
Descartes: A Programming-Language Approach
to In teract ive Display In ter faces

M a r y S h a w , E l len B o r i s o n , M i c h a e l H o r o w i t z ,
T o m L a n e , D a v i d N i c h o l s , R a n d y P a u s c h

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pa. 15213

Abstract: This paper shows how the principles of programming
methodology and language design can help solve the problem of
specifying and creating interactive display interfaces for softwal:e
systems. Abstraction techniques, such as abstract data types, can
support both the specification of display interfaces and the ira-
plementation of those interfaces in a variety of styles. These
abstraction techniques also guide the organization of software
systems that will use display interfaces. We are developing a sys-
tem that includes specifications, interface description tools,
prototype organizations, and runtime support. The emphasis is on
flexibility and on the separation of policy from particular instances.
Preliminary results from implementations in a prototype domain
indicate the feasibility of the approach.

.1. Int roduction

The Descartes project extends research on abstraction tech-
niques in programming languages to a new problem domain: the
design and creation of interactive program interfaces that use
high-performance displays. The programming-language view-
point helped us to separate independent issues, to understand the
degree of generality and flexibility required, and to organize the
program structure.

The interface between human users and computers plays a critical
role in effective computer use, especially for naive users. The
relative costs of human professional time and computer time have
shifted to place the premium on professional time, and that profes-
sional time is currently underutilized. One study showed that in.
formation retrieval, text processing, and automated calendars
have high potential for improving the use of professional time [35].
Since many professionals are not computer professionals, the
quality of the user interface is important.

In the past, interactive interfaces have usually been one-
dimensional: the user typed a sequence of independent com-
mands and the program appended input and output text to a
typescript, or textual record of the session. In contrast, a two-
dimensional interface presents a variety of information simul.
taneously and updates it dynamically; a given piece of information

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ,1983 A C M 0 - 8 9 7 9 1 - 1 0 8 - 3 / 8 3 / 0 0 6 / 0 1 0 0 $ 0 0 . 7 5

can be kept up-to-date and in a rese~ed screen position. Studies
of text editors [6] and interaction techniques [9, 22] support the
intuition that two-dimensional displays are better than one-
dimensional typescripts. Thus, the availability of inexpensive
high.performance displays provides an opportunity for qualitative
improvements to interactive interfaces. Unfortunately, sophis-
ticated display interfaces are currently difficult and expensive to
develop.

The specific objective of this project is to simplify the task of
developing interactive display interfaces by applying the tech-
niques of abstraction, specification, and programming language
design. To achieve this, we are developing concepts and models
for specifying human-computer interactions in a wide variety of
styles. We emphasize the use of concepts appropriate to the level
of description -- for example, by describing interactions in terms of
user-level notions such as "menu" and "scrolling" rather than
primitive graphics notions such as "picks" and "valuators." We
are also developing software tools that allow specific interfaces to
be created easily. We believe it should be easier to construct and
to use richly interactive two-dimensional interfaces than it cur-
rently is to use typescripts -- and these display interfaces should
be so attractive that no one can stand to interact in any other way.

We are concerned with conceptual and software tools for system
developers; the entire community of users will benefit if system
developers can take advantage of display technology quickly and
efficiently. Our primary emphasis is on high-performance displays
(high resolution and high bandwidth), but personal computers and
"smart" character-oriented terminals are also of concern.

Consider, for example, a program that helps students to under.
stand finite automata by allowing them to define finite-state
machines and provide input for simulated execution. Such a
program supports several kinds of operations: creating and edit-
ing FSM definitions, saving and restoring these definitions as files,
simulating execution on specific inputs, and providing instructions
on the use of the program. A typescript interface can provide this
functionality; indeed, we developed a typescript-driven FSM
simulator for class use several years ago. It is easy to imagine
other alternatives for the interface: One possibility is a textual
display in which the machine definition, input tape, instructions,
and so forth occupy fixed positions and are updated indepen.
dently. Another possibility is a display on which menus are used
to select operations and the FSM is defined and manipulated
through a graphical display of its transition matrix. Multiple view-
ports could be used, for example, to browse through on-line
course material, communicate with the course instructor, or work
with more than one machine definition at a time.

100

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800226.806856&domain=pdf&date_stamp=1983-06-01

These options and others are suggested by interfaces that now
exist. Certainly, the design of the client program (in this example,
the FSM simulator proper) should be independent of the design of
the interface, though the application will naturally set the require-
ments for the interface. We see a modest number of general
styles for these interfaces and an enormous amount of variation in
specific details. However, the tools that currently support the
creation of the interfaces either require the designer to work at a
very low level of abstraction or else preempt the decision about
general style and many of the specific details.

Our objective is to find a unifying framework for these design alter-
natives and develop a set of supporting tools and design tech-
niques. These results must allow the interface designer to range
freely over the design space and to instantiate a design easily for
any interface device with adequate power. The remainder of this
paper surveys previous work in programming methodology and
graphics, discusses interface specification and implementation
issues, and describes our early implementation results.

2. B a c k g r o u n d

Since Descartes draws heavily both on the methods of program-
ming languages and on the examples and techniques of display
interfaces, we will briefly review these areas and suggest a basis
for their interaction.

2.1. Methodological Basis

Descartes builds on a substantial history of abstraction techniques
in programming languages [42]. In the 1970's, work on abstract
data types refined an intuition.("organize programs around major
data structures") and some examples into a systematic theory.
This theory had specific requirements for program organization
[34], language support [26, 29, 43], formal specification [16], and

verification [23]. Although the abstract data type provides a good
paradigm for organizing many programs, it is not suitable for all
programs. Nevertheless, the process of developing the theory of
abstract data types can serve as a model. The methodological
goal of this research is to improve our understanding of how use-
ful theories about program organizations emerge from•practical
intuitions.

The past decade's results on abstract data types offer both
guidance and stimulation. Whereas abstract data types were ex-
plored largely in the context of general-purpose programming lan-
guage design, we are working with specifications, system or-
ganization, and the special abstractions needed for dynamic inter-
actions. We believe it is now appropriate to focus on a narrower
task area, trading generality for problem-specific power.

In addition to using specification techniques for abstract data
types, we can build on existing formal specifications for graphics
[30], viewports [17] and interactive input [37]. Interactive inter-
faces have several separable components, including display
layout, input protocols, computational properties, and the relation
of the interface to the client program. Thus recent research on
writing and combining partial specifications[7, 18] is also per-
tinent.

In a broad sense, of course, interactive interfaces implement lan-
guages for controlling programs, so many of the design criteria for
programming languages also apply to these interfaces. Interfaces
are much less concerned with complex control flow than are
general purpose languages, and they are much more concerned
with input interpretation, output formatting, and ease of use. Con-

cepts such as data structure, scope, extent, binding, and abstract
definition apply in both cases. Although programming languages
provide little guidance about input and output, we can draw on
related work on output for diagrams [25, 46] and data types
[32, 47].

2:2. Prior Work on Display Interfaces

A number of hand.crafted systems have explored the potential of
the display medium, often for a specific app!ication domain such
as electronic mail handling [3], music synthesis[4], business
automation [8], or creating documents with both text and graphics
[10, 21,41].

