
TYPES

Rowe: Data typing is a technique that researchers
in the various areas use to solve a variety of
problems. This session focuses on how types are
used in a particular domain to solve particular
kinds of problems. The long term goal is to answer
the question, what is a type? To begin we will
have presentations by representatives from the
three areas, AI, DB and PL, on how they see types
being used. Mary Shaw will begin and will be fol-
lowed by Ira Goldstein and Ted Codd.

THE NOTION OF TYPES IN PROGRAMMING LANGUAGES

Shaw: I will begin by stating some definitions.
These definitions reflect the way I use words like
abstraction, model and type. First, I don't agree
that abstraction is another word for good. Abs-
traction is sometimes used as a noun and sometimes
as a verb, if it is used as a noun abstraction is
a description of a system in which some details are
emphasized and other details are suppressed.
A good abstraction is an abstraction in which
appropriate details are emphasized; thus, goodness
depends on context. Abstraction is relative to
the use for which the descriptions are to be used.

I don't use the word model very much in a technical
sense. I have been trying for a couple of days to
understand why there is this distinction between a
model and an abstraction. When I say model or
abstraction in a general sense then I am not
attempting to make a distinction.

The most important thing about types is that types
are not God given and type is not a central part of
the universe. More than anything else, the notion
of type is a means of organizing information about
programs. It forces the program author to deal
with certain issues. It is a means of summarizing
information about values common to a subset of the
program's variables. It is a means of expressing
the kinds of operations that may he permitted on
those values. The motivation for type arises from
a need for discipline in programming. It arises
from the need to maintain the integrity of data,
and in recent times it is used to reduce life-cycle
costs of programs.

Abstract Data Type Definition

An abstract data type is a user-defined type. It
has two parts, a specification and the implementa-
tion. The specification contains information that
may be used by a client, defines the interface to
be used by other parts of the program, and guaran-
tees that variables of this type will have certain
properties. This is coupled with a protection
mechanism that insures that no part of the program
destroys the integrity of the data values.

In PL there is a strong flavor of protection, en-
capsulation and scope rules. That is, the ability
to refer to specific components of the implementa-
tion may be restricted. Only privileged portions
of the program inside the definition of the data
type itself are allowed to refer to and manipulate
these components. The specification also describes
all of the operations.

Thatcher: Could you give a working definition of
the noun "type." You don't mean it to be a means
of associating properties.

Shaw: As used in a program, type is an attribute
of a variable, that associates with a variable
certain information about how the variable can be
used. You may also think of a type as a genera-
tion mechanism, i.e., a template used to create
variables for use in a program.

Buneman: Does this mean that in variable-free PL
the concept of type is irrelevant?

Shaw: The way I have presented the concept of
type is directed to variables.

Balzer: Don't you think it is the other way
round, that type is the primitive idea and variable
is an object of some type? In some sense attaching
type to a variable is derivative from the notion
of type as encapsulation. Presumably a variable
is a variable because it can refer to different
objects at different times. Now, is the type
associated with those objects or is it associated
with the variable that appears in the program?

Shaw: The type may be associated with the value,
and type information may be associated with the
variable itself. Commonly the varlable/type
relationship is one to one, because variables can
only refer to values of one type. There may be
variables that refer to values of more than one
type. In languages such as APL, type is associated
with the values a variable refers to.

Balzer: What I am saying is that types must be
associated with values or objects. You may also
associate type with a variable which is then
restricted to a certain set of values.

Shaw: I would say "type information" is associated
with a variable.

Deutsch: The question of whether a type is asso-
ciated with variables or a type is associated with
values is resolved in many different ways in many
different programming languages. For example, in
the programming language RUSSEL, types are asso-
ciated only with variables and not with values at
all.

43

http://crossmark.crossref.org/dialog/?doi=10.1145%2F960126.806876&domain=pdf&date_stamp=1980-06-23

Did you deliberately say that the abstract type
contains both the specification and the implementa-
tion? Isn't an abstract type composed of Just the

specification?

Shaw: I was referring to the entire activity that
I call abstract data type definition. With respect
to the notion of abstract type you are quite right.
The part that I want the client to refer to and
understand when he is using the type is only the
specification. In the process of program design
and development one may define a specification
without necessarily providing an implementation.

Thatcher: Isn't a type a set of values and its
opearatlons? (Shaw) Yes.

Hardgrave: Presumably you can have operations on

types?

Shaw: There are systems in which type is treated
as a type, and systems where type is not treated
as a type. Without type as a type there are cer-
tain things you can't do.

The following is a historical remark. As I looked
at the last ten or fifteen years, it seems to me
that there has been a growth of abstraction tech-
niques of various kinds. It seems that the areas
of growth are strongly related to the subjects
which we have at the time been able to specify
formally.

Rich: I have trouble with "ahstraction" as a
noun. It seems to me that nothing is intrinsicly
an abstraction. For example, people talked about
sets as being abstractions. I would prefer a
more technical definition of what we are doing.
I see abstraction as a relationship between two
specifications, i.e., formal descriptions.

