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Abstract 

The basic abstraction mechanisms of Semantic Data 

Models - aggregation, classification and generali- 

zation - are considered the essential features to 

overcome the limitations of traditional data 

models in terms of semantic expressiveness. An 

important issue in database programming language 

design is which features should a programming 

language have to support the abstraction mecha- 

nisms of Semantic Data Models. This paper shows 

that when using a strongly typed programming 

language, that language should support the notion 

of type hierarchies to achieve a full integration 

of Semantic Data Models abstraction mechanisms 

within the language's type system. The solution is 

presented using the language Galileo, a strongly 

typed, interactive programming language specifi- 

cally designed for database applications. 

i. INTRODUCTION 

In the past the fields of programming languages 

and database languages have developed separately 

because each focused on different classes of 

problems. Research in programming language design 

has concentrated on creation of features to 

support the implementation of complex algorithms 

using temporary data (Shaw 80). Research in 

database language design, instead, has been mainly 

concerned with features to model persistent, 

interrelated data which must be accessed by 

programs or interactive query languages. An 
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important exception to these divergent trends has 

been the common attempt by both programming and 

database researcher workers to design a basic set 

of abstraction mechanisms for data modeling. Still, 

the solutions provided have been quite distinct 

(Biller 78, Brodie 80,81; Schmidt 78; Weber 78). 

Recently, this situation has been changing, largely 

because database people are paying more attention 

to the design of languages that besides types, 

abstract types and modularization, include abstrac- 

tion mechanisms to support database models. For 

instance, proposals and implementations have been 

given to integrate a relational data model into a 

general-purpose, Pascal-like programming language 

(ASTRAL (Amble 79), PASCAL-R (Schmidt 80), PLAIN 

(Wasserman 79), RIGEL (Rowe 79), THESEUS (Shopiro 

79)). 

Another database goal, which will have far reaching 

impact on programming languages, is the design of a 

language for database applications which supports 

the basic features of Semantic Data Models. A 

Semantic Data Model is a set of data abstraction 

mechanisms to describe the structure of databases: 

the structures, and the associated operations, are 

explicitly intended to represent certain types of 

real-world information. A survey and an analysis of 

the motivations for this new generation of data 

models is reported in (McLeod 82). It is sufficient 

here to remember that the basic abstraction mecha- 

nisms are classification, aggregation and genera- 

lization. For the purposes of this paper, we here 

interested in considering the third mechanism, 

named also IS-A hierarchy, and originally proposed 

in the context of Semantic Networks. 
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The IS-A hierarchy is used in Semantic Data Models 

as a definitional mechanism involving two different 

notions (Wong 77). First, supposing Students IS-A 

Persons, it establishes an existence constraint 

among the elemens of Students and Persons present 

in the database: The elements of Students are in 

every state a subset of the elements of Persons 

(Extensional IS-A Constraints). Secondly, it is a 

compatibility rule between the elements of Students 

and Persons, in that every element of Students 

inherits all the properties of Persons elements 

(Structural IS-A Constraint). The inheritance rule, 

with this interpretation of the IS-A mechanism, is 

therefore strict rather than default (e.g. 

(Carbonell 81)). Consequently, elements of Students 

can be used in any context were an element of 

Persons is expected, by not vice versa (the 

compatibility rule is a partial order). 

The question is which features should a programming 

language have to support this abstraction me- 

chanism. If we think, for simplicity, of Students 

and Persons as identifiers bound to collections of 

values of type Student and Person, the first notion 

behind the IS-A hierarchies is a constraint on the 

values of the identifiers, while the second is a 

compatibility rule between the types of the 

elements. 

