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This paper investigates some problems associated with an argument evaluation order that
we call "future" order, which is different from both call-by-name and call-by-value. In
call-by-future, each formal parameter of a function is bound to a separate process (called a
"future") dedicated to the evaluation of the corresponding argument. This mechanism allows
the fully parallel evaluation of arguments to a function, and has been shown to augment the
expressive power of a language.

We discuss an approach to a problem that arises in this context: futures which were-
thought to be relevant when they were created become irrelevant through being ignored in the
body of the expression where they were bound. The problem of irrelevant processes also
appears in multiprocessing problem-solving systems which start several processors working on
the same problem but with different methods, and return with the solution which finishes first.
This parallel method strategy has the drawback that the processes which are investigating the
losing methods must be identified, stopped, and re-assigned to more useful tasks.

The solution we propose is that of garbage collection. We propose that the goal structure
of the solution plan be explicitly. represented in memory as part of the graph memory (like
Lisp's heap) so that a garbage collection algorithm can discover which processes are performing
useful work, and which can be recycled for a new task.

An incremental algorithm for the unified garbage collection of storage and processes is
described.
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1. Introduotion

Processors are becoming very cheap and there is good evidence that this trend will continue
in the next few years. As a result, there has been considerable interest in how to apply large
numbers of processors to the solution of a single task 7]. Since efficient utilization of these hordes
of processors requires a lot of communication. Sorting networks have been devised [2,16] which
allow every processor in an N-processor system to both send and receive a message on every clock
pulse, with only the highest priority messages getting through, while providing acknowledgement of
success or failure to the sender. Furthermore, the transit time through the network is only
O(log2N) and the size of the network only O(Nlog2 N). However, it is still not clear what all these
processors should be communicating about.

Friedman and Wise DO] quite rightly note that applicative languages (languages without
side-effects, e.g. "pure" LISP) are excellently suited for the. purpose of representing many
algorithms intended for execution on a host of processors since their lack of side-effects eliminates
a great source of complexity in parallel execution. Thus, "Church-Rosser" theorems can be proved
which ensure the invariance of the value of an applicative expression regardless of the order or
relative speed of evaluation. However, we must keep in mind that this kind of parallelism does not
implement the most general form of communication between processes. For example, it is not
possible to implement an airline reservation system in such a language, due to its non-determinate
behavior.

In this paper we consider an "eager beaver" evaluator for an applicative programming
language which starts evaluating every subexpression as soon as possible, and in parallel. This is
done through the mechanism of futures, which are roughly Algol-60 "thunks" which have their
own evaluator process ("thinks"?). (Friedman and Wise [10] call futures "promises", while Hibbard
13] calls them "eventuals".) When an expression is given to the evaluator by the user, a future for
that expression is returned which is a promise to deliver the value of that expression at some later
time, if the expression has a value. A process is created for each new future which immediately
starts to work evaluating the given expression. When the value of a future is needed explicitly, e.g.
by the primitive function "+", the evaluation process may or may not have finished. If it has
finished, the value Is immediately made available, if not, the requesting process is forced to wait
until it finishes.

Futures are created recursively in the evaluation of an expression whenever our eager
evaluator encounters functional application. A new future is created for each argument, resulting
in the parallel (collateral) evaluation of those arguments, while the main evaluator process tackles
the function position. We call the main evaluator process the parent, while any futures it directly
creates become its offspring.

More precisely, a future is a 3-tuple (process, cell, queue), where process is the virtual processor
initialized to evaluate this argument expression in its proper environment, cell is a writable location
in memory which will save the value of the argument after it has been computed to avoid
recomputing it, and queue is a list of the processes which are waiting for the value of this future. A
future's process starts evaluating its expression in the given environment. If any other process
needs the value of this future, and the value is not yet ready, the requesting process enters the
queue of the future and goes to sleep. When the value promised by the future is ready, its process
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stores the value into its cell, wakes up all processes waiting in its queue, and dies. Henceforth, any
process needing this future's value can find it in the future's cell without waiting or further
computation.

The main problem with our eager interpreter is that since it anticipates which values are
going to be required to compute the final result, it can be wasteful. A process may be assigned to
the computation of a future whose value will never be needed; in this case, we say that the process
is irrelevant. If there were no way of determining irrelevancy, irrelevant processes could tie tup a
significant amount of the system computing power. Furthermore, if a future were caught in a
non-terminating evaluation, its computational power would be lost to the system forever! In the
following sections, we argue that the "garbage collection" of passive storage can be extended to the
reclamation of irrelevant active processes. Furthermore, this collection can be done in an
incremental manner, eliminating the long delays required for classical garbage collection.

2. Garbage Collecting Irrelevant Futures

A classical garbage collector for passive storage proceeds by marking the root of the heap, and
then propagating marks from marked nodes to their offspring until there is no unmarked node
with a marked parent. Upon the termination of this procedure, any unmarked nodes-are not
accessible from the root and are therefore returned to the free list.