Shaw: I think that is consistent. The purpose of
an abstraction is to make the problem more manage-
able.

Rich: In AI that paradigm has been called
"problem solving by degugging almost right plans."
In order to get a simple problem description which
can be solved easily and for which the solution is
recognizable you may make an abstraction that
might actually ignore details of the problem.
When the ignored details are reintroduced, you may
find that you have to debug your first solution
to accommodate the new details.

How Models are Constructed and Used

Shaw: I want to talk about modelling in science.
In discussions here, I discovered that different
people are "modelling" with different degrees of
restrictions. I am using it in a general sense.
My view of experimental science is that we design
models as aids to understanding pieces of reality.
First, the inputs affecting the behavlour of that
piece of reality must be identified. This is not
always easy. Given the relevant inputs the next
step of building a model is to formulate a des-
cription of how the inputs relate to each other
and how reality can be described in terms of those
inputs. The description (model) can then be used
to produce outputs which might be predictions.

In the design of the model you examine reality and
attempt to identify facets that are pertinent to
the question you are trying to answer. Modelling
is relative. The notion of what is pertinent to
the model is very important. In science, you then
attempt to validate the model to discover discrep-
ancies. You refine the model until at some point
you decide that it is good enough for the intended
purpose. That's my view of modelling in the

large.

Consider the following diagram in applying the
above general structure to the problem of formaliz-
ing a model using abstract data types in program-
ming languages. We start with a set of intentions

verifi-
cation

specification{

intention or
representation informal speci-

~ - I --" "~" f ication

implementation ~""~'~'~" validation

or informal specifications instead of a piece of
reality. In the ADT world, that which we call the
formal specifications corresponds to the output of
the model and the input to the model is the imple-
mentation of the ADT. The description of the model
shows the consistency of the implementation
(inputs) with the specifications (outputs). This
is the process we call verification. We can only
perform verification via formal reasoning for
statements written in formal mathematics or in
PLs that are precisely described. The verification
process only insures the consistency of the code
and the formal assertions. It does not insure
that either matches the informal intentions that
you had in mind.

Rich: Can't you replace validation with testing
in the scientific paradigm?

Shaw: Yes, the modellor would begin by designing
his data type and then writing down some specifi-
cations for it. He would then try out his model
against his intentions and discover that it does
not quite fit. Here he proceeds as he would in
the scientific paradigm when he discovers his
model doesn't quite match what he had in mind.

Balzer: I am surprised that the input to output
mapping goes from implementation to specification,
rather than the other way around. Additionally,
I have trouble understanding the correspondence
between the implementation and the model inputs,
on the one hand, and the correspondence between
the specification and the model outputs on the
other.

Rich: Shouldn't the inputs and outputs be
reversed since the inputs to the model come from
reality and the outputs should be validated against
it. The input to your model corresponds to the
specifications which you get in trying to capture
the informal intentions.

Shaw: I understand what you propose, but I am
thinking from an execution standpoint. I am

44

really talking about the process of abstracting a
formal specification from the implementation.

Rowe: Testing the implementation against reality
may be more effective than taking the time to do
a specification. The choice of what is in the
specification is very critical in determining how
much help you get from the specification. Some
people confuse the use of formal notation with the
accuracy or certainty of the specification. The
use of formal notation does not prevent the omis-
sion of important details that get noticed only
when an implementation is attempted.

Deutsch: People have different opinions of the
value of formal specifications and proofs. Let's
not debate that issue here.

Problems with Usin~ Abstract Data Types

Shaw: I have two lists of problems that arise in
using ADTs. The first list has limitations of
the methodology, the other list consists of
problems in actually practicing the methodology.

There are three main limitations of the method-
ology. First, the concept has not yet been
validated in practice. I don't know of a system
in which ADTs have really been used in the design,
implementation and verification of the system.
Second, the specifications of the data types we
write down are purely functional. For real pro-
grams there are many other properties about pro-
grams that matter, performance for example. The
other limitation is that third, although ADTs
usefully organize information in a program, they
are not the only way.

Problems with Practicin$ the Methodology

Shaw: The main problems with practicing the ADT
methodologies in PLs are: In most cases, only
one type may be defined in a single module.
Types must fit a strict hierarchy. (Rich) In a
strict hierarchy, an object cannot belong to two
dissimilar types. (Shaw) Yes, but I wouldn't
want to do that. Some people do.

Shaw: There is a problem defining when multiple
specifications for a single type are suffi-
ciently alike.

Thatcher: If you have a working definition of
type then you know what sufficiently alike means.
For example, the two specifications denote the
same set of values and they define the same
operations upon them.

Shaw: I think that definition is too primitive.
For a given application, I may have two specifi-
cations that might have slightly different value
sets and operations. The only operations that are
required by the application, however, are those in
the intersection of the two specifications. Thus,
two specifications are different but they are suf-
ficiently alike for that specific purpose.