Three of the database programming languages that 

have been proposed to address this problem are 

TAXIS, ADAPLEX and DIAL. TAXIS, which has the merit 

of being the first proposed, uses an approach not 

based on a typed programming languages (Mylopoulos 

80). More closely related to the author's work is 

ADAFLEX, since the solution proposed is given 

within the framework of a strongly typed program- 

ming language, in this case ADA (Smith 81, Wegner 

80). We consider this approach more interesting 

because we believe that the well known benefits of 

static typechecking are notable for database 

applications: The task of modeling becomes easier 

and more productive (Brodie 80, Billet 78). The 

solution adopted by ADAPLEX, however, is ad hoc for 

modeling databases, and it is not an independent 

feature of the language that can be used .also for 

modeling temporary data. Similar considerations 

apply to DIAL (Hammer 80), which has evolved from 

SDM (Hammer 81): It is a programming language with 

data types, but the features for database medeling 

are not integrated with the data type system. We 

claim that a better solution could be achieved if 

the type system of the language would support the 

notion of type 'hierarchies. 

We will discuss the solution adopted in Galileo, a 

strongly typed, interactive programming language, 

which integrates Semantic Data Model abstraction 

mechanisms into the framework of the language 

Edinburgh-ML (Gordon 79b, Albano 82). In particu- 

lar, Galileo provides two independent features: i) 

a type system with type hierarchies, and 2) the 

Class mechanism to deal with databases. When these 

features are combined in defining derived classes, 

an IS-A hierarchy is modeled. 

A complete description of Galileo is outside the 

scope of this paper; it has been given in (Albano 

82) and, together with the denotational semantics, 

in (Capaccioli 83). In the next section we give an 

overview of the language. Section 3 describes the 

notion of type hierarchies, and in Section 4 we 

present the class mechanism to deal with databases 

and to model the IS-A hierarchies. 

2. OVERVIEW OF Galileo 

Galileo is not a Semantic Data Model, but it is a 

strongly typed programming language which supports 

the following abstraction mechanisms of Semantic 

Data Models to design a database application: 

Classification: Entities of the world being 

modeled that share common c~aracteristics are 

described by the type of the elements of a class. 

The name of the class denotes the elements 

currently present in the database. The elements of 

a class are represented uniquely; no copies of 

them are allowed. 

Aggregation: Elements of classes are aggregates, 

i.e. they are abstractions of heterogeneous 

components and may have elements of other classes 

as components. Associations among entities are 

represented by aggregations in a Galileo database. 

Components of elements of classes can be collec- 

tions of homogeneous values to represent, for 

example, multivalued associations among entities. 

Moreover, because of the unique representation of 

elements of classes, any modification of an 

element is reflected anywhere that element appears 

as component. 

Generalization: Elements of a class can be 

described in different ways by means of derived 

classes. Elements of a derived class also belong 

to the parent class from which the class is 

derived using a predefined set of operators. The 

derived classes mechanism includes the IS-A 

hierarchy of Semantic Networks and Semantic Data 

Models. 

Modularization: Data and operations can be parti- 

tioned into interrelated modules. Therefore, a 

complex schema can be structured into smaller, 

meaningful and manageable units. For instance, a 

unit may model a user view or a description of the 

schema produced by a stepwise refinement methodo- 

logy by specialization. 

Other features of Galileo are: 

i. It is an expression oriented language, in that 
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each construct is applied to values to return a 

value. This feature is interesting because it 

allows the interactive use of Galileo without 

resorting to a new, stand-alone query language. 

2. It is higher order, in that functions are 

denotable values of the language. Therefore, a 

function can be a component of an aggregate 

which represents an entity, e.g. an age may be 

described as a function of the birthdate. 

3. Every denotable value of the language possesses 

a type: 

a. A type is a set of values sharing common 

characteristics, together with the primitive 

operators which can be applied to these 

values. 

b. The predefined types of the language are 

bool, hUm, int, string, equipped with the 

usual operators, and the type null, which is 

a singleton set with the element nil, 

equipped with the equality operator. 

c. The type constructors available to define 

new type names, from predefined or previou- 

sly defined types, are: Tuple (record), 

sequence, discriminated union (variant), 

function, modifiable value (reference), and 

abstract types. There are two constructors 

for abstract types: ~=> and~ . The former 

is similar to CLU clusters (Liskov 77), 

ALPHARD forms (Shaw 77, 81) or Euclid 

modules (Lampson 77). It is used to define a 

new type together with the operations 

available. The latter is similar to the type 

constructor of Ada: it defines a new type 

which inherits the primitive operations of 

the representation type. 

d. The type system supports the notion of type 

hierarchy, in that if a type t is a subtype 

of a type t', then a value of t can be used 

as argument of any operation defined for 

values of t', but not vice versa because the 

subtype relation is a partial order. The 

type hierarchy is a directed acyclic graph 

instead of a simple tree. 

