
TYPE HIERARCHIES AND SEMANTIC DATA MODELS

Antonio Albano (*)

Department of Computer Science

University of Toronto

Toronto, Canada M5S IA4

Abstract

The basic abstraction mechanisms of Semantic Data

Models - aggregation, classification and generali-

zation - are considered the essential features to

overcome the limitations of traditional data

models in terms of semantic expressiveness. An

important issue in database programming language

design is which features should a programming

language have to support the abstraction mecha-

nisms of Semantic Data Models. This paper shows

that when using a strongly typed programming

language, that language should support the notion

of type hierarchies to achieve a full integration

of Semantic Data Models abstraction mechanisms

within the language's type system. The solution is

presented using the language Galileo, a strongly

typed, interactive programming language specifi-

cally designed for database applications.

i. INTRODUCTION

In the past the fields of programming languages

and database languages have developed separately

because each focused on different classes of

problems. Research in programming language design

has concentrated on creation of features to

support the implementation of complex algorithms

using temporary data (Shaw 80). Research in

database language design, instead, has been mainly

concerned with features to model persistent,

interrelated data which must be accessed by

programs or interactive query languages. An

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a f¢¢ and/or specific permission.

© 1983 A C M 0-89791-108-3 /83 /006 /0178 $00.75

important exception to these divergent trends has

been the common attempt by both programming and

database researcher workers to design a basic set

of abstraction mechanisms for data modeling. Still,

the solutions provided have been quite distinct

(Biller 78, Brodie 80,81; Schmidt 78; Weber 78).

Recently, this situation has been changing, largely

because database people are paying more attention

to the design of languages that besides types,

abstract types and modularization, include abstrac-

tion mechanisms to support database models. For

instance, proposals and implementations have been

given to integrate a relational data model into a

general-purpose, Pascal-like programming language

(ASTRAL (Amble 79), PASCAL-R (Schmidt 80), PLAIN

(Wasserman 79), RIGEL (Rowe 79), THESEUS (Shopiro

79)).

Another database goal, which will have far reaching

impact on programming languages, is the design of a

language for database applications which supports

the basic features of Semantic Data Models. A

Semantic Data Model is a set of data abstraction

mechanisms to describe the structure of databases:

the structures, and the associated operations, are

explicitly intended to represent certain types of

real-world information. A survey and an analysis of

the motivations for this new generation of data

models is reported in (McLeod 82). It is sufficient

here to remember that the basic abstraction mecha-

nisms are classification, aggregation and genera-

lization. For the purposes of this paper, we here

interested in considering the third mechanism,

named also IS-A hierarchy, and originally proposed

in the context of Semantic Networks.

(*) This work was supported in part by the

Consiglio Nazionale delle Ricerche, Progetto

Finalizzato Informatica, Obiettivo DATAID,

and in part by Ministero della Pubblica Istruzio-

ne.

Present address: Dipartimento di Informatica,

Universit~ di Pisa, Corso Italia 40, 1-56100

Pisa, Italy.

178

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800226.806864&domain=pdf&date_stamp=1983-06-01

The IS-A hierarchy is used in Semantic Data Models

as a definitional mechanism involving two different

notions (Wong 77). First, supposing Students IS-A

Persons, it establishes an existence constraint

among the elemens of Students and Persons present

in the database: The elements of Students are in

every state a subset of the elements of Persons

(Extensional IS-A Constraints). Secondly, it is a

compatibility rule between the elements of Students

and Persons, in that every element of Students

inherits all the properties of Persons elements

(Structural IS-A Constraint). The inheritance rule,

with this interpretation of the IS-A mechanism, is

therefore strict rather than default (e.g.

(Carbonell 81)). Consequently, elements of Students

can be used in any context were an element of

Persons is expected, by not vice versa (the

compatibility rule is a partial order).

The question is which features should a programming

language have to support this abstraction me-

chanism. If we think, for simplicity, of Students

and Persons as identifiers bound to collections of

values of type Student and Person, the first notion

behind the IS-A hierarchies is a constraint on the

values of the identifiers, while the second is a

compatibility rule between the types of the

elements.