The chief difficulty in developing and evaluating interactive display
interfaces is that they are hard to build. For example, a study of
interactive business applications showed that display generation
and management code typically constitutes a majority of the code
[44]. This has naturally led to work on systems and tools which aid
in constructing display interfaces.

Existing systems for developing display interfaces cover very
limited domains. Typically, only one interface style is supported,
such as "form-filling" in a fixed network of forms [40, 39, 20] or a
"table top" of overlapping viewports on distinct processes
[41,45]. Substantial control over display appearance is offered,
but user interaction protocols are predetermined.

Some principles for organizing interactive systems have been sug-
gested; they address questions such as ways to compose defini-
tions of independent components [7], the use of databases and
assertions about data dependencies [12], global metaphors for in-
teraction [1, 18], robustness to human error or misunderstanding
[19], the organization of complex interaction scenarios [38, 49],
and means for avoiding dependence on specific hardware [1, 89].

A variety of graphics support software also exists: the Core
graphics standard[15] is supported with software packages
[11,83, 49]; operating systems have been adapted to support in-

terfaces to several processes through distinct viewports [27, 45];
and specialized systems for generating interfaces of specific types
have been written [2, 8, 24, 28, 49].

However, experience with high-performance displays is not yet
widespread; the available tools usually preempt many decisions
about the nature of the interaction; and few general, flexible tools
are available to implementors who want to base user interfaces on
these displays.

3. P r i n c i p l e s f o r O r g a n i z i n g I n t e r a c t i v e S y s t e m s

The Descawtes design is driven by three principles concerning
relations between the underlying application (the client program)
and the display (as represented by a software module called a
compositor).

• Strong linkage between display and client program: At all
times, the display should reflect the current state of the dis.
played variables. In general, assignment to a displayed vari-
able must be thought of as potentially'requiring complete
regeneration of the display. Naturally, optimizations are
desirable.

• Decoupling of application from interface: The input-output
interface should be separable from the client program.
Software systems should be organized so that it is
straightforward to replace one display with another display
or with a different kind of interface. One implication of this
principle is the separation of general style from specific

101

layout details in the display design; in turn, this separation
makes it easier to support a variety of styles.

• Separation of policy from instance: Stylistic uniformity of in-
terfaces is an advantage, but interface designers need
guk;lance about style and organization. Conversely, coerc-
ing designers to a Single style is too rigid; they need freedom
to choose from a selection of styles. However, freedom
does not imply complete license; it should be simplest to
follow an established style. Hence, stylistic policy should be
separable from the layout decisions for any particular inter-
face.

4. I n t e r f a c e S p e c i f i c a t i o n I s s u e s

Interface specifications, like specifications in general, should be
written in terms appropriate to the design rather than in terms of
implementation mechanisms. The specification language must
therefore capture the constructs and the kinds of variability that
the designer expects to use.

Current theories of abstract data types do not deal adequately
with input-output even in linear text, and the problem becomes
critical for interactive displays. Before the value of some variable
is displayed, its internal representation must be converted to a
human-intelligible literal form. Since there may be many output
renderings for a given Value, the conversion must also take for-
matting information into account. For one-dimensional output this
literal is usually a character string. For two.dimensional output
the possibilities also include images of various sorts; we call the
resulting literals icons.

Even worse, interactive input requires a complex dialogue to
provide feedback as the human user creates individual input
values. Even in the simplest case, a "backspace" character
should remove the offending character from the display instead of
adding some deletion character to the tail of the string; extremely
complex dialogues can arise when input involves, for example,
interactive validation or selection from a collection of dis.ola~ved
alternatives. We call this dialogue prosody, in an extension of the
definition of "prosody" as the rhythm, cadence, and emphasis of
spoken prose.

Designing an interactive interface involves choosing the infor-
mation from the client program to display, the ways the user may
manipulate this information, and the static and dynamic arrange.
ment of the information on the display. Many of the elements
included in an interface will be defined in terms of other, more
primitive elements. We therefore need a formal specification sys-
tern that supports precise specifications of individual components
of a display and also generic composition rules that allow the
creation of new components from existing ones. The major con-
ceptual problems arise from the dynamic nature of interactive
computing. We address them here as specification issues.

• Mode/for specifying display output: Program values must be
converted to iconic form before they can be displayed. This
conversion requires knowledge about the representations of
the program data types as well as knowledge about icons
and formats. Since most values can be displayed in many
different ways, a format notation for controlling the conver-
sion is required, in an interactive system, format control
cannot be exercised solely by the client program as it con-
verts values to icons. The compositor and the human user
may also need to influence format decisions, so an arbitra-
tion mechanism is needed to resolve conflicts.

• Model for interpreting interactive input: Client ' programs
receive input that may include references to the display,
timing information, and special.device input as well as or-
dinary characters. As noted above, processing this input"
may require intermediate feedback to the human user. The
prosody, o r protocol for this feedback, plays a role for input
comparable to the role format plays for output. Like format,
prosody requires models for specifying elementary
protocols (e.g., "releasing red button selects an element in
this viewport" or "a backspace character causes the pre-
vious character to be deleted") and for combining them into
more elaborate ones (e.g., selection from a multilevel menu
or inspection of a document by scrolling). Another problem
of interactive input is interpreting "point ing" -- that is, deter-
mining precisely what value is denoted by an input token
such as a mouse selection of a displayed icon.

• Specification system: An interface design has several com-
ponents; each is complex enough to warrant individual at-
tention. We must therefore be able to develop partial
specifications for propertiss such as functionality (e.g.,
"selecting ' # ' saves the definition"); geometry (e.g.,
"instructions are displayed at the bottom"); formated ap-
pearance (e.g., "header is black on gray with white
border"); and prosodic behavior (e.g., "red button changes
viewport size"). Creating full specifications from fragments
that deal with different properties involves checking com-
patibility and determining interactions as well as simply
merging the fragments.

In all these cases, ease and uniformity of design will be improved
by localizing general policy decisions about format and prosody.
Following the example of the Scribe text formatting system [36], in
which document layout policy and physical device characteristics
are obtained from a database rather than being defined with each
document, we establish style definitions that provide initial reason-
able choices for these design decisions. A database for interface
development must provide for a variety of interface styles that are
internally coherent, though different style definitions may lead to
rather different interfaces. When a designer selects a style,
defaults are established for numerous decisions on format and
prosody, so the simplest actions for the designer produce uniform,
usable interfaces.

4.1. Spec i f i ca t ion of Components : Menus

A major task in the development qf a system such as Descartes is
identifying suitable abstractions for interactive communication
with programs. These abstractions may ultimately be imple-
mented, for example, with the elementary primitives of the
graphics standards, but considerable extra structure and support
is requi:ed before they are suitable for interface design. In this
example we examine one familiar example of an interface com-
ponent, the menu. We establish its role in an interface, suggest
the stylistic variety of menus in various existing systems, and es-
tablish a design space that largely explains that variety.

interactive programs often require the user to supply a value from
a pre-defined set, such as a value for an enumerated type. ~ In
typescript systems, the user typically supplies the value by typing a
literal string. In two-dimensional interfaces with pointing devices,

1The case of a dynamic set is similar prov|ded all values are known when the
menu is accessed. More generally, it may be desirable to select soveral values
from an enumeration (i.e., a value from a powerset), but for this example we
consider only the simpler case.