Thatcher: Let me illustrate my point with an
example from mathematics. You can define groups
in terms of the division operation and certain
axioms, or you can define groups in terms of

multiplication, inverse and identi~y operations.
Both definitions give rise to the same theory of
groups, but with totally different presentations.
I would suggest that what you really want as the
notion of sufficiently alike is that the two speci-
fications give rise to the same theory.

Rich: That may be too strong. You need a weaker
notion of alikeness for some applications that
don't behave exactly the same way.

Weber: Why would you say these contained the same
type.

Shaw: The motivation for raising this issue is
that in developing a program, it might be
beneficial (from the performance standpoint) in
changing the implementation of one of your types.
It may also be the case that the specification for
the alternative representation is slightly dif-
ferent than the specification being replaced. The
differences, however, do not matter to the applica-
tion in which the type is used.

Some of the other constraints on practicing the
methodology are: the type checking rules of the
PL you are using, the kinds of information that
can be represented in the specification (for
example, performance as well as functional speci-
fications) and implementation issues such as the
existence of separate compilation, the ability of
the user to define and manage his own storage of
objects and when (e.g., compile time) is type
checking performed.

Filling the Operation Gap

Christian: The main use of ADTs is to fill the gap
between a set of values end operations that a user
of a system would like to have and the set of
values and operations provided by a machine.
The user would fill in the conceptual gap with a
hierarchy, both external and internal views of
the ADTs are needed.

An ADT is a set of values and a set of operations.
The external view (the specification) of a data
type must define the set of values. In ALPHARD
the user has to define the set of values
explicitly in terms of mathematical entities (sets,
vectors, functions). In the algebraic approach the
set of values is defined implicitly; for example,
as equivalence classes generated over an algebra
with a relevant signature. Operations are
characterized by state transition relations.
State transition relations are given implicit
definitions in terms of conditions on the possible
system states before and after the operations.
The conditions are expressed by predicates. The
precondition predicate specifies the domain of
the state transition relation. If the precondi-
tion is true, there exists an abstract state
which is the desired state transition. The post-
condition is a predicate which is true if and
only if a given post state is paired with some
prestate in the state transition relation.

The internal view of an ADT is where the repre-
sentation of the abstract states is attempted in
terms of the states that are provided at the con-
crete representation level. A concrete state

45

transition relation (in contrast to the abstract
transition relation defined above) can be defined
in terms of the concrete states related by the
composition of concrete primitives in the opera-
tion implementation. Each of the concrete primi-
tives has its own implicitly defined (concrete)
state transition relation.

The external and internal views are related by the
abstraction function. This gives a feeling for
the gap between the two views. The abstraction
function is constrained to map these concrete
states meeting the implementation invariants into
abstract states so that initial concrete states
go to initial abstract states (i.e., states that
satisfy the relevant precondition). If two states
are within the derived concrete state transition
relation then their abstract maps must be in the
abstract state transition relation.

Implicit versus Explicit Definitions

Wedekind: You are viewing computer science as a
sub-branch of mathematics. This creates a serious
problem in that you introduce your objects
implicitly. This is well accepted classically.
Even Hilbert said: I don't care what my objects
are. He does not care about the real world, he
just intends to prove that his system is without
any contradiction. We should not use implicit
definitions in computer science. We will never
be able to fully capture an application world in
an implicit definition.

Rich: Could you give examples of explicit and
implicit definitions.

Wedekind: In an explicit definition I just re-
place one character string by another. For
example I define a personal number as equivalent
to a name and an address.

The axioms of geometry constitute an implicit
definition. The notions of point and plane are
implicitly defined by axioms.

Rich: How would you explicitly define a plane.

Wedekind: You come up with another geometry.
Then I have to talk about a point, what a point
is and then build up a structure.

Rowe: Ira Goldstein will now talk about types
from an AI viewpoint.

THE NOTION OF TYPE IN AI

Goldstein: In the work I am doing the distinction
between PL, DB and AI concerns doesn't really
arise. The following example of a "space war"
implementation illustrates that from the PL stand-
point, how would you implement this particular
simulation? In a functional language like LISP,
one would have a collection of functions to move
and accelerate. In a simulation language like
SIMULA you might create a data type for space
ships and associate those data types with the par-
ticular behaviour that you want them to have.

I am working with a language called SMALLTALK. In
that world one would implement this simulation in

terms of an ADT which in SMALLTALK is called a
class. The actual spaceships are instances of the
class (in SMALLTALK terminology). You might have
a particular instance called "Enterprise" that has
a particular state, a certain position, a certain
velocity, acceleration, etc. Each is an instance
of the class spaceship, where spaceship names the
state variables and defines the method.

Weber: Can you explain what method means?

Goldstein: A method is a procedure; for example,
one that works out a new position, velocity, etc.

Rich: Mary Shaw talked about ADT as having a set
of operations, would the functions here (velocity,
position, acceleration) correspond to the operations
in the ADT. (Goldstein) Yes.