Three of the database programming languages that

have been proposed to address this problem are

TAXIS, ADAPLEX and DIAL. TAXIS, which has the merit

of being the first proposed, uses an approach not

based on a typed programming languages (Mylopoulos

80). More closely related to the author's work is

ADAFLEX, since the solution proposed is given

within the framework of a strongly typed program-

ming language, in this case ADA (Smith 81, Wegner

80). We consider this approach more interesting

because we believe that the well known benefits of

static typechecking are notable for database

applications: The task of modeling becomes easier

and more productive (Brodie 80, Billet 78). The

solution adopted by ADAPLEX, however, is ad hoc for

modeling databases, and it is not an independent

feature of the language that can be used .also for

modeling temporary data. Similar considerations

apply to DIAL (Hammer 80), which has evolved from

SDM (Hammer 81): It is a programming language with

data types, but the features for database medeling

are not integrated with the data type system. We

claim that a better solution could be achieved if

the type system of the language would support the

notion of type 'hierarchies.

We will discuss the solution adopted in Galileo, a

strongly typed, interactive programming language,

which integrates Semantic Data Model abstraction

mechanisms into the framework of the language

Edinburgh-ML (Gordon 79b, Albano 82). In particu-

lar, Galileo provides two independent features: i)

a type system with type hierarchies, and 2) the

Class mechanism to deal with databases. When these

features are combined in defining derived classes,

an IS-A hierarchy is modeled.

A complete description of Galileo is outside the

scope of this paper; it has been given in (Albano

82) and, together with the denotational semantics,

in (Capaccioli 83). In the next section we give an

overview of the language. Section 3 describes the

notion of type hierarchies, and in Section 4 we

present the class mechanism to deal with databases

and to model the IS-A hierarchies.

2. OVERVIEW OF Galileo

Galileo is not a Semantic Data Model, but it is a

strongly typed programming language which supports

the following abstraction mechanisms of Semantic

Data Models to design a database application:

Classification: Entities of the world being

modeled that share common c~aracteristics are

described by the type of the elements of a class.

The name of the class denotes the elements

currently present in the database. The elements of

a class are represented uniquely; no copies of

them are allowed.

Aggregation: Elements of classes are aggregates,

i.e. they are abstractions of heterogeneous

components and may have elements of other classes

as components. Associations among entities are

represented by aggregations in a Galileo database.

Components of elements of classes can be collec-

tions of homogeneous values to represent, for

example, multivalued associations among entities.

Moreover, because of the unique representation of

elements of classes, any modification of an

element is reflected anywhere that element appears

as component.

Generalization: Elements of a class can be

described in different ways by means of derived

classes. Elements of a derived class also belong

to the parent class from which the class is

derived using a predefined set of operators. The

derived classes mechanism includes the IS-A

hierarchy of Semantic Networks and Semantic Data

Models.

Modularization: Data and operations can be parti-

tioned into interrelated modules. Therefore, a

complex schema can be structured into smaller,

meaningful and manageable units. For instance, a

unit may model a user view or a description of the

schema produced by a stepwise refinement methodo-

logy by specialization.

Other features of Galileo are:

i. It is an expression oriented language, in that

179

each construct is applied to values to return a

value. This feature is interesting because it

allows the interactive use of Galileo without

resorting to a new, stand-alone query language.

2. It is higher order, in that functions are

denotable values of the language. Therefore, a

function can be a component of an aggregate

which represents an entity, e.g. an age may be

described as a function of the birthdate.

3. Every denotable value of the language possesses

a type:

a. A type is a set of values sharing common

characteristics, together with the primitive

operators which can be applied to these

values.

b. The predefined types of the language are

bool, hUm, int, string, equipped with the

usual operators, and the type null, which is

a singleton set with the element nil,

equipped with the equality operator.

c. The type constructors available to define

new type names, from predefined or previou-

sly defined types, are: Tuple (record),

sequence, discriminated union (variant),

function, modifiable value (reference), and

abstract types. There are two constructors

for abstract types: ~=> and~ . The former

is similar to CLU clusters (Liskov 77),

ALPHARD forms (Shaw 77, 81) or Euclid

modules (Lampson 77). It is used to define a

new type together with the operations

available. The latter is similar to the type

constructor of Ada: it defines a new type

which inherits the primitive operations of

the representation type.

d. The type system supports the notion of type

hierarchy, in that if a type t is a subtype

of a type t', then a value of t can be used

as argument of any operation defined for

values of t', but not vice versa because the

subtype relation is a partial order. The

type hierarchy is a directed acyclic graph

instead of a simple tree.