4. Every Galileo expression has a type. The 

meaning of "an expression e having type t" is 

that the value of e possesses the type t. In 

general, any expression has a type that can be 

statically determined, so that every type 

violation can be detected by textual inspection 

(static type checking). However, if the type 

checker is not able to ascribe a type to an 

expression, the user must specify the type with 

the notation "Expression: Type". The language 

has been designed to be statically type 

checkable for two reasons: First, for the 

considerable benefits in testing and debugg- 

ing; secondly, because programs are safely 

executed disregarding any information about 

types at run time. Execution time testing will 

be required for constraints only. Finally, 

static type checking allows the typechecker to 

give the correct meaning to overloaded opera- 

tors, i.e; operators which can be used with 

operands of different types. 

5. Class elements possess an abstract type and are 

the only values which can be destroyed. 

Predefined assertions on classes are provided 

and, if not otherwise specified, the operators 

for including or eliminating elements of a 

class are automatically defined. 

6. A structured control structure is provided for 

failures and their handling. 

The following definition of a simple schema 

illustrates Galileo. The example concerns depart- 

ments and employees in a firm. The definitions are 

collected in the Organization schema. 

Organization:= 

(rec Departments class 

Department+~ 

(Name: string 

and Budget: var hum 

and Address: Address 

and Manager: var Employee 

and Employees: vat seq Employee) 

key (Name) 

and Employees class 

Employee+* 

(Name: strin E 

and Salary: varnum 

and Dept: = Department 

key (Name) 

and NewEmployee (Name: strlng, 

Salary: hum, 

NameOfDept: string 

) : Employee:= 

use ADept:= 

get Departments 

with Name=NameofDept 

if-fails failwith "unknown dept." 

ext AnEmployee:= 

mkEmployee (Name:= Name 

and Salary:= vat Salary 

and Dept:= ADept) 

in 

(Employees of ADept + 

Employees of ADept append[AnEmployee] 

AnEmployee) 
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and VipEmployee subset of Employees class 

VipEmployee+~ 

(is Employee 

and VipProperty: string) 

and type Address:= (Street: string 

and Zip: st~rlng 

and City: string) 

drop mkEmployee 
) 

The rec is used for recursive functions or for 

mutually dependent types, such as Department an 

Employee. 

Departments an Employees are examples of base 

classes, while key in an example of predefined 

constraint to assert that the elements of the 

classes must differ in the value of the Name 

attribute. 

An attribute can be modified if and only if it is 

defined of type vat, otherwise it is constant and 

any attempt to update the value is detected 

statically. 

The function NewEmployee is an example of a 

defined operation included in the schema. It is 

the only operation which can be used to create new 

elements of the class Employee since the drop 

operator prevents the predefined mkEmployee opera- 

tion from being exported outside the schema 

definition. For Departments and VipEmployees the 

functions mkDepartment and mkVipEmployee are 

available. 

VipEmployees is an example of a derived class. It 

contains all those employees who are believed to 

be very important. The elements of a derived class 

must have a type which is a subtype of the 

elements of the parent class. For instance, the 

type of the elements of VipEmployees is that of 

Employee with the additional attribute VipProper- 

ty. 

This example shows how classes are used to deal 

with sets of interrelated objects. The approach 

has some similarity to that adopted for relational 

databases: In both cases the associations among 

data are described by means of the value of an 

attribute. However, in relational databases data 

are tuples of simple values, collected in rela- 

tions, and the associations among them are 

represented by assigning as value to an attribute 

the key value of another tuple. In Galileo, 

instead, the mechanism of "data sharing" is used 

to represent associations, so that an element of a 

class can be shared as component by many others. 