Goldstein: Every ADT may have a whole hunch of
methods that it supplies. The internal implementa-
tions may define some methods in terms of other
methods and you can probably guess from knowledge
of physics that the primitive functions for posi-
tion, velocity, acceleration are not unrelated.

A Database Viewpoint

Consider the issues that arise from a database view-
point. My goal here is to show how three different
viewpoints can be applied to the same problem.
Suppose you want to simulate the spaceships flying
around in space. You might like to treat that
world as a database of which you could ask ques-
tions like "list all spaceships in a particular
sector." In the SMALLTALK world, achieving that
capability requires other kinds of methods that
inspect the class.

At this point it is no longer desirable that a
class implement all the behaviour of a data type,
but it's useful to have the word class because
here we get some of the behaviour of the data model.
The behaviour of the class "spaceship" includes a
function for deciding whether the position lies
inside a certain sector. You can think of various
other kinds of support for different kinds of
queries for this world. The class has to organize
its instances if there are large numbers of them.
In general, an ADT is not organized in a database
fashion with indices to its instances. A data
model is so organized, however, and to have the
spaceship respond to queries we have to introduce
various kinds of organizational principles. In
the current SMALLTALK, the number of instances is
small and so we typically do linear searches.

Balzer: I think it is important to point out that
in the SMALLTALK world, there is no generic system
information language. Everything in SMALLTALK is
locally defined, and the same thing is true of an
ADT. If there is system-wide consistency it is
because people have agreed by convention that it
should be so.

Goldstein: Since the SMALLTALK world is hierarchic,
if you have a data type called object then behaviour
that is supplied with objects bear on all objects
in the system provided you have not overridden it
by a subclass. AI people worry about recognition
problems. In the traditional database world when

46

you have a tuple, the types of its domains are well
defined and are known immediately from the type
description. The same is true in the PL world.
The recognition problem consists of attempting
to identify the type of an object from evidence
that has been accumulated about the object. Other
issues that arise are the storage of default in-
formation, the representation of constraints on
data operations and the problem of dynamic reclas-
sification. In the latter case, you might get
enough evidence to assign another type to an
object. You may also have a nested set of descrip-
tions. The following mlni-model illustrates the
relationships of the issues raised above. You
can be in the plane of the actual computing
process. In this plane you think about typical
issues related to PLs. You can be above that
plane looking down at it and ask questions like
"Do I have an object in that plane that partici-
pates in certain relationships?" That's a kind of
data base viewpoint. I put the AI viewpoint
outside the system as a whole, since it is con-
cerned with recognition of types in and constraints
on that system.

THE NOTION OF TYPE IN DATABASES

Codd: I am very uncomfortable talking about real
world objects or reality. I use these terms
because I feel it is necessary to communicate with
people who use these terms, but I feel that repre-
sentation, specification, implementation and
abstraction are really all fundamentally relation-
ships between objects. In English, unfortunately,
the word that is used to name a binary relation
is often used to name the range of that binary
relation as well. For example, a representation
is a relation and the target of that representa-
tion relation is also called a representation.
We should really distinguish between representa-
tion relation, representation source, and repre-
sentation target. The point of this statement is
that there are a lot of fuzzy concepts using fuzzy
words and throughout this whole workshop we are
trying to be more and more precise.

I want to mention how type came into the database
world. We need some intuitive concepts on which
we can base any formal definition of type. Asso-
ciated with the notion of relation is the notion
of a relation schema that consists of the name of

the relation together with the names of the attri-
butes that occur in the relation and the domains
they draw their values from.

Associated with the relational model is the idea
that some combination of the columns or attri-
butes has an identification property; that is, the
values associated with that combination of
attributes will distinguish every two rows of the
relation. If no attribute in the combination you
have chosen is superfluous, then you call that
combination a candidate key. There can be more
than one candidate key in a given relation. One
is by convention chosen to be the primary key.
Associated with that choice is the intuitive idea
that the value of the primary key somehow repre-
sents or distinguishes certain real world objects
from each other.

So there was a notion of type in the following
sense, both the representation source and the
representation target had a type associated with
them. This notion of type was also being used to
constrain operations like joins. The system would
either prohibit (or, at the very least, alert the
user to problems if he tried) a join of two rela-
tions over two attributes with different domains.

The next notion is a referential notion. Let's
suppose we have several relations and they have
attributes over the same domains. Let's look at
an occurrence of a specific value in an arbi-
trarily chosen column. What does that specific
value mean? Obviously, we have more than a value;
we have a value which is tagged with the name of
the domain that column is defined over. This
value cross references every other occurrence in
the database of the same value that is similarly
tagged. The cross references cannot be replaced
by a simple pointer, because of the multiplicity
of references or connections.