102

the option of selection from a displayed menu allows the use of
one precious resource, screen space, to reduce the load on
another, the user's time and attention. Many variations on the
menu ".heme exist in current systems [3, 4, 10, 13, 14, 32, 41]. This
example describes some design alternatives that account for most
of that variability and hence provide a model for specifying a large
class of menus. The resulting comparison indicates that no ver.
sion is clearly superior, but individual designers clearly hold a
variety of strong opinions.

Three kinds of information are required to define a menu: linkage
to the client program, display format, and input prosody.

• The linkage to the client program has two components: the
set for which the menu is providing selection and a variable
to be set by the selection operation.

• Display format requires format decisions for assembling the
iconic literals of the menu's elements, including decisions
about the creation and presentation properties described
below. An intermediate representation for icons (type glyph,
described in Section 5.2) provides much of the support for
these decisicns: for example, the specifications that estab-
lish the style for viewports should also establish a matching
style for menus.

• Prosody requires a selection mechanism that interprets low-
level user actions such as key transitions and locater posi-
tions to make the actual selection; this, too, can take advan-
tage of existing abstractions and the intermediate represen-
tation.

The creation properties of a menu describe where, how, and un-
der what circumstances the menu will be visible. The locations
and sizes of the viewports to be allocated for the menu are es-
tablished, possibly on the basis of other information such as the
current cursor location. A menu may be "visible or "invisible"; if it
is invisible it is not currently consuming display resources. Crea-
tion properties include the format rules for those aspects of the
menu display that are independent of the particular icons for the
alternatives (e.g., the colors of the background and the border,
whether the name of the menu is displayed).

The presentation properties describe the mechanisms used to
present the items for selection. The straightforward approach is
to display all the items simultaneously, but this sometimes con-
sumes too much display space. Therefore, the general menu
schema must include a way to consider the alternatives selec-
tively. The common options include:

• Scrolling: The items are formated into a two-dimensional
plane, and a window into that plane is shown in the viewport
of the menu. "Scroll bars" on the menu borders allow pan-
ning over the plane to bring other items into view.

• Cycling: A limited amount of space is used to display
(typically) one item, and the user may examine the alter.
natives in some fixed order. This option differs from scroll-
ing chiefly in the fixed order for exhibiting the alternatives.

• Subdivision and hierarchy: The menu alternatives are par-
titioned, and partitions may be displayed individually. If the
menu is hierarchical, selection of an item in one partition
may activate the menu for another partition. If the partition
is not hierarchical, the partitions may be displayed indepen-
dently; they may also share screen space by being "stacked
up" so that all partitions are partly visible but selections can
be made only from the top element of the stack.

The selection properties describe how the user's low-level input
actions will be interpreted to indicate selection and the feedback

that supports this. Common existing selection mecl~anisms in-
clude:

• Simply typing the literal "name" for the item as a string.

• Typing, with command completion or spelling correction.

• Softwar e mapping of function keys to particular items.
• Screen position of a Iocator device (e.g., a mouse) when a

button is depressed or released.

The protocol, if any, for highlighting a tentative selection (e.g., the
alternative under the cursor when no buttons are pressed) is also
a selection property. More generally, Descartes prosody
mechanisms must cover all cases of interest.

The examples of Figure 1 show how menus in several existing
systems fit into this design space. Figure la shows the Star
system's menu [31,41]. This statically allocated menu contains
varied items, some of which have internal structure. When icons
are selected, they "display their contents" in a form of submenu
(e.g., a folder opens to show the files inside). The user selects an
icon by pointing and clicking with the mouse. Figure l b shows
some "pop-up" menus in the Mesa debugger [32]. Debugging
commands are partitioned into several submenus. When the
debugging menu is requested, a set of submenus appears at the
current cursor location. The mouse is used.to select the "banner"
of a partition to access that submenu, then again to choose an
item within that submenu. Tentative selection is indicated by high-
lighting (in this case, with reverse video as long as the mouse
button is depressed). Figure l c shows a scrollable menu from the
Toronto music system [4]. The object named in the small Window
on the menu is displayed in the adjacent panel. The menu can be
scrolled; it can also be switched from temporary to permanent
objects.

4.2. Speci f icat ion of a Complete In ter face

In this section we return to the example at the beginning of the
paper: an FSM simulator. We discuss the development of the
display layout for this application in terms of abstract composition

L.MIILJ
ills m"~..~ l|ill ~°n' l|i
';::::~<'-:::::::::: b'::" :.'." ::.:~:;::::;:::::::::.":: :::::: .'.;:

~t oavi" c, f i | °ut | i

.-.-:*:.1 ~ " 1 : . . ~ % 1 1 ~ - 1 : : ' : ' : - : < ' .

t Seebbcuit ~i~lSwap5 " ' /E l

Figure la:
Xerox Star Menu

dF_Kwf_ob j

• Ifl%ID VAVF.~C~R • ,

• NOT! ~ •

, $If f i iMI •

_[~rr

. LUUGI ~ ; I f ' ,uh! ii[
LexiconDefs ,, FROi~I
$trinaDefs;, FRO~I ",~
Syst ~ F:oM ".~

Lexicd Lo;~d I
IMPO~Set Bre: ~fs, I
EXF'@ Set Tra, ~efs =

BEGIN ~ .'I
Node l Positiol YPE =

~ Create
Destroy er 5,
Wrap

Figure lb:
Mesa Debugger Popup Menu

- f
;'fJ~'obf
¢ f ' . ve * Ila.jdD I

d f J l , . Q 4 l |

• VI~IIIII ¢l.lrlcf'l •

Figure lc: Music System Editor

103

rules and of components such as menus. In this example, we are
concerned only with format .- the display layout -- and with the
level of abstraction appropriate to the task. Specifications for
overall style, prosody, and detailed functionality are not addressed
here; they should be separable so that the interface designer can
focus on specifying the desired viewport layout, leaving details of
the layout to the system and dealing separately with functionality
and interaction protocols.

Since display interfaces are highly visual, the designer should be
able to develop a specification interactively with the help of
software tools that illustrate the current layout of the interface at
the same time as the formal specification is defined. Although we
have only begun to prototype these tools, we can describe how we
would expect them to be used for developing a very simple inter-
face for the FSM simulator.

, I n f o

' F S M

' D i a l o g

Figure 2a: Initial Layout
of Design Sketch

[

I II 1 I
Figure 2b: Addition of More

Specification Structure

The interface designer might begin by deciding that the interface
will consist of a "frame" that provides fixed information about the
system and contains three components: one for system identifica-
tion, one for displaying the current FSM definition, and the last for
handling the user interaction. The designer might represent these
decisions as in Figure 2a, by designating the major components
and indicating their relative positions. The development tool, in
turn, provides policies for dividing the available space among the
several components. At this stage, with no information about the
contents of the components, it is reasonable to allocate each sub-
component equal space. As the makeup of a component is es-
tablished, it becomes possible to refine the allocation on the basis
of the requirements of individual components.

Each component of this general description might be refined as in
Figure 2b. The "lnfo" component contains constant system iden-
tification. The "FSM" component contains input and output
tapes, current state, and the machine definition. The "Dialog"
component contains simple input and output buffers, the com-
mand menu, and a typescript of documentation. Some of the ele-
ments of this refinement are associated with character string vari-
ables; the portion of the screen allocated to each of these might
now be constrained to provide for a single line of text.