4. Every Galileo expression has a type. The

meaning of "an expression e having type t" is

that the value of e possesses the type t. In

general, any expression has a type that can be

statically determined, so that every type

violation can be detected by textual inspection

(static type checking). However, if the type

checker is not able to ascribe a type to an

expression, the user must specify the type with

the notation "Expression: Type". The language

has been designed to be statically type

checkable for two reasons: First, for the

considerable benefits in testing and debugg-

ing; secondly, because programs are safely

executed disregarding any information about

types at run time. Execution time testing will

be required for constraints only. Finally,

static type checking allows the typechecker to

give the correct meaning to overloaded opera-

tors, i.e; operators which can be used with

operands of different types.

5. Class elements possess an abstract type and are

the only values which can be destroyed.

Predefined assertions on classes are provided

and, if not otherwise specified, the operators

for including or eliminating elements of a

class are automatically defined.

6. A structured control structure is provided for

failures and their handling.

The following definition of a simple schema

illustrates Galileo. The example concerns depart-

ments and employees in a firm. The definitions are

collected in the Organization schema.

Organization:=

(rec Departments class

Department+~

(Name: string

and Budget: var hum

and Address: Address

and Manager: var Employee

and Employees: vat seq Employee)

key (Name)

and Employees class

Employee+*

(Name: strin E

and Salary: varnum

and Dept: = Department

key (Name)

and NewEmployee (Name: strlng,

Salary: hum,

NameOfDept: string

) : Employee:=

use ADept:=

get Departments

with Name=NameofDept

if-fails failwith "unknown dept."

ext AnEmployee:=

mkEmployee (Name:= Name

and Salary:= vat Salary

and Dept:= ADept)

in

(Employees of ADept +

Employees of ADept append[AnEmployee]

AnEmployee)

180

and VipEmployee subset of Employees class

VipEmployee+~

(is Employee

and VipProperty: string)

and type Address:= (Street: string

and Zip: st~rlng

and City: string)

drop mkEmployee
)

The rec is used for recursive functions or for

mutually dependent types, such as Department an

Employee.

Departments an Employees are examples of base

classes, while key in an example of predefined

constraint to assert that the elements of the

classes must differ in the value of the Name

attribute.

An attribute can be modified if and only if it is

defined of type vat, otherwise it is constant and

any attempt to update the value is detected

statically.

The function NewEmployee is an example of a

defined operation included in the schema. It is

the only operation which can be used to create new

elements of the class Employee since the drop

operator prevents the predefined mkEmployee opera-

tion from being exported outside the schema

definition. For Departments and VipEmployees the

functions mkDepartment and mkVipEmployee are

available.

VipEmployees is an example of a derived class. It

contains all those employees who are believed to

be very important. The elements of a derived class

must have a type which is a subtype of the

elements of the parent class. For instance, the

type of the elements of VipEmployees is that of

Employee with the additional attribute VipProper-

ty.

This example shows how classes are used to deal

with sets of interrelated objects. The approach

has some similarity to that adopted for relational

databases: In both cases the associations among

data are described by means of the value of an

attribute. However, in relational databases data

are tuples of simple values, collected in rela-

tions, and the associations among them are

represented by assigning as value to an attribute

the key value of another tuple. In Galileo,

instead, the mechanism of "data sharing" is used

to represent associations, so that an element of a

class can be shared as component by many others.

3. TYPE HIEK~RCHIE8

An Important property of Galileo is the notion of

subtype: if a type u is a subtype of a type v (u

is v), then a value of the type u can be used in

any context where a value of the type v is

expected, but not vice versa, i.e. the subtype

relation is a partial order• For instance, if a

function f has a formal parameter of type v, then

an application of f to a value of type u is

correctly typechecked because no run time errors

can occur. It is important to stress the point

that, since Galileo has a secure type system, the

notion of type hierarchies is related to that of

well typed expression (Gordon 7ga): Expressions

which are syntactically well-typed are always

semantically well-typed, i.e. the expressions do

not cause run-time type errors and give a value of

the correct type, if they terminate. In Milner's

words "well-typed expressions do not go wrong"

with hierarchies among types (Milner 78).