Initially there wasn't a good notion of subtype
in databases. The introduction of it must be
credited to John and Dianne Smith with their data
abstraction papers. I think a notion of type is
only as good as the notion of subtype that is
associated with it. Subtypes have been explored
by a lot of people previously in the AI world and
some in the PL world. If you have a database
about people and then you want to record special-
ized information about certain subclasses of
people, then you get into these subtype considera-
tions. It is important for the database system
that it know which things are subtypes of which.
There are questions to be asked about the notion
of relation type. A relation has a compound
domain composed of the domains of the columns
in the relation. This compound domain can be
thought of as the type of the relation. Is this
the same thing as a tuple or record type? From
the standpoint that a type consists of objects
and operations, they are not the same because the
operations on relations are not necessarily the
same set as the operations of tuples.

Consider two relations each having only two
columns, defined over the same domains. Are these
relations of the same type? Are they the same
type if the applicable operations are also the
same?

One might take the view that there are other
reasons to say that things are of different types,
one might say from the standpoint of sets and
operations they are of the same type. There is
the question of whether there should be a nominal
distinction between types, or just a structural
distinction. There is a need for both nominal
and structural equivalence.

Reiter: In an earlier session McLeod suggested
that quantification of relations can be a type.
You were talking about typing a relation. What
I understood from McLeod's talk was that, on
occasion, a relation itself can he a type not
that a relation is typed.

47

MeLeod: What I meant was that you can associate
a type with a relation, and that the tuples are
the instances of the type.

Webe____~r: If a relation is of a certain type, are all
tuples in the relation instances of the type?

Brodie: The tuple can have a type, and the rela-
tion can have a type, which is "a set of tuples
of the tuple type."

Schmidt: Rather than expressing the relationship
between tuple instances and the relation they
reside in as a relationship between the associated
types, it is better to use the value sets asso-
ciated with those types. The value set associated
with a relation type is the power set of the value
set associated with the typle type (restricted by
the unique key condition). This means the relation
may range from being totally empty to containing
all possible non-redundant tuples.

Transactions

Wedekind: Isn't the notion of a transaction much
closer to what is here being called a type?

Codd: I think transaction corresponds to an encap-
sulation in some sense. But it has some additional
properties that are not discussed in the PL world.
It is an all or nothing thing; that is the database
may be inconsistent if the transaction doesn't
complete. That notion seems to be somehow missing
in the PL's. Transactions also control concurrent
access to shared data and automatically handle the
acquisition and release of locks. This kind of
high level synchronization seems to be missing
from PLs.

Shaw: As part of the definition of an ADT, an
invariant relation is stated on the representation.
This invariant relation specifies the integrity
requirements on the representation. The invariant
relation is expected to hold when an operation is
begun, and it is expected to be restored by the
time the operation completes. The invariant rela-
tion may be violated during the execution of the
operation. In that sense the atomlcity of the
transaction does have an analog in PLs.

The semantics of sharing are not well understood.
The closest claim I can make to a sharing mechan-
ism in PLs is a "monitor" in which many of its
properties are similar to ADTs but in addition
there is a synchronization mechanism.

Codd: That is completely inadequate for database
purposes.

Hitchcock: There are other areas where databases
differ from PL. For example, it is not exceptional
if something goes wrong in the middle of a trans-
action. A good database system will actually back
out what has been done to the database and restore
it to a previous state. With a PL you tend to
assume that those atomic actions are going to
take place. It's up to the programmer to recover
if they do go wrong.

Zilles: I disagree slightly with both of the last
two comments. First, from the PL viewpoint, the

literature on the readers and the writers problem
discusses many ways of realizing atomic actions in
concurrent processes. The real problem is that
there are some things that are atomic at one level,
but are composed of more primitive actions when
viewed at a lower level. That is certainly what
happens in a database system. A transaction as a
whole is atomic, but it is also made up of a col-
lection of other actions which each by themselves
have the status of atomicity.

Crash Recovery and Exception Handling

Zilles: My second point is that the existence of
exception handling in PLs was motivated by the
need to restore the integrity of the data that was
in use when the exceptional condition was dis-
covered. The distinction between a transaction
failure and an exceptional condition handler is
that the exception handler need not undo all the
previous actions but may, instead, attempt to
restore an integral state by any means available
to it. This form of recovery may result in the
loss of information but it can be significantly
more efficient.

Rowe: I would like to emphasize something Steve
said. Transactions are designed to expect a crash
occurring for external reasons over which the
program has no control. One wants to survive
such situations. Transactions help to guarantee
that, regardless of whether the head falls on the
disk you should be able to back up to the previous
integral state. Exception handling mechanisms in
PLs have some of the same flavor (in the sense
that there are excpetions that can be generated)
as the result of a hardware failure or the occur-
rence of an unexpected condition. From my obser-
vation of the two communities, it looks like
database systems have a much stronger commitment
to data preservation than do PL processors. This
commitment causes them to do things differently
than the PL community.

Balzer: Motivated by the need for reliability and
robustness of systems, Brian Randall has adapted
the notion of transaction oriented processing for
PLs. From a specification standpoint, his
approach makes the whole system much cleaner.
This is an example of a DB notion being adapted
for PLs despite severe implementation overhead.