Section 4.1 presented a model that leads to a generic definition of
menu;, one possible incarnation is used here for the command
menu. The association of scrolling with a body of information is
similarly generic, .and the help region can appeal to a predefined
schema for scrolling. In both cases, the actions required of the
designer should be selecting the appropriate composition rule and
associating it with the display region and the corresponding data
structure in the application program. An interface constructed
along these lines in the current Descartes system is illustrated in
Section 6.

During the specification process, the design tool will construct a
definition of the interface. The graphical form that is manipulated
interactively by the designer is only one representation of that
definition. The definition must also be represented in a form that
becomes part of the compositor; this might be either tables or
code fragments. Further, it is highly desirable to have a static,
textual version of the formal specification.

As an example of a suitable form for this formal specification, we
can show specifications for Ihe example above. The purpose of
this example is to illustrate the structure of a specification.
Precise semantics are also essential; both the syntax and the
semantics are still under development.

We will specify each element in the form:

<name>: <m/e> of <components> wi th <formal decisions>

In this template, <name> is an arbitrary (optional) identifier. <Rule>
indicates that the named icon is produced either directly from
program data (e.g., PgmVar, Text) or by various forms of composi-
tion (e.g., Compose, Menu, Scroll) of the named icons. The
of clause lists the components of the element being defined; these
components are all constructed with composition rules. The
w i th clause provides format information; defaults for many of the
attributes controlled b y these clauses are pre-specified by an in-
terrace style with a use rule in a separate style specification.
These defaults are established in the form:

fo r <rule> use <format decisions>

The FSM simulator interface described above can now be formally
specified as:

Simulator: Compose of Info, FSM, Dialog w i th Align = Vert
Info: Compose of

[PgmVar of Logo wi th Format = StickFigure]
[PgmVar of Version]

w i th Format = Plain, Align = Vert

FSM: Compose of
[Compose of InTape, OutTape, Mach w'ith Align = Vert],
State

w i th BkGrnd = Grey, Align = Horiz
InTape: Compose of

[Text of "Input: "],
[PgmVar of InputTape w i th BkGrnd = Red]

w i th Format = Plain, Align = Horiz
OutTape: Compose of

[Text of "Output: "],
[PgmVar of OutputTape w i th BkGrnd = Red]

w i th Format = Plain, Align = Horiz
Mach: PgmVar of FSMDef
State: Compose of

[Text of "Current State"],
[PgmVar of CurState w i th Format = Char, BkGrnd = Red]

w i th Align = Vert
Dialog: Compose of Command, Help w i th Align = Horiz
Command: Compose of

[PgmVar of Prompt],
[PgmVar 0f Response wi th Prosody = FullLine],
[Menu of [PgmVar of Options]]

w i th Align = Vert
Help: Scroll of [PgmVar of HelpText]

All program variables named by the rule PgmVar must be supplied
by either the compositor or the client. The types of these variables
are not at issue, for they are converted to a common intermediate
representation before they reach the compositor.

1 0 4

In this example, the composition rules are governed by the follow-
ing default formatting decisions. Collections of such rules define
"styles" and can be provided in a library.

for Compose use Format = Framed, Font = TimesRoman,
AIIocPolicy = Fair, BkGrnd = White

for PgmVar use Format = String, Prosody = NoWrite
for Menu use Create = Static, Present = All, Select = Mouse
for Scroll use Heading = "Option Meaning", BarPos = Left,

BarUp = Always, Prosody = Mouse

The format language used in this example is a variant of Scribe's
environment definition language for text documents [36]. The
definition of Compose should capture the policy for dividing the
available space among the components; in this case the rule
reserves space for fixed-sized elements and divides the remainder
evenly among variable-sizod elements. The Menu and Scroll com-
position rules must be defined in terms of primitives and of other
abstractions. Format information in the use or w i th clauses is
inherited by subcomponents unless explicitly overriden; it may
qualify the way a composition rule is used for rendering images..

The organization of this formalization is quite similar to the
descriptions of interfaces now preserlted in user manuals (e.g.,
p. 8 of [3], p. 41 of [5]).

This specification does not address the actual functionality of the
program or the protocols for input, field selection, menu selection,
or scrolling. Although the range of possibilities for the display
layout interacts with decisions about those other properties, we
be!ieve that the decisions are largely independent and hence that
the specifications should be largely separable.

5 . S o f t w a r e O r g a n i z a t i o n I s s u e s

Descartes must support implementation as well as specification of
display interfaces. To that end, the organization of an application
developed under Descartes reflects the principles of Section 3:
strong linkage between client and display, decoupling of applica.
tion and interface, and separation ot policy and instance. In ac-
cordance with the first principle, Descartes provides a s impleway
for a client application to make selected variables available for
interaction; the interaction is managed by a client-specific module
called a compositor. In accordance with the second principle,
Descartes is organized so that the use of these variables by the
compositor is almost transparent to the client. In accordance with
the third principle, the Descartes system will provide tools for the
interactive graphical development of the specifications for the in-
terface; these tools will make use of a data base with mechanisms
for sharing general definitions.

The code in a system with a display interface includes the modules
of the client application itself, a compositor developed specifically
for the application, and some utility code shared by all Descartes
interfaces. The organization of a system with a Descartes inter-
face is illustrated in Figure 3. Note that the display utility is com-
mon to all systems; all other modules are specific to one applica-.
tion.

The compositor is responsible for screen layout and for mediating
between the client program and the user. It binds the specific
decisions about layout, format and prosody made in the interface
specification to the internal data structure that represents the dis-
play. Since the shape of this internal data structure mirrors the
structure of a specification, preliminary results indicate that it may
be possible to generate a substantial portion of the compositor
code automatically from the interface specification.

Figure 3: Organization of a system with a Descartes interface.

The shared utilities include a number of largely-independent com-
ponents that maintain the state of the display and address issues
of interaction:

• Interactive extension of ordinary types: Both primitive and
user.defined types must be extended to produce iconic out-
put and to interpret a user's reference to the displayed icon.
Some types are supported by the utility package, but the
input-output extensions for newly defined types must be
created before the types can be incorporated directly in in.
terfaces.

• Intermediate representation to support icon construction: A
new data type, glyph, is used for intermediate represen-
tation of the information that will become a screen icon.

• Input Handling: Routines must be provided to translate low-
level input events into values of the respective types. Some
of this code is type-specific, but other problems are com-
mon to all types.

• Format and prosody specification: Notations (and run-time
representations of those notations) for describing format
and prosody are important components of a system; our
current implementations are extremely simple.

• Basic graphics supporh The virtual graphics device
provides low-level primitives; it is responsible for actual
generation of the display.

The remainder of this section presents the design of the Descartes
implementation: Sections 5.1 to 5.4 discuss the shared utilities;
Section 5.5 deals with the ways the development tools and the
data base help to implement a compositor. The current status of
the prototype implementation is discussed in Section 6.

5.1. In te rac t i ve Extens ions of the User 's Types

Two of the principles central to Descartes concern the relation-
ships between an application and its interface. As discussed in
section 3, the principle of strong linkage implies that the display
should reflect the current state of those variables being displayed,
and the principle of decoupling implies that it should be possible
to link several different interfaces to the same application
program. This section discusses how the implementation sup-
ports these objectives.