3. TYPE HIEK~RCHIE8 

An Important property of Galileo is the notion of 

subtype: if a type u is a subtype of a type v (u 

is v), then a value of the type u can be used in 

any context where a value of the type v is 

expected, but not vice versa, i.e. the subtype 

relation is a partial order• For instance, if a 

function f has a formal parameter of type v, then 

an application of f to a value of type u is 

correctly typechecked because no run time errors 

can occur. It is important to stress the point 

that, since Galileo has a secure type system, the 

notion of type hierarchies is related to that of 

well typed expression (Gordon 7ga): Expressions 

which are syntactically well-typed are always 

semantically well-typed, i.e. the expressions do 

not cause run-time type errors and give a value of 

the correct type, if they terminate. In Milner's 

words "well-typed expressions do not go wrong" 

with hierarchies among types (Milner 78). 

This notion of type hierarchies is different from 

the subtype concept of ADA, which is essentially a 

mechanism to give another name for a type whose 

set of values has been constrained, but is simil~ 

to the subclass machanism of Simula 67 (Birtwistle 

73) and Smalltalk (Ingalls 78). The interesting 

aspects of the way it is used in Galileo is that 

this notion is extended to all the types, in the 

sense explained in the sequel, while preserving 

the important property that the language is still 

strongly typed. 

With this mechanism Galileo supports the notion of 

programming by data specialization originally 

introduced by Simula 67 and generalized in TAXIS 

to all the constituents of a database application: 

Data, transactions, assertions and scripts 

(Borgida 82). Complex software applications, 

especially those employing databases, can be 

designed and implemented incrementally: Once a set 

of functions has been designed and tested for the 

most general data, they can still be used with 

data of any subtype introduced later on in the 

software development process. Moreover, new func- 

tions on the subtypes can be defined by the 

composition of the old functions with specific 

~xpressions. 

The type system of Galileo includes primitive 

types and constructors to introduce user defined 

types, both concrete and abstract. For concrete 

types the type equivalence rule is the so-called 

structural equivalance: User-defined types names 

are just used as an abbreviation for the structure 

they represent. For abstract types the type 

equivalence rule is the so-called name equivalence 

rule: Two user-defined types are always different, 

and are different from the representation type. 

User defined concrete types are tuples (record), 

sequences, discriminated unions (variants), modi- 

fiable values (references) and functions. For 

these types the subtype relation is automatically 

inferred by the typechecker according to the 
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following rules (Albano 82): 

i. For any type t, (t is t). 

2. If r and s are tuple types, of the form "(ll:tl 

and ..... and in:tn)", then (r is s) iff: 

a. The set of labels of r contains the set of 

labels of s, and 

b. if r' and s' are the types of a common 

label, then (r' is s'). 

3. If r and s are variant types, of the form "~ 1 
1 

:t or .... or in:tn> ", then (r is s) iff: 
1 

a. The set of labels of r is contained in the 

set of labels of s, and 

b. if r' and s'. are the types of a common 

label, then (r' is s'). 

4. If r and s are sequence~types, of the form "seq 

t", with elements of types r' and s' then (r is 

s )iff (r' is s'). 

5. If r and s are modifiable types, of the form 

"vs~" t", then (r is s) iff the associated 

types are the same. 

6. If (r + s) and (r' ~ s') are function types, 

then (r ~ s) is (r' ÷ s') iff (r' is r), and (s 

is s'). 

For instance, if 

type (Address:= (Street: string 

and Zip: string 

and VipAddress:= (Street: string 

and Zip: string 

and Country: string) 

ext Person:= (Name: string 

and Address: vat Address) 

and Student:= (Name: string 

and Address: war Address 

and School: string 

and VipPerson:= (Name: string 

and Address:var VipAddress)) 

then 

Student is Person, and 

VipAddress is Address 

while it is false that 

Person is VipPerson 

Person is Student, 

Student is VipPerson, 

VipPerson is Person, and 

VipPerson is Student 

To define abstract types, Galileo provides two 

constructors. One, which will not be discussed 

here, is similar to CLU clusters, Alphard forms 

and Euclid modules. The other is similar to ADA 

types and will be presented by an exemple: 

type Time +~ (Hours: int and Minutes: int) 

This declaration introduces: 

i. The new type Time with a domain isomorphic to 

tuples. 