Christian: I have three comments. First, concern-
ing your observation that in the database they
recover from crashes without looking at the pre-
condition of this crash. In operating systems
people work much closer to the machine. They can
identify the preconditions of the exceptions and
adjust their recovery procedures appropriately.
They distinguish exceptions and failures. The
difference between databases and operating sys-
tems is related to the conceptual distance between
the physical machine and the DB. A DB interface
is simplified. Using operating systems and PLs
you distinguish more events.

Sibley: In the DB area we look at data as the
resource and not the program. We are trying to
preserve data integrity. There is a lot of
money rolling on the fact that the data is correct.
It is much easier to back up a database, find the

48

error and redo transactions.

Christian: The second comment is that there is
atomicity with respect to both synchronization and
exceptional occurrences (e.g., crashes). The rela-
tionship between those two notions is not very
clear. They are not equivalent. The relationship
is being studied in Newcastle. My opinion is that
one can rely on the other.

The third point concerns exception handling and
automatic backup in PLs. Exception handling
mechanisms have been proposed for PLs. An excep-
tion occurs when the internal state does not satisfy
the representation invariant, e.g., some modified
variables are inconsistent with respect to the rep-
resentation function associated with the abstrac-
tion. It is only necessary to recover these
variables by relying on semantic knowledge about
the implementation of the abstraction. Backward
recovery mechanisms proposed by Newcastle and for
database transactions do not use any semantic
knowledge about the abstraction. One could combine
the two approaches to achieve one which falls
between using an exact estimate of what has been
damaged and a very rough estimate of what has been
damaged.

Hitchcock: In the Newcastle work there are two
kinds of error recovery, backward and forward.
This distinction exists in databases as well.
Backward error recovery involves backing out to
a state that you know is ok, but there may be some
things you can't back out, like letters you have
sent, etc. To resolve these discrepancies, you
must use forward error recovery to patch up what's
happened and come again to a consistent state.
For example, if a bank messes up one of your
checks, they don't back up their data base to a
state of three weeks ago; they put in a correcting
entry.

King: A central theme in certain kinds of AI
programming involves setting up certain expecta-
tions and generating a hypothesis from them. If
your expectations are violated, you want to have
procedures that will set up a new hypothesis and
decreasethe confidence in the old one. So the
exception handling mechanism is used for reasoning
rather than just an error reporting mechanism.

Zilles: It is important to consider the context
in which recovery is to occur. Not all DB systems
need to be backed out to achieve recovery. Most
airline reservation databases have the nice
property that after a flight occurs all related
information is of little interest. You can clean
up many airline databases by destroying all old
records. Hence, many such systems do not need to
be able to back out transactions. They are will-
ing to live with dirty data. Recovery then depends
on the environment. The application environment
ought to be specified as part of your modelling
activity.

SHORT DEFINITIONS OF TYPES

Rowe: J. Thatcher, P. Deutsch, R. Meyer,
S. Zilles, P. Hayes and H. Mayr will give

short presentations on their view of what a type
is.

Thatcher: I wish that a data type were a family
of sets together with a collection of operations
or procedures on those sets. I wish that an abs-
tract data type were the isomorphism class of a
data type. So an ADT would be a concept which
eliminates all representation and implementation
details. Finally, I wish that a data type speci-
fication would have as its denotation an ADT.
The reason I say "I wish" is because then the
mathematics would be much clearer.

Cattell: Your definition of a data type is very
like the definitions of abstraction in which an
abstraction is a family of types together with a
family of operations.

Rich: Would everybody please give the purpose of
the definition they are giving?

Thatcher: My definition allows precision.

Rich: That is not enough, precision in itself is
not a goal.

Thatcher: I need a definition that is precise
enough to be workable. For example, parameterized
types are much more complicated than people
recognize. Unless I have a good, workable mathe-
matical definition of type the notion of para-
meterized type is hopeless.

Weber: Another purpose for a precise definition
is the verification of correctness.

A Definition of Type

Deutsch: I am not concerned with type as a formal
mathematical entity. I am concerned with type as
a notion that is useful to PL, AI and DB system
designers. For that reason, I am asking you to
accept a notion of type which has very many fuzzy
words in it. I ask you to accept this definition
as a way to think about of what you as a designer
of types are going to design.

A ty_p_@ is a precise characterization of
structural or behavioral properties which a col-
lection of objects (actual or potential) all share.
An instance of a type is an object which has the
properties characteristic of the type.

Notice that there are some important undefined
terms, such as property and object. The design
of a type system consists of choosing particular
meanings for the object and the properties and
the notations. There are lots of things this
definition does not address. There is the question
of subtype. To my way of thinking, the subtype
hierarchy is simply created by invocations
between these characterizations.

There is the question of nominal versus structural
equality of types. You simply choose whether you
consider the nominal properties to be among the
distinguishable properties.

There is the possibility of multiply typed objects,
which arise more in AI than in other circumstances.
This is another choice that you can make, that is
to what extent you consider your type system to
be a power set of some sets of elementary types.

49

The utility of a type system is basically that it
allows you to partition the universe of objects in
useful ways. Usefulness means that these distinc-
tions reflect distinctions that are important to
the uses of the system, the designer of the system
or both.