The use of a display interface should have minimal impact on the
client program. In Descartes, each compositor that builds an in-
terface for a client determines which program variables will be
displayed (e.g. finite-state machine tape), what the display at-
tributes will be (e.g. color, font, position), and how necessary
values will be obtained (e.g. typing, selection). To maintain the
strong linkage principle, a compositor associates display com-
ponents corresponding variables so that every assignment to a
displayed variable automatically triggers an appropriate update of
the display.

105

We view this consistency requirement as an invariant constraint
on program execution that must be maintained by the system:
Descartes supports a class of such invariants between arbitrary
program variables. The most interesting use of these invariants is
to establish the relation that a display component reflects the cur-
rent value of its associated variable. This can be achieved by
triggering a display update whenever the value of the variable
cnanges. 2 No other restrictions are placed on an application
program.

Each data type whose values may be displayed must also provide
a set of extensions to support interactive two-dimensional input
and output. The compositor uses these extended operations to
establish the display invariants connecting variables and display
components, to construct images, and to interpret input events.
Many of these routines require no special knowledge about the
data type and can therefore be generic. Naturally, the routines
that construct intermediate representations of icons (i.e., glyphs)
and interpret references to the resulting icons require substantial
type-specific knowledge and must be constructed individually.
These routines may use other utility support such as image con-
struction and ASCII string collection operations. By assigning the
responsibility of these routines to the individual types, we can ach-
ieve a clean decomposition of the Descartes system.

5.2. Glyphs: Intermediate Representat ion of I cons

Display images have a rich, composite structure. They may be
composed of subimages that have specific relationships both with
program data (e.g., displaying a value) and among themselves
(e.g., one image is immediately below another). It is not only
necessary to build, compose and manipulate these images, but it
is also necessary to propagate information about formatting and
interpretation decisions around the composite structure.

The data structure chosen to represent the information necessary
to exhibit a program's data on a screen is called a glyph. The
glyph structure is designed to represent structural relaticns
among display components, format and prosody policies for these
components, and dynamic visual attributes of the display. In the
following paragraphs, we describe the glyph data structure, its
important properties, and the operations provided to manipulate it.

In order to achieve the desired flexibility for the specification of
display characteristics, a glyph is structured as an inheritance
tree. 3 The display attributes (e.g., color, font, position) at any
given node in the tree may be left underspecified. Complete
values for these attributes are calculated by inheriting values from
the node's ancestors and combining them with the partial (or non-
existent) value given at the node. Thus, the composito r may ach-
ieve a uniformity of style by specifying that various display charac-
teristics are to be inherited by descendent components.

Stylistic uniformity for interfaces also involves making consistent
dynamic changes in the display attributes when the program state
changes. These attribute changes are achieved by storing in each
glyph node several sets of display attribute values and some in-
dication of which set is currently active. By resetting which value
set is active, visual cues may be given to indicate the current ap-

2In the absence of user-defined assignment, we have had to resort to procedure
calls in place of assignment to achieve this.

3Although strict hierarchies are usually too restrictive, display interfaces seem
to be organized such that every screen region is entirely contained by some other
screen region. Therefore, we currently assume that th{3 will be the case for
Descartes interfaces.

plication program state. For instance, when a screen button is
"pushed" indicating that some command is to be executed, the
background color of the region may change. By allowing a com-
positor to choose how the different regions of an interface react to
changes in program state and how display attribute values are

inherited, style and policy can be separated from the particular
instances of display attribute values.

A value for a display attribute may be specified in several ways
with regard to how it interacts with the inheritance mechanism.
The important decision determines whether the value is absolute
(no need for inheritance), relative (must be combined in some way

with the value from the node's parent), or absent (must either be

replaced totally with the value of the parent or left completely
unspecified). In addition, each attribute must provide the rules by
which relative values are combined. The following specification of
the function PropertyOf defines the basic inheritance mechanism
for determining the value of an attribute of a node in the glyph
tree:
function PropertyOf(G: llypho P: Property) returns

if HssProperty(G, P) then
if IsRelative(GetProperty(G. P)) then

if HasParent(G) then
Combine(PropertyOr(Parent(G). P), GetProporty(G. P))

else
Combine(OefaultValue(P). Get, Property(G, P))

else
GetProperty(G, P)

else
if HasParent(G) then

Proper tyOf(Psrsnt(G), P)
else

Oefaul tValue(P)

Of the operations used in the definition, HasPropetty and

/sRe/ative indicate whether a glyph's value for a given property is
absent, relative, or absolute; Combine describes how to merge
relative values of a given type; and GetProperty produces the local
value associated with a given property for a glyph node. The

actual problem is somewhat more complex than the one
presented here, and the actual mechanism is correspondingly

more compex.

Much of the function of the glyph structure deals with displaying
the current state of a program's variables. In particular, we are

interested in maintaining the invariant that the screen reflects the
current value of displayed variables. Each program variable being
displayed must therefore be associated with a glyph node. Since
assignment to a variable may trigger an update of the screen, the
set of gtyphs that display the variable must be explicitly associated
with the variable. Thus, every glyph node either has no associated
variable or is a member of the set of nodes connected to a vari-
able.

When a new type of component becomes available -- especially
one that involves extensive implementation, such as a document
preparation system -- it should be easy to incorporate instances of
that component as elements of interfaces. The best mechanism
for this extension is still an open problem.

The glyph structure also allows a compositor to arrange the
screen and interpret users' references to displayed information.
An important decision is the policy used to determine what gets
displayed when two components share the same screen position.
This display policy affects the algorithm used to map between a
user-generated position input and a particular node in the glyph
structure (see Section 5.3).

So far, the glyph data structure has proven adequate in represent-
ing the program data to be shown on a screen, in flexibly describ-

I06

ing the display attributes of exhibited information, and in simple
composition and ktput tasks. We expect tl~at glyphs will ~dso
prove useful in the composition of more complex icons and in the
definition of sophisticated input interpretation.

5.3, Input handling and control organization

The other side of constructing two-dimensional interfaces involves
furnishing the means to define the complex dialogues that provide
input to the application and feedback to the user. Issues include
where control over the input process resides, how user input is
interpreted, and how the interaction between input and echoing is
defined. We present the issues below and describe the
mechanisms in the current Descartes system that address them.

A variety of program organizations can be used to coordinate the
client application with the interactive user. At one end of the
spectrum is the control-driven organization used in a data-entry
program. The program asks for the values it needs in a particular
order and the user is constrained to supply each value as it is
requested. At the other end of the scale are data-driven programs
which wait fOr any user input and respond to it, as in a screen-
oriented text editor. Data-driven programs may be characterized
by tables of <input, action> pail's, whereas control-driven
programs are more easily described by the code that implements
them.

Most programs, however, are a mixture of the two types. For ex-
ample, the text editor may ask for a parameter to a command and
disallow other input while collecting that parameter. Thus, it is
important that systems provide a description mechanism that al-
lows easy blending of the two styles when needed.

Descartes supports a variety of control organizations: the main
thread of ¢o ntro_l c~n be distributecl !n various ways between the
application proper (for the control-driven styie) and the com-
positor (for the data-driven style). At present, there are no
description tools for the data-driven organization.