This notion of type hierarchies is different from

the subtype concept of ADA, which is essentially a

mechanism to give another name for a type whose

set of values has been constrained, but is simil~

to the subclass machanism of Simula 67 (Birtwistle

73) and Smalltalk (Ingalls 78). The interesting

aspects of the way it is used in Galileo is that

this notion is extended to all the types, in the

sense explained in the sequel, while preserving

the important property that the language is still

strongly typed.

With this mechanism Galileo supports the notion of

programming by data specialization originally

introduced by Simula 67 and generalized in TAXIS

to all the constituents of a database application:

Data, transactions, assertions and scripts

(Borgida 82). Complex software applications,

especially those employing databases, can be

designed and implemented incrementally: Once a set

of functions has been designed and tested for the

most general data, they can still be used with

data of any subtype introduced later on in the

software development process. Moreover, new func-

tions on the subtypes can be defined by the

composition of the old functions with specific

~xpressions.

The type system of Galileo includes primitive

types and constructors to introduce user defined

types, both concrete and abstract. For concrete

types the type equivalence rule is the so-called

structural equivalance: User-defined types names

are just used as an abbreviation for the structure

they represent. For abstract types the type

equivalence rule is the so-called name equivalence

rule: Two user-defined types are always different,

and are different from the representation type.

User defined concrete types are tuples (record),

sequences, discriminated unions (variants), modi-

fiable values (references) and functions. For

these types the subtype relation is automatically

inferred by the typechecker according to the

181

following rules (Albano 82):

i. For any type t, (t is t).

2. If r and s are tuple types, of the form "(ll:tl

and and in:tn)", then (r is s) iff:

a. The set of labels of r contains the set of

labels of s, and

b. if r' and s' are the types of a common

label, then (r' is s').

3. If r and s are variant types, of the form "~ 1
1

:t or or in:tn> ", then (r is s) iff:
1

a. The set of labels of r is contained in the

set of labels of s, and

b. if r' and s'. are the types of a common

label, then (r' is s').

4. If r and s are sequence~types, of the form "seq

t", with elements of types r' and s' then (r is

s)iff (r' is s').

5. If r and s are modifiable types, of the form

"vs~" t", then (r is s) iff the associated

types are the same.

6. If (r + s) and (r' ~ s') are function types,

then (r ~ s) is (r' ÷ s') iff (r' is r), and (s

is s').

For instance, if

type (Address:= (Street: string

and Zip: string

and VipAddress:= (Street: string

and Zip: string

and Country: string)

ext Person:= (Name: string

and Address: vat Address)

and Student:= (Name: string

and Address: war Address

and School: string

and VipPerson:= (Name: string

and Address:var VipAddress))

then

Student is Person, and

VipAddress is Address

while it is false that

Person is VipPerson

Person is Student,

Student is VipPerson,

VipPerson is Person, and

VipPerson is Student

To define abstract types, Galileo provides two

constructors. One, which will not be discussed

here, is similar to CLU clusters, Alphard forms

and Euclid modules. The other is similar to ADA

types and will be presented by an exemple:

type Time +~ (Hours: int and Minutes: int)

This declaration introduces:

i. The new type Time with a domain isomorphic to

tuples.

2. the identifiers mkTime and repTime bound to two

primitive functions, automatically declared, to

map values of the representation type into the

new one, and vice versa.

3. The selectors "Hours of" and "Minutes of", wich

are primitive operators on the representation

type. That is to say, primitive operators are

inherited by the new type, with their names,

but this overloading does not introduce ambi-

guities because the typechecker can infer the

meaning of an operator from the type of the

operands. A feature is also provided to

restrict the set of operators to be inherited

and to include assertions to be tested at run

time (Albano 82).

For abstract types the subtype relation must be

explicitly declared to the typechecker as follows:

Id is Id',~ t, where Id'~+ t' and (t is t')

For instance:

type (Person~+ (Name: string

and BirthDate: string

and Address: string)

ext Student is Person

(Name: string

and BirthDate: string

and School: string

and Address: string))

The following abbreviation emphasizes the fact

that the subtype Student inherits the attributes

of the supertype Person:

type Student++ (is Person

and School: string)

Finally, multiple hierarchies are declared as Id

is Id', Id"+~ t, where (t is t') and (t is t") or

in the abbreviated form "Id+~ is Id', Id", ...".

