ticular system elements. Several of the specific techniques of 
abstract data types are used heavily, including a standard 
program organization, interface specifications, and invariant 
assertions. In addition, several system components are designed 
as abstract types. 

Our emphasis is not on building subroutine libraries but on a 
prototypical program organization that can serve as a template for 
producing systems. We are exploring a particular modularization 
in which icon generation is handled by types in the client program 
and the combination of those icons (or, more precisely, of their 
intermediate representations as glyphs) into larger images is 
handled by a stylized module, the compositor. Similarly, prosodic 
interaction is handled largely by the compositor, but type-specific 
interpretation of the result is the responsibility of the client's types. 
By "stylized modules" we mean that we expect most compositors 
to be variations on the same organizational theme, just as abstract 
data type implementations are variations on the same basic 
theme. 

We are also concerned about specification of interfaces and with 
verification that implementations satisfy the specifications. 
Preliminary results suggest that we may be able to simplify 
verification by taking advantage of the restricted domain and 
generating large segments of the interface modules directly from 
the specifications. In addition, we are exploring graphical tech- 
niques for developing the specifications. 

Another language concept, the use of invariants, is central to the 
system organization. The relation of the displayed image to the 
program variables is defined by invariant assertions. Descartes 
uses property lists associated with displayed variables to maintain 
these invariants automatically instead of forcing the programmer 
to be explicitly concerned with display updating. 

A c k n o w l e d g e m e n t s  

The ideas reported here have emerged from many fruitful discus- 
sions with our colleagues, especially those at Carnegie-Mellon, 
Xerox PARC, and meetings of the DARPA Quality Software Work. 
ing Group. In particular, constructive suggestions from Bill Wulf, 
Phil Wadler, Allen Newell, Cynthia Hibbard, Phil Hayes, Marc Don- 
ner, Richard Cohn, and Jon Bentley helped improve this 
manuscript. We have also been influenced by numerous inter. 
active display interfaces for which we have been unable to obtain 
citable documentation. This research was supported by the Na- 
tional Science Foundation under Grant MCSSO-11409. 
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