The second issue, interpretation of user input, can be approached
by organizing the input facilities as a set of transducers. Each
transducer takes inputs at one level of complexity and produces
(usually fewer) outputs at a higher level of complexity. The
granularity of these transducers makes it easy to provide libraries
of abstractions such as scroll bars and menus.

A low.level transducer might provide a "lexical analysis" facility
for user input events. Many interactive programs have conven-
tions that cause a small number of low-level events to be inter-
preted as a single higher-level event. For example, a mouse but-
ton typically provides an indication when it is released as well as
when it is depressed. Programs often use this to indicate tentative
selection of an option. However, the client using this facility would
like to receive only an "option has been picked" indication.

The current facilities for these transducers are quite primitive. We
provide a transducer that supports the usual backspace and line
deletion ope;ations on string input. The null transducer gives the
compositor direct access to the sequence of keystrokes and but-
ton clicks from the user. We also provide a transducer for each
data type (as part of the type extension) that translates a sequence
of low level events into a value of that type. Input formats provide
some control over the behaviour of these transducers. -

A third problem is that of integrating the input facilities with the
output facilities. The input routines must echo the user's input to
provide feedback to the user. To do this, they will need access to
tl'ie same output facilites that Descartes clients use. Also, the

glyph tree contains information useful for input event routing
among the various transducers.

In the current system, this integration is limited. For instance,
when a type transducer is invoked, it is given a screen region
associated with a glyph node in which to echo user input. Also,
the glyph tree may be used to interpret pointing at a program
variable. We do not fully understand how this interaction between
input and output will evolve in future versions of Descartes.

We are slowly beginning to understand the issues concerning
program control and input interpretation. Our goal is to achieve
the same level of understanding that we currently have about the
issues dealing with image construction and display.

5.4. Graph ics suppor t

A small set of graphics routines form the interface to the physical
display device. They allow the drawing of graphical primitives at
the level of line, character string, filled polygon, and so on, with a
variety of attributes such as color, line style, etc. Input events are
provided at the lowest ("rawest") level under the assumption that
higher-level transducers will translate them into more abstract
tokens or lexemes.

5.5. Achieving "style"

The compositor realizes the specification of the application's in-
teractive user interface by maintaining details of display layout,
icon format, and input prosody, it does this on the basis of par-
ticular definitions of the rules and format decisions used in the
specification. The vehicle for this administration its the inter.
mediatedata type glyph.

A set of these definitions constitutes a "style." A style serves two
purposes: 8y providing, th~ definitions of" composition rules, a
style determines what role a component plays in the interface.
The definition of compose determines how its components are
placed in a display; the definitions of Menu and PgmVar must also
say something about the kind of interaction allowed. By providing
the definitions of format and prosody decisions, a style determines
how a component is to fulfill its role. Applied to the root of the
glyph tree, a style may be inherited by the entire display, enforcing
a consistent appearance and consistent prosody on the entire
structure. Thus changing the style of the root may effect a major
change in the appearance and prosody of the entire display.

Following the model of Scribe [36], we intend to provide a library
of styles. The library will consist of a data base together with a
mechanism that allows general definitions to be shared. In most
cases, we expect that the designer of an application will be able to
select a style from this libr.~ry without modification. In some
cases, however, this will not be possible; we intend to provide a
means for the designer of an application to modify or extend the
library. In particular, we must establish guidelines for adding the
format and prosody rules in a notation or representation that can
be interpreted by user-defined types. It should be possible for the
designer to add new rules, to add new meanings to the rules, or
provide new sets of options for formatting and prosody.

At present, the compositor is a hand-written module, typically con-
taining the series of calls to create individual glyphs, initialize their
state vectors, register their variables and compose them into glyph
trees. Style is embedded in these calls. We believe the code for
most compositors will be highly patterned; if not amenable to
automatic generation, our experience suggests that the code can
be forged by rote:

107

6. Prototype Implementat ion

We are exploring Descartes design and implementation problems
by building software support for small prototype domains. There
have been two such domains to date. The first was extremely
primitive; it was primarily useful for exploring program organize-
tion and sharpening our notions about separability of definitions.
The second is a bit more ambitious; it incorporates elementary
graphics as well as text, and it allows us to work with more realistic
examples. This section discusses the two domains and the state
of implementation in April 1983.

6.1. First P ro to type

For the initial investigation, we selected an extremely restricted
problem domain. The purpose of the restrictions was to allow us
to concentrate on system structure instead of implementation
diversity; we tried to avoid taking unfair advantage of the restricted
character of the domain.

For out initial prototype domain we chose 24x80 character
"smart" terminals with cursor addressing and a keypad for cursor
control; screen configurations based on regular rectangular com-
position operators with layouts normally bound at definition t ime;
primitive elements including string, integer, float, enumeration and
date (a user-defined type); icon formatting including hierarchical
inclusion, normal and highlighted depiction; and several varieties
of prosody. The software is written in SubAda. 4 it runs on VAXes
under Unix with "smart"" terminals and on PEROs under POS,
where it.does not take advantage of the bitmap display, but it does
use the Canvas graphics support [2] in anticipation of a larger
problem domain.

Four small clients run on VAXes and PERQs. They are organized
as described in Section 5: display updating is handled th rough
property lists associated with program variables and interaction is
handled in a separate compositor module. The basic utility sup-
port has a common interface for VAXes and PERQs. It provides
extensions for data types, types for intermediate representations,
and a high-level virtual terminal in a form somewhat different from
that described in Section 5. The VAX implementation of this sup-
port manipulates the terminal directly and the PERQ implemen-
tation uses Canvas [2].

Finally, a prototype of a PERQ-based interactive development tool
for 24x80 character displays has been constructed. It does not

• support editing or formal specifications, but it does generate code
for setting up complex hierarchical interfaces.

Although this domain is quite restricted, we were able to get sub-
stantial experience wifi~ certain aspects of the program organiza-
tion, including modutarization and control alternatives, data struc-
tures, and prosodic options. This served as the basis for the
design described in Section 5 and for the second prototype.

6.2. Second Prototype

The second prototype closely reflects the design presented in sec-
tion 5. We are concentrating on the design of the type glyph, on
the representation of interactive variables, and on the
mechanisms that support specifying and building composite dis-
play structures. The type glyph is central to the prototype; we
have simplified the association between interactive variables and

4SubAda is an Ada.like extension of Pascal; it would be an AdS. subset if Ade
had subsets.

glyphs and have experimented with the construction of composite
components such as menus. To date, output format and input
prosody descriptions remain very primitive; we have incorporated
enough to test the apparatus, but we have yet to tackle the full
problem.

This prototype runs on PERQs; it is implemented in PERQ pascal.
Since the experience with the first prototype provided experience
with device-independence, we have in this case concentrated on
the use of the PERQ bitmap display rather than on independence
from the display capabilities, though we continue to avoid
gratuitous dependence on the device.

We have implemented the data type glyph, a generic interactive
type support pr(/cedure, with specific support for a few common
types, and an interface (to Canvas) that supports the graphic con-
cepts imbedded in glyph. As an example of the kinds of interfaces
we are able to support, Figure 4 shows an interface constructed
for the FSM simulator that we discussed in Sections 1 and 4.2.
The simulator was converted directly from the original typescript
interface and the conversion is not complete (some operations
that are not yet available are stricken out on the display). Impor-
tantly, the client application has not, at this point, been changed
from the typescript version, though to complete the conversion,
minor changes will be necessary to undo some heavy dependency
on typescripts that was built into the client.