4. CLASSES

Classes are the mechanism to represent a data base

by means of sets of modifiable interrelated

objects. An element of a class is an object which

is the computer representation of certain facts

about an entity of the world that is being

182

modeled. An object-oriented view of a database is

characterized by the foliowing (Borgida 82, Kent

79, McLeod 82):

i. There is a one-to-one correspondence between

objects in the database and entities of the

world which are being modeled.

2. The objects of the database are all distinct

and they might not have an external reference,

such as a key, that stands for them.

3. Associations among entities are modeled by

relating the corresponding objects and not

external references. Moreover, only objects

that exist in the database can be used to model

associations,

A class is characterized by a name and the type of

its elements. The name of a class denotes the

elements of the class currently present in the

data base, while the type gives the structure of

the elements. The type of the class elements must

be an abstract type; therefore two elements of

different classes are always of different type,

although they may be defined to have the same

representation.

Elements of classes are the only values in Galileo

which can be destroyed. Moreover, they are

uniquely represented and when updated, their

modification is reflected in all other objects in

which they appear as components.

Each class can be either a bane clans or a derived

class. A base class is defined independently of

other classes, while a derived class is defined in

terms of other classes. As in SDM (Hammer 81), a

base class is used to model a primitive collection

of entities, while a derived class is used to

model alternative ways of looking at the same

entities.

Base Classes

A base class is defined by the environment

operator class, as shown in the following example

with two mutually defined classes.

tee Departments class

Department ~+

(Name: string

and Budget: vat num

and Address: string

and Manager: vat Employee

and Employees:vat seqEmployee)

key (Name)

and Employees class

Employee *~

(Name: string

a n d Salary: v a r n u m

and Dept: Department)

key (Name)

The class operator introduces@ the following

bindings:

i. The names Department and Employee bound to new

types isomorphic to tuples.

2. The classes identifiers Departments and Emplo-

yees bound to modifiable sequences of values of

types Department and Employee.

3. The names mkDepartment and mkEmployee bound to

two primitive functions, automatically decla-

red, which differ from the similar functions on

abstract types in that every time they are

applied, new elements are created and are also

automatically inserted into the associated

classes, if the specified constraints are not

violated. The constructed elements are also the

values returned by the functions.

4. The functions repDepartmeht and repEmployee to

map elements of the classes into the represen-

tation type.

The above declaration defines the structure of the

objects together with a few constraints, some of

which are predefined constraints to be tested when

a class is modified:

a. The key constraints asserts that elements of a

class must differ in the value of certain

attributes. Note that if the key constraints is

not specified, the insertion will be made even

though the value of the attributes are equal to

those of another object already present in the

class. That is, elements of classes are always

distinct objects, but the construction of an

element will fail when the constraints are

violated.

Other constraints are specified directly in the

definition of element types:

b. Only attributes with a var type can be

modified.

c. The attributes Employees and Manager in Depart-

ments are used to model the psuct-of relation-

ship of Semantic Networks, which imply the

followings dependency constraints: an employee

cannot be eliminated from the database as long

as he is a component of a department.

Derived Classes

In Galileo the two notions behind the IS-A

hierarchy are expressed with two distinct mecha-

nisms: The type hierarchy, to deal with the

intensional aspect, and the derived class to deal

' 1 8 3

with the extensional aspect. A derived class
e

implies an existency constraints among its ele-

ments and those of the parent class, i.e. the

elements of a derived class are also elements of

its parent class. The type of the elements of a

derived class must be a subtype of the element

type of the parent class. As a consequence of the

subtype hierarchy, the elements of a derived class

can be used as actual parameter for any operation

defined for the elements of its parent class.

There are three ways of defining a derived class:

by subset, partition or restriction /Albano 82/.

Let us consider the first one which is the

mechanism to model IS-A hierarchies.

A subset class contains a subset of the elements

of the parent class which have been included

explicitly with the proper operator. When a new

element is added to a subset class, then it

becomes also an element of the parent class.

Classes can also be derived from more than one

parent class, with the restriction that the type

of the element must be a subtype of all the

element type of parent classes.