In order for a type system to interact usefully
with a PL or a DB system, the properties of your
type system have to be in some relation to the
operators and relationships in the rest of the
system. For example, the notion of integer is
probably inherent to the PL and must be covered
by your type system. This may lead you to dis-
tinguishing between types of values and types of
variables; that is, the type properties that are
inherent in objects and those denoted in program
fragments or descriptions.

Finally, "objects" should not be considered limited
to data. You can also define a type system for
procedures and you can make a type system for rela-
tionships.

Thatcher: The algebraic definition that I gave is
consistent with what you have said. (Deutsch)
Absolutely.

Thatcher: You said a type is a precise character-
ization. You also said you are interested in
developing a type system, but you are avoiding
the question of what a type is. A "precise
characterization" may be a specification. The
process of specifying or precisely characterizing
is different from what you specify or what you
characterize.

Deutsch: I will think about that, I am not sure
that I believe in that distinction.

J. Smith: You said that a type system partitions
the objects in your data space. Do you really
mean partition? (Deutsch) The partitions need
not be disjoint.

Meyer: Three ways of looking at programming
objects are physical, constructive and functional.
The physical viewpoint corresponds to programming
in assembler or Fortran. In the constructive view-
point objects are created from a set of logic
entities by operators. This approach was first
taken in Algol 60 for the construction of algo-
rithms by combining a small set of basic con-
structs. Hoare applied the same approach to data
types. In this approach new objects are created
by applying operators to already created objects.
The functional approach is much closer to the
human view. This approach starts with a language
that has an encapsulation mechanism, such as
SIMULA and its successors or even higher level
abstraction mechanisms such as ADTs or those of
more recent specification languages such as CLEAR.

There are several ways to define "type" depending
on the level you are at. The basic problem in
programming (especially with ADTs) is to go from
the functional or specification level, to the con-
structive or logical level, i.e., from an implicit
to an explicit definition of the type.

Type Systems

Zilles: I want to look at types from an operational
viewpoint. I agree with Deutsch's definition of
type, but it becomes very interesting if you are
trying to embed typing into an actual system. The
system I am trying to embed it into is a PL. One
issue here is insuring that when I apply a function
to a set of arguments that the realization of the
function will know what to do with each argument.
Consider the function "pop" defined over sets of
stacks that include the empty stack. That particu-
lar operation understands what to do with the empty
stack. Among other things the function may raise
an exception. But, at least the empty stack is
accepted.

In this context, I came to the realization that
the focus of typing should not be on types but
rather the system of types; that is, a families of
sets for which a given set of operations exists.
In this case, the properties that are precisely
characterized are the signatures of the applicable
operations.

Given this view of types in a PL, there are two
separate and important issues concerning the type
hierarchy. The first is the definition of general-
ization, for which it is not the set of values
that is important; it is the existence of certain
operations on (properties of) those values. Con-
sider writing a sort routine to work on arrays of
type T. All that is needed is that the type T
have an operation "less than or equal (LT)" which
takes two arguments of type T and produces a Boolean
result. Any type, such as integer, real or
character is in the generalization having an LT
operation and homogeneous arrays of elements of
the generalization set are suitable inputs to sort.

Generalization has a separate notion of set union
in which any sets may be combined into the union
set. There may be no operations defined on all
elements of the union. Operations defined as the
union, such as addition over the union of integers
and reals, are distinct from the equivalent opera-
tions on the primitive types in the union.* I would
llke to comment on your sort routine. For pro-
cedures, taking conventional kinds of arguments,
programming practice provides type checking
mechanisms using formal parameters. We do not yet
have type checking mechanisms needed for your sort
arguments. We don't know bow to specify formal
parameters for such cases. Thatcher's remark.

Zilles: What I mean is that in the calling environ-
ment there is a type system which is a collection
of sets and functions on those sets. At the point
of call, a particular array will be chosen as the
argument of sort. For that array type there must
be an LT function.

Shaw: In my experience the set of type discrimina-
tions you really want to make there is very, very
rich.

Zilles: I am talking only about the notions of
type that can be evaluated at compile time, not
runtlme notions such as dealing with the empty
stack. Some people consider these runtime issues
as belonging to the definition of type.

50

Balzer: This discussion of types is very good
since unlike the other definitions it deals with
how types are used. The impact of saying that X
is of some type depends on its use. The key to
that analysis is the notion of characterization.
The type, in this sense, is nothing more than a
shorthand, for writing out some long expressions
that say, I am interested in objects that have
this set of properties. These properties can
then he assumed for all uses of that object.

Hendrix: That does not always work. For example
in an AI system one may know nothing about an
object except its type. Consider a system with
three types called "people," "men" and "women" with
no proposition to distinguish th~n. I just know
that these are subtypes. I may be able to deter-
mine that John is an instance of men and not an

instance of woman.

Balzer: If you know nothing except its type, the
type is the shorthand for the set of properties

you know about the obJect.