© m
==== : ~ =

F ~ l l S + ~ l l t o P u + l , o a +.1 +/Z,'IrJ

I . m t : (~1+1+111m11+11 , - . e ,_ _ ~ + m . ~ + + F , + S t

T ~ F ~ : I ~ r * n t c u r r e n t FSPI on th41 t&
~ S M , R e = d = n ~ FSm ~ o = z f , ~ =

Figure 4: sample Descartes Interface for FSM Simulator

7 . I m p a c t o f P r o g r a m m i n g L a n g u a g e I d e a s ...

The Descartes project is investigating certain issues of program-
ming methodology in the context of design for intera, ctive display
interfaces. Our emphasis has been on the ideas about abstrac-
tion, specification, and separation of concerns that have arisen in
programming language design. We summarize by noting the
direct effect some of these ideas have had on the Descartes
design.

7.1 on In te r face Design

Programming languages are often designed in order to codify and
regularize some aspect of programming methodology. A good
design does so without unduly restricting the programmer's
design alternatives. Similarly, we are codifying some strategies for

108

designing and implementing display interfaces. Our objective is a
unifying framework, not merely software tools. Support for the
resulting methodology will include canonical program organiza-
tions, specification techniques, development tools, and runtime
software utilities.

It does not seem appropriate for us to design a programming lan-
guage per se, but many of the strategies of language design are
useful. We must, for example, specify dynamic processes of input
and output -- and of their interaction, as when an input is trans-
mitted by selecting some portion of an image on the screen.
Indeed, the most important distinctions between abstract data
types and display interfaces arise from the introduction of two-
dimensional, dynamic interaction.

Programming language design often emphasizes "separation of
concerns." Such separations occur in Descartes in several ways.
The most obvious is the independence of the specifications of
output format and of input prosody. Our software organization
encourages the separability of the display-control module from the
client program. Moreover, we recognize several useful strategies
or general styles for organizing a display interface, so it is not
adequate to provide support for a single strategy. We therefore
maintain a strong separation between general policy decisions
and specific instances of interfaces; this is comparable to the
separation between a document and a document style definition in
the Scribe document formatting system [86].

Much of the recent emphasis in programming methodology has
been on specification techniques and on the separation of
abstract properties from particular realizations. On the other
hand, the emphasis in the area of user interfaces has been on
construction of particular classes of interfaces and evaluation of
the results. Descartes shows the influence of the programming-
language ideas in the view of an interface as a restricted language
and its emphasis on abstract specification of interface com-
ponents.

Any user interface implements a language. Although the inter.
action is highly dynamic, its syntax obeys certain rules. Similarly,
the various syntactic units have semantics that correspond either
tO operations by the client program or to manipulation of the inter-
face itself. It is not surprising, then, that language design prin-
ciples such as simplicity, regularity, and well-definedness apply to
display interfaces as well as to general-purpose programming lan-
guages.

In Descartes, we capture the syntactic rules in definitions of
prosody. The composition rules car~'y much of the burden of the
semantics of the interface proper; naturally the client program
supplies the substantial semantics for the application. By collect-
ing consistent sets of definitions in "styles," we support the
development of simple, uniform interfaces without forcing all
designers to adopt a single style. The use of generic composition
rules helps to assure well.defined interfaces by providing design
tools that cope with many low-level details. The language in-
fluence is also clear in the way various sets of concerns have been
separated: policy from instance, definition from use, functionality
from inte:face design, and interface code from client program
code.

The influence of the abstract data type is also clear. We rely
heavily on the linguistic technique of identifying abstract con-
structs appropriate to the problem domain and defining them in
terms of primitives and other composite definitions. For example,
we combine the concept of a menu with that of a scrollable region

of information (both non-primitive constructs in their own rights) tO
form a menu with a scrollable set of selections. The design of type
glyph itself and the uniform extensions of all types for interaction
also show the influence of abstract data types.

7.2 on S y s t e m Organ iza t ion

The Descartes software shows the influence of abstract data
types, both in its philosophy and in the implementation of par-
ticular system elements. Several of the specific techniques of
abstract data types are used heavily, including a standard
program organization, interface specifications, and invariant
assertions. In addition, several system components are designed
as abstract types.

Our emphasis is not on building subroutine libraries but on a
prototypical program organization that can serve as a template for
producing systems. We are exploring a particular modularization
in which icon generation is handled by types in the client program
and the combination of those icons (or, more precisely, of their
intermediate representations as glyphs) into larger images is
handled by a stylized module, the compositor. Similarly, prosodic
interaction is handled largely by the compositor, but type-specific
interpretation of the result is the responsibility of the client's types.
By "stylized modules" we mean that we expect most compositors
to be variations on the same organizational theme, just as abstract
data type implementations are variations on the same basic
theme.

We are also concerned about specification of interfaces and with
verification that implementations satisfy the specifications.
Preliminary results suggest that we may be able to simplify
verification by taking advantage of the restricted domain and
generating large segments of the interface modules directly from
the specifications. In addition, we are exploring graphical tech-
niques for developing the specifications.

Another language concept, the use of invariants, is central to the
system organization. The relation of the displayed image to the
program variables is defined by invariant assertions. Descartes
uses property lists associated with displayed variables to maintain
these invariants automatically instead of forcing the programmer
to be explicitly concerned with display updating.

A c k n o w l e d g e m e n t s

The ideas reported here have emerged from many fruitful discus-
sions with our colleagues, especially those at Carnegie-Mellon,
Xerox PARC, and meetings of the DARPA Quality Software Work.
ing Group. In particular, constructive suggestions from Bill Wulf,
Phil Wadler, Allen Newell, Cynthia Hibbard, Phil Hayes, Marc Don-
ner, Richard Cohn, and Jon Bentley helped improve this
manuscript. We have also been influenced by numerous inter.
active display interfaces for which we have been unable to obtain
citable documentation. This research was supported by the Na-
tional Science Foundation under Grant MCSSO-11409.

109

R e f e r e n c e s

1. Ed Anson. "The Device Model of Interaction." ACM Computer
Graphics 16, 3 (July 1982), 107-114.

2. J. Eugene Ball. Canvas: the Spice graphics package. Tech.
Rept. Spice Document $108, Carnegie-Mellon.. University, Depart-
ment of Computer Science, August, 1981.

3. Douglas K. Brotz. Laurel Manual. XEROX PARC, 1981.

4. W. Buxton, S. Patel, W. Reeves and R. Baecker. "OBJED" and
the Design of Timbral Resources. Proceedings of International
Conference on Computers and Music, 1980, pp. 1-12.

5. William Buxton. MusicSoftware User's Manual. Computer
Systems Research Group - University of Toronto, Toronto, On-
tario, Canada, 1981. C.S.R.G. Technical Note 22.

6. Stuart K. Card, Thomas P. Moran, and Allen Newell. The
Psychology of Human-Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, N.J., 1982.