For example:

Secretaries subset of Employees class

Secretary *-*

(is Employee and Position : string)

FemaleEmployees subset of Employees class

FemaleEmployee +~

(is Employee and Maternities : var hum)

FemaleSecretaries subset of

Secretaries, FemaleEmployees class

FemaleSecretary +~ (is Secretary,

FemaleEmployee)

The Employees are specialized in two overlapping

subset classes, which in their turn are parents of

another derived class.

5 . CONCLUSIONS

The problem of integrating Semantic Data Models

features in a strongly typed programming language

has been addressed. A solution has been shown in

the framework of the language Galileo, designed

specifically with the above goal in mind. In

particular, the generalization abstraction mecha-

nism has been examined and it has been shown that

to achieve a true integration of this feature in a

strongly typed language, the type system should

support the notion of type hierarchies.

The presentation has been informal, but this

notion derive naturally from semantic considera-

tions. The approach adopted is based on a previous

result of Cardelli /82/: He has proved, in the

framework of Edimburgh-ML, a semantic soundness

theorem for a type system with multiple inheri-

tance of types, based on Milner's theory of

polymorphism. We are currently working on the

proof of the theorem for the Galileo type system.

A preliminary implementation of a Galileo subset

have been described in /Albano 83/. Presently, the

final definition of the language has been comple-

ted and a more efficient implementation is in

progress. This is being done by extending the ML

implementation made by Cardelli on a VAX 11/780

running the UNIX(*) operating system.

The implementation of Galileo, for the time being,

is for a single user environment and it does not

include mechanisms for efficient recovery and

concurrency control. In fact, the intended imple-

mentation is not to release a DBMS based on a

Semantic Data Model, although ADAPLEX has shown

that the time is mature for this kind of DBMS's

too. Our main concerns are:

a. To test the features of the language for

conceptual database design;

b. To study the architecture of a Database

Designer's Workbench, the basic facilities, and

tools to support the database design process

(Albano 83).

ACKNO~LEDGENENTS

I am indebted to Luca Cardelli and Renzo Orsini

for their contribution to the design of Galileo.

Also many thanks to Sol Greenspan, John Mylopoulos

and the members of the Galileo Project for their

constructive criticism to the contents of the

paper.

REFERENCES

Albano A., L. Cardelli and R. Orsini /82/,

"Galileo: A Strongly Typed, Interactive

Conceptual Language", Technical Report, De-

partment of Computer Science, University of

Toronto (submitted for publication).

Albano A. and R. Orsini /83/, "Dialogo: An

interactive Environment for Conceptual Design

in Galileo", in Methodology and Tools for

Database Design, S. Ceri (ed.), North-

Holland, Amsterdam, 229-253, 1983.

(*) UNIX is a Trademark of Bell Laboratories.

184

Amble T., K. Bratberggensen and O. Risnes /79/,

"ASTRAL, A Structured and Unified Approach to

Database Design and Manipulation", in Data

Base ArchitecL~ce, G, Bracchi and G.M.

Nijssen (eds), North-Holland, Amsterdam,

1979.

Biller, H. and E.J. Neuhold /78/, "Semantic of

Databases: The Semantics of Data Models",

Information Systems 3,1,11-30, 1978.

Birtwistle G.M., O-J Dahl, B. Myhrhang and K.

Nygaard /73/, "SIMULA Begin", New York,

Petrocelli, 1973.

Borgida A.T., J. Mylopoulos and H.K.T. Wong /82/,

"Methodological and Computer Aids for Inte-

ractive Information Systems Design", in

Automated Tools for Information System De-

sign, H.J. Schneider and A. Wasserman (eds),

North-Holland, Amsterdam, 109-124, 1982.

Brodie M.L. /80/, "The Application of Data Types

to Database Semantic Integrity", Information

System 5, 4, 287-296, 1980.

Brodie M.L. and S.N. Zilles (eds) /81/, Prec.

Nor~shop on Data Abstraction, Data Bases and

Conceptual Modelling, ACM SIGMOD Special

Issue ii, 2, 1981.

Capaccioli M. /83/, "La semantica Denotazionale

del Galileo", Tesi di laurea in Scienze

dell'informazione, Universit& di Pisa, Italy,

1983.

Carbonell J.G~ /81/, "Default Reasoning and

Inheritance Mechanism on Type Hierarchies",

in Prec. Workshop on Data Abstraction, Data

Bases and Conceptual Modelling, Brodie M.L.

and S.N. Zilles (eds), ACM SIC~ONB Special

Issue Ii, 2, 107-109, 1981.