Hendrix: In some cases you cannot state a single

property.

Two Notions of Type

Hayes: As a definition of type I propose that a
type is a subset of the universe we are consider-
ing. The notion of subtype is one of a set rela-
tionship. Types are introduced in AI systems to
take certain properties of things out of the
general purpose inference machinery and to utilize
them more efficiently. For example, there is a
lot of discussion and literature in AI about ISA

hierarchies.

There is a different notion where you have objects

that are constructed somehow. Then, the type has
to do with the mode of construction. This is the

kind of type you have in PLs. The motivation
there (given by the last speaker) is that the
operations that work on them have to know how
they are constructed. That is a very difficult
motivation from improving the efficiency of
inference. For example, if you have an axiomatic

theory of numbers, then there is no reason why
integers can't be a subset of reals. If, however,
your integers and reals are constructed, as in

ALGOL or axiomatic set theory, they are different
kinds of entities. There is a very different
notion of a type hierarchy from these two dif-
ferent motivations.

I don't think that the definition of type is all
that important. What matters is the structure
that a set of types has, a data type system if
you like. I can think of three important cases:
disjoint types, a tree hierarchy and a lattice;
there may be more.

Even more important are the functions (or construc-

tors in PLs). How complicated can they get? The
simplest case is that every function has its domain
and range fixed. A more interesting case is where
the functions are polymorphic. Another approach
is to associate a typing function with every func-
tion. The typing function determines which type
constructions are possible.

Mayr: I will discuss the type notion in two steps.
First I want to define an ADT, starting with the
view that all models are defined by operations.
We can get a grip on the objects by describing the
way they are constructed. An ADT is defined by a
set of operators and a specification in some formal
theory; for example, an algebraic specification
by axioms, a specification by a set of rewrite
rules, or a logical specification such as Hoare's
axioms. If you have a set of operators and a
specification you can derive the set of objects.
So the objects can be described by sequences of
operations that construct them. In a second step

we can define the notion of type by giving a rep-
resentation for an ADT or abstract model. This is
done using some symbol set with formal symbol
combining rules and a representation function that
maps the model to the symbol representation.

Carbonell: Why hasn't the notion of type been

applied to abstract information about procedures?
For instance, one can think of a sort procedure,

as one type of procedure, independent of the types

of the arguments and the outputs. You can also
classify different functions or procedures in a

type hierarchy.

Duetsch: There is no reason not to do that. I
pointed out in my definition that there was no
reason not to apply the same characterization method
to procedures as to data. There are lots of ways

you can build a type system for procedures. For
example, Scott's hierarchy is a type hierarchy for
procedures that deals only with the functionality

of the procedures.

Rich: At MIT we are building up a library of pro-
cedure specifications, with pre-conditlons and post-
conditions. They are organized in a hierarchy

based on the relationships of the pre- and post-
conditions. You can add post-condltions or
specialize your arguments. You can view instances
of that type as being the actual applications of

that procedure.

Zilles: One important issue that we have ignored
is how to determine if something is an instance
of a given type. Many reasons why type systems

exist is because there are properties that can be

easily determined according to some rule. In the
different areas, these rules are different.

Deutsch: I would be disturbed if you want to rule

out the type system of RUSSELL, in which objects
in principle are not typed at all. Asking the
type of an object is meaningless in RUSSEL, since
the notion of type is completely textual.

Rich: Finding the type of an object is called
recognition in AI. In compilation, you want to
know what type a variable is. For other situa-
tions you may not be able to ask that question.
Types can be a way of keeping track of what your
constraints are, or a way of combining information
stated in two different places.

S UMMARY

Rowe: This was a difficult session to summarize
because so many ideas were presented, not all of
which were related to types. I will emphasize the

51

ways in which types were used. First of al~ types are
not "GOD" given. There is not one fixed notion of
what a type is or how it is to be used. Rather it
seems they are tools to be used in the different
areas to solve various kinds of problems.

It seems that types are primarily used for clas-
sifying ohJects or entities. How you classify
objects can vary quite dramatically. Some people
refer to sets of values. Others refer to predi-
cates on symbols. Still others refer to proper-
ties of entities on objects, e.g., including opera-
tions.

There are at least as many goals for using types
as there are users. Types may be used to check
that the use of an operation is valid. This view
comes from the PL community. Ted Codd also used
this notion of type in verifying that joins make
sense in databases.

Another goal is to select a specific operation.
A third may be to describe information about
objects or entities. To illustrate this diversity
I have chosen some typical uses from each of AI,
DB and PL. In AI, type is used to control the
search space. Another example due to Deutsch
is that a type is used to give incremental des-
criptions of real world objects. In the DB com-
munity, types are used for checking the validity
of operations. They are also used to describe
information about objects or entities. In the PL
community there is a strong emphasis on binding
operations with the ADT and protecting the rep-
resentation. Types are also used in selecting
the particular instance of a generic operation
that is required in a given application.

Sows: I would say that AI also includes all the
PL and DB uses of types that you gave.

52