7. G. Curry, L. Baer, D. Lipkie, B. Lee. "Traits: An Approach to
Multiple-Inheritance Subclassing." ACM SIGOA Newsletter 3, 1&2
(June 1982), 1-9. Proceedings of Conference on Office Infor-
mation Systems

8. S. Peter de Jong. The System for Business Automation (SBA):
A Unified Application Development System. Information Process-
ing 80, IFIP, October, 1980, pp. 469-474.

9. David W, Embley and George Nagy. "Behavioral Aspects of
Text Editors." ACM Computing Surveys 13, 1 (March 1981),
33-70.

10. Steven Feiner, Sandor Nagy and Andries van Dam. An In-
tegrated System for Creating and Presenting Complex Computer-
Based Documents. Computer Graphics, ACM, August, 1981, pp.
181-18.9.

1 1. J.D. Foley and A. VanDam. Fundamentals of Interactive Com-
puter Graphics. Addison.Wesley, 1982.

12. Michael T. Garrett, and James D. Foley. "Graphics Program-
ming Using a Database System with Dependency Declarations."
ACM Transactions on Graphics 1, 2 (April 1982), 109-128.

13. Adele Goldberg and David Robson. A Metaphor for User In-
terface Design. Proceedings of 12th Hawaii International Con.
ference on System Sciences, Conference on System Sciences,
1979, pp. 148.157.

14. Gordon C. Graham. "Display Station's User Interface Is
Designed For Increased Productivity." Hewlett-Packard Journal
32, 3 (March 1981), 8-12.

15. Graphics Standards Committee. "Status Report of the
Graphics Standards Committee." ACM Computer Graphics 13, 3
(August 1979).

1 6. John V. Guttag, Ellis Horowitz and David R. Musser. The
Design of Data Type Specifications. In Current Trends in Pro-
gramming Methodology, Prentice.Hall, 1978, pp. 60-79.

17. John Guttag and J.J. Homing. Formal Specification As a
Design Tool. Seventh Annual Symposium on Principles of Pro-
gramming Language, ACM SIGPLAN/SIGACT, January, 1980, pp.
251-261.

18. J.V. Guttag and J.J. Homing. An Intw;oduction to the Larch
Shared Language. MIT Laboratory for Computei" Science, 1963.

19. P.J. Hayes. Cooperative Command Interaction Through the
Cousin System. Proceedings of the International Conference on
Man/Machine System, University of Manchester Institute of
Science and Technology, London, July, 1982.

20. VIEW/3000 Reference Manual. 32209-90001 edition,
Hewlett-Packard Co., 1979.

21. Peter Hibbard. Document Preparation Facilities For Spice.
Tech. Rept. Spice Document $143, Carnegie.Mellon University
Comp Sci Dept., November, 1982.

22. R. S. Hirsch. "Procedures of the Human Factors Center at
San Jose." IBM Systems Journal 20, 2 (1981), 123-171.

23. C.A.R. Hoare. "Proof of Correctness of Data
Representations." Acta Informatica 1, 4 (197~2).

24. David J. Kasik. "A User Interface Management System."
ACM Computer Graphics 16, 3 (July 1982), 99-106.

25. B.W. Kernighan. "PIC - A Language for Typesetting
Graphics." ACM SIGPLAN Notices 16, 6 (June 1981), 92.98.

26. B.W. Lampson, J.J. Horning, R.L. London, J'.G.Mitchell and
G.J. Popek. "Report on the Programming Language Euclid."
ACM SIGPLAN Notices 12, 2 (February 1977).

27. Keith A. Lantz and Richard F. Rashid. Virtual Terminal
Management in a Multiple Process Environment. Proceedings of
the Seventh Symposium on Operating Systems Principles, ACM,
December, 1979, pp. 86.95.

28. Daniel E. Lipkie, Steven R. Evans, John K, Newlin, and Robert
L. Weissman. "Star Graphics: An Object-Oriented
Implementation." ACM Computer Graphics 16, 3 (July 1982),
115-124.

29. Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss,
J. Craig Schaffert, and Alan Snyder. CLU Reference Manual.
Springer-Verlag, 1981.

30. William R. Mallgren. "Formal Specification of Graphic Data
Types." ACM Transactions on Programming Languages and Sys-
tems 4, 4 (October 1982), 687-710.

31. Norman Meyrowitz and Andries van Dam. "Interactive Edit.
ing Systems, Parts I and I1." Computing Surveys 14, 3 (September
1982), 321-415.
32. Brad A. Myers. Displaying Data Structures for Interactive
Debugging. Ph.D. Th., MIT, Juice 1980.

33. William M. Newman and Robert F. Sproull. Principles of Inter-
active Computer Graphics. McGraw-Hill, 1979.

34. David L. Parnas. "On the Criteria to be Used in Decomposing
Systems into Modules." Communications of the ACM 15, 12
(December 1972).

35. Harvey L. Poppel. "Who needs the office of the future?"
Harvard Business Journal 60, 6 (November-December 1982),
146-155.

36. Brian K. Reid. Scribe: A Document Specification Language
and its Compiler. Ph.D. Th., Computer Science Department,
Carnegie-Mellon University, October 1980.

37. Phyllis Reisner. "Formal Grammar and Human Factors
Design of an Interactive Graphics System." IEEE Transactions on
Software Engineering SE-7, 2 (March1981), 229-240.

38. G. Robertson, D. McCracken and A. Newelh The ZOG Ap-
proach to Man-Machine Communication. Tech. Rept. CMU-
CS-79-148, Carnegie-MeUon University, October, 1979.

39. L.A. Rowe and K.A. Shoens. "Programming Language Con-
structs for Screen Definition." IEEE Trans. on Software Engineer-
ing SE-9, 1 (January 1983), 31-39.

40. L.A. Rowe and K.A. Shoens. A Form Application Develop-
ment System. Manuscript dated December 1981, received by
private communication February 1982

II0

41. J. Seybold. Xerox's 'Star'. In The Seybold Report, Seybold
Publications, Media, Pennsylvania, 1981.

42. Mary Shaw. "The Impact of Abstraction Concerns on Modern
Programming Languages." Proceedings of the IEEE 68, 9
(September 1980), 1119. t 130.

4 3 . Mary Shaw (editor). Alphard: Form and Content. Springer-
Verlag, 1981.

44. Jimmy A. Sutton and Ralph H. Sprague, Jr. A Study of Dis-
play Generation and Management in Interactive Business Applica-
tions. Tech. Rept. RJ 2392 (#31804), IBM San Jose Research
Laboratory, November, 1978.

45. W. Teitelman. A Display.Oriented Programmer's Assistant.
Proceedings 5th International Joint Conference on Artificial Intel-
ligence, 1977, pp. 905-915.

46. C.J. Van Wyk. "A High-level Language for Specifying
Pictures." ACM Transactions on Graphics 1, 2 (April 1982),
163-182.

47. Peter J. L. Wallis. "External Representations of Objects of
User-Defined Type." ACM Transactions on Programming Lan-
guages and Systems 2, 2 (April 1980), 137-152.

48. D. L. Wetler, E.D. Carlson, G.M. Giddings, F.P. Palermo,
R. Williams and S. N. Zilles. "Software Architecture for Graphical
Interaction." IBM Systems Journal 19, 3 (1980), 314-330.

49. Peter C.S. Wong and Eric R. Reid. "Flair -- User Interface
Dialogue Design Tool." ACM Computer Graphics 16, 3 (July
1982), 87-98.

III