Cardelli L. /82/, "Semantics and Typechecking of

Multiple Inheritance" (draft).

Gordon M. /79a/, "The Denotational Description of

Programming Languages. An Introduction",

Springer-Verlag, New York 1979.

Gordon M., R. Milner and C. Wadsworth /79b/,

"Edinburgh LCF", Lecture Notes in Computer

Science, Vol. 78, Springer Verlag, 1979.

Hammer M. and B. Berkowitz /80/, "DIAL: A

programming Language for Data Intensive

Applications", Prec. of ACM SICW40D Conferen-

ce, 1980.

Hammer M. and McLeod /81/, "Database Description

with SDM: A Semantic Database Model", ACM

TODS 6, 3, 351-386, 1981.

Ingalls D.H. /78/, "The Smalltalk-76 Programming

Systems: Design and Implementation", Confe-

rence Record of the 5th Annual ACM Symposium

on Principles of Programming Languages,

Tuscon, Arizona, 9-16, 1978.

Kent W. /79/, "Limitations of Record-Based Infor-

mation Models", ACM TODS 4, i, 107-131, 1979.

Lampson B.W., J.J. Homing, R.L. London, J.G.

Mitchell and G.L. Popek /77/, "Report On The

Programming Language Euclid", ACN SIGPLAN

Notices 12,2, 1977.

Liskov B.H., A. Snyder, A. Atkinson and C.

Schaffert /77/, "Abstraction Mechanisms in

CLU", CACM 20, 8, 564-576, 1977.

McLeod D. and R. King /82/, "Semantic Database

Models", in Principle of Database Design,

S.B. Yao (ed.), Prentice Hall, 1982 (to

appear).

Milner R. /78/, "A Theory of Type Polymorphism in

Programming", Journal of Computer and System

Science 17, 348-375, 1978.

Mylopoulos J., P.A. Bernstein and H.K.T. Wong
/80/, "A language Facility for Designing

Database-Intensive Applications", ACM TODS 5,

2, 185-207, 1980.

]
Rowe L.A. and K.A.'Shoens /79/, "Data Abstraction,

Views and Updates in RIGEL", Prec. of ACM

SIC4~OD Conference, Boston, Mass., 71-81,

1979.

Schmidt J.W. /78/, "Type Concepts for Database

Definition", in Database: Improving Usability

and Responsiveness, B. Schneidermann (ed.),

Academic Press, 215-244, 1978.

Schmidt J.W. and M. Mall /80/, "Pascal/R Report",

University of Hamburg, Fachbereich Informat-

ik, Report N.66, January 1980.

Shopiro J.E. /79/, "A Programming Language for

Relational Database", ACM TODS 4, 4, 493-517,

1979.

Shaw M., W.A. Wulf and R.L. London /77/, "Abstrac-
tion and Verification in ALPHARD: Defining

and Specifying Iteration and Generators",

CACM 20, 8, 553-564, 1977.

~J

185

Shaw M. /80/, "The impact of Abstraction Concerns

on Modern Programming Languages", Proeeedln4~s

of the IEEE, Vol. 68, N.9, 1119-1130, 1980.

Shaw M. (ed.) /81/, "ALPHARD: Form and Content",

Springer Verlag, New York, 1981.

Smith J.M., S. Fox and T. Lancers /81/, "Reference

Manual for ADAPLEX", Technical Report CCA-81-

02, Computer Corporation of America, January

1981.

Wasserman A.I. /79/, "The Data Management Facili-

ties of PLAIN", Proe. of the ACM SIGMOD

Conference, Boston Mass., 60-70, 1979.

Weber H. /78/, "A Software Engineering View of

Data Base Systems", Proc. 4th Int. Conf, on

VLDB, Berlin, 36-51, 1978.

Wegner P. /80/, "Programming with Ada: An Intro-

duction by Means of Graduated Examples",

Englewood Cliffs N.J., Prentice-Hall, 1980.

Wong H.K.T. and J. Mylopoulos /77/, "Two Views of

Data Semantics: A Survey of Data Models in

Artificial Intelligence and Database Manage-

ment", INFOR 15,3, 344-382, 1977.

186