2. the identifiers mkTime and repTime bound to two 

primitive functions, automatically declared, to 

map values of the representation type into the 

new one, and vice versa. 

3. The selectors "Hours of" and "Minutes of", wich 

are primitive operators on the representation 

type. That is to say, primitive operators are 

inherited by the new type, with their names, 

but this overloading does not introduce ambi- 

guities because the typechecker can infer the 

meaning of an operator from the type of the 

operands. A feature is also provided to 

restrict the set of operators to be inherited 

and to include assertions to be tested at run 

time (Albano 82). 

For abstract types the subtype relation must be 

explicitly declared to the typechecker as follows: 

Id is Id',~ t, where Id'~+ t' and (t is t') 

For instance: 

type (Person~+ (Name: string 

and BirthDate: string 

and Address: string) 

ext Student is Person 

(Name: string 

and BirthDate: string 

and School: string 

and Address: string)) 

The following abbreviation emphasizes the fact 

that the subtype Student inherits the attributes 

of the supertype Person: 

type Student++ (is Person 

and School: string) 

Finally, multiple hierarchies are declared as Id 

is Id', Id"+~ t, where (t is t') and (t is t") or 

in the abbreviated form "Id+~ is Id', Id", ...". 

4. CLASSES 

Classes are the mechanism to represent a data base 

by means of sets of modifiable interrelated 

objects. An element of a class is an object which 

is the computer representation of certain facts 

about an entity of the world that is being 
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modeled. An object-oriented view of a database is 

characterized by the foliowing (Borgida 82, Kent 

79, McLeod 82): 

i. There is a one-to-one correspondence between 

objects in the database and entities of the 

world which are being modeled. 

2. The objects of the database are all distinct 

and they might not have an external reference, 

such as a key, that stands for them. 

3. Associations among entities are modeled by 

relating the corresponding objects and not 

external references. Moreover, only objects 

that exist in the database can be used to model 

associations, 

A class is characterized by a name and the type of 

its elements. The name of a class denotes the 

elements of the class currently present in the 

data base, while the type gives the structure of 

the elements. The type of the class elements must 

be an abstract type; therefore two elements of 

different classes are always of different type, 

although they may be defined to have the same 

representation. 

Elements of classes are the only values in Galileo 

which can be destroyed. Moreover, they are 

uniquely represented and when updated, their 

modification is reflected in all other objects in 

which they appear as components. 

Each class can be either a bane clans or a derived 

class. A base class is defined independently of 

other classes, while a derived class is defined in 

terms of other classes. As in SDM (Hammer 81), a 

base class is used to model a primitive collection 

of entities, while a derived class is used to 

model alternative ways of looking at the same 

entities. 

Base Classes 

A base class is defined by the environment 

operator class, as shown in the following example 

with two mutually defined classes. 

tee Departments class 

Department ~+ 

(Name: string 

and Budget: vat num 

and Address: string 

and Manager: vat Employee 

and Employees:vat seqEmployee) 

key (Name) 

and Employees class 

Employee *~ 

(Name: string 

a n d  Salary: v a r  n u m  

and Dept: Department) 

key (Name) 

The class operator introduces@ the following 

bindings: 

i. The names Department and Employee bound to new 

types isomorphic to tuples. 

2. The classes identifiers Departments and Emplo- 

yees bound to modifiable sequences of values of 

types Department and Employee. 

3. The names mkDepartment and mkEmployee bound to 

two primitive functions, automatically decla- 

red, which differ from the similar functions on 

abstract types in that every time they are 

applied, new elements are created and are also 

automatically inserted into the associated 

classes, if the specified constraints are not 

violated. The constructed elements are also the 

values returned by the functions. 

4. The functions repDepartmeht and repEmployee to 

map elements of the classes into the represen- 

tation type. 

The above declaration defines the structure of the 

objects together with a few constraints, some of 

which are predefined constraints to be tested when 

a class is modified: 

a. The key constraints asserts that elements of a 

class must differ in the value of certain 

attributes. Note that if the key constraints is 

not specified, the insertion will be made even 

though the value of the attributes are equal to 

those of another object already present in the 

class. That is, elements of classes are always 

distinct objects, but the construction of an 

element will fail when the constraints are 

violated. 

Other constraints are specified directly in the 

definition of element types: 

b. Only attributes with a var type can be 

modified. 

c. The attributes Employees and Manager in Depart- 

ments are used to model the psuct-of relation- 

ship of Semantic Networks, which imply the 

followings dependency constraints: an employee 

cannot be eliminated from the database as long 

as he is a component of a department. 

Derived Classes 

In Galileo the two notions behind the IS-A 

hierarchy are expressed with two distinct mecha- 

nisms: The type hierarchy, to deal with the 

intensional aspect, and the derived class to deal 
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with the extensional aspect. A derived class 
e 

implies an existency constraints among its ele- 

ments and those of the parent class, i.e. the 

elements of a derived class are also elements of 

its parent class. The type of the elements of a 

derived class must be a subtype of the element 

type of the parent class. As a consequence of the 

subtype hierarchy, the elements of a derived class 

can be used as actual parameter for any operation 

defined for the elements of its parent class. 

There are three ways of defining a derived class: 

by subset, partition or restriction /Albano 82/. 

Let us consider the first one which is the 

mechanism to model IS-A hierarchies. 

A subset class contains a subset of the elements 

of the parent class which have been included 

explicitly with the proper operator. When a new 

element is added to a subset class, then it 

becomes also an element of the parent class. 

Classes can also be derived from more than one 

parent class, with the restriction that the type 

of the element must be a subtype of all the 

element type of parent classes. 

For example: 

Secretaries subset of Employees class 

Secretary *-* 

(is Employee and Position : string) 

FemaleEmployees subset of Employees class 

FemaleEmployee +~ 

(is Employee and Maternities : var hum) 

FemaleSecretaries subset of 

Secretaries, FemaleEmployees class 

FemaleSecretary +~ (is Secretary, 

FemaleEmployee) 

The Employees are specialized in two overlapping 

subset classes, which in their turn are parents of 

another derived class. 

5 .  CONCLUSIONS 

The problem of integrating Semantic Data Models 

features in a strongly typed programming language 

has been addressed. A solution has been shown in 

the framework of the language Galileo, designed 

specifically with the above goal in mind. In 

particular, the generalization abstraction mecha- 

nism has been examined and it has been shown that 

to achieve a true integration of this feature in a 

strongly typed language, the type system should 

support the notion of type hierarchies. 

The presentation has been informal, but this 

notion derive naturally from semantic considera- 

tions. The approach adopted is based on a previous 

result of Cardelli /82/: He has proved, in the 

framework of Edimburgh-ML, a semantic soundness 

theorem for a type system with multiple inheri- 

tance of types, based on Milner's theory of 

polymorphism. We are currently working on the 

proof of the theorem for the Galileo type system. 

A preliminary implementation of a Galileo subset 

have been described in /Albano 83/. Presently, the 

final definition of the language has been comple- 

ted and a more efficient implementation is in 

progress. This is being done by extending the ML 

implementation made by Cardelli on a VAX 11/780 

running the UNIX(*) operating system. 

The implementation of Galileo, for the time being, 

is for a single user environment and it does not 

include mechanisms for efficient recovery and 

concurrency control. In fact, the intended imple- 

mentation is not to release a DBMS based on a 

Semantic Data Model, although ADAPLEX has shown 

that the time is mature for this kind of DBMS's 

too. Our main concerns are: 

a. To test the features of the language for 

conceptual database design; 

b. To study the architecture of a Database 

Designer's Workbench, the basic facilities, and 

tools to support the database design process 

(Albano 83). 
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