The key to garbage collecting active processes is that their process-states are addressable as
vectors of words in the common address space of all the processors', but marked with a special
type-code. This vector stores the contents of the registers of the process. The top-level process
(that assigned to the top-level future) is kept always directly accessible from the root of the heap.
Suppose now that we stop all the processes at the beginning of garbage collection. As our classical
collector traces the heap, it can recognize when it encounters a process. By marking a process. the
collector proves that it is still relevant, hence it can be restarted when the garbage collection is
finished. If a process is not marked, it is garbage collected, and a processor will not be reassigned
to it.

What makes irrelevant processes go away during garbage collection is the fact that they are
not accessible from static data structure; i.e. from the root of the heap. Since all relevant futures
are bound in the environment structure to some program variable or temporary variable, they will
be marked and retained.

(If "busy waiting" is used in an extended system having side-effects, then a process which is
synchronized through busy waiting will be accessible as long as its parent is accessible, regardless of
whether any other process needs its result. Hence it may not be collected even if it becomes
irrelevant. This is one reason why busy waiting is not a good synchronization method.)

Garbage collection is made incremental by using some of the ideas from an earlier paper (1),
which in turn is based on the work of Dijkstra [5,61 and Lamport [14,15]. The mark phase of our
incremental garbage collector process employs three colors for every object--white, grey, and black.

1. We assume throughout this paper that all processors are embedded in a single, global, shared adldre-
space.
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Intuitively, white nodes are not yet known to be accessible, grey nodes are known to be accessible,
but whose offspring have not yet been checked, and black nodes are accessible, and have accessible
offspring. Initially, all nodes (including processes) are white. A white node is made grey by
shading it; i.e. making it "at least grey" [51, while a grey node is marked by shading its offspring
and making the node black-both indivisible processes. Marking is initiated by stopping all
processes and shading the root. Marking proceeds by finding a grey node, shading its offspring.
then making that node black. When there are no more grey nodes, garbage collection is done; all
still-white nodes are then emancipated and the colors white and black switch interpretations.

After garbage collection has begun, a user process can be restarted as soon as it has been
blackened by the collector. Since the top-level process is pointed at directly by the root of the heap,
it is restarted almost immediately. It should be obvious that when a process first becomes black, it
cannot point directly at a white node. We wish to preserve this assertion. Therefore, whenever a
running black process is about to violate it--by inserting into one of its registers the white
component of a node it is already pointing at--it immediately shades the white node before
proceeding. Furthermore, every new node the process needs is created black. The intuitive
rationale behind these policies is that so far as any black process is concerned, the garbage collection
has already finished. Furthermore, the nodes which are found accessible by the garbage collector are
exactly those which were accessible at the time the garbage collection was started.

We prove the correctness of this garbage collector informally. The garbage collector is given a
head ;tart on all of the processes because they are stopped when it is started. When a process -is
restarted, it is.black, and everything it sees is at least grey, hence it is in the collector's wake.
Whenever a process attempts to catch up to the collector by tracing an edge from a node it can
access directly, that node is immediately shaded. Therefore, it can never pass or even catch the
collector. Since the collector has already traced any node a process can get its registers on, the
process cannot affect the connectivity of the nodes that the collector sees. Because white or grey
processes are not allowed to run, any created nodes are black, and since nodes darken
monotonically, the number of white nodes must monotonically decrease, proving termination..

Our garbage collector has only one phase--the mark phase--because it uses a compacting,
copying algorithm [8,4J which marks and copies in one operation. This algorithm copies accessible
list structures from an "old semispace" into a "new semispace". As each node is copied, a
"forwarding address" is left at its old address in the old semispace. If the Minsky copying algorithm
is used [81 the collector has its own stack to keep track of grey nodes; the Cheney algorithm [4] uses
a "scan pointer" to linearly scan the new semispace, while updating the pointers of newly moved
nodes by moving the nodes they point to. The correspondence between our coloring scheme and
these algorithms is this: white nodes are those which reside in the old semispace; grey nodes are
those which have been copied to the new semispace, but whose outgoing pointers have not been
updated to point into the new semispace (i.e. have not yet been encountered by the scan pointer in
the Cheney algorithm); and black nodes are those which have been both moved and updated (i.e.
are behind the scan pointer). When scanning is done (i.e. there are no more grey nodes and all
accessible nodes have been copied), the old and new semispaces then interchange roles.
Reallocating processors is simple• all processors are withdrawn at the start of garbage collection, and
are allocated to each process as it is blackened. Thus, when the garbage collection has finished, all
and only relevant processes have been restarted.
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The restriction that white processes cannot run can be relaxed under the condition that a
wAhite process may not cause a black node to point to a white one. This can only happen if the white
process is trying to perform a side-effect on a black node. If operations of this type are suspended
until either the process either becomes black or is garbage-collected, then proper garbage collector
operation can be ensured, and convergence guaranteed. Under these conditions, white processes
create only white cells. When a white process is encountered by the garbage collector, it must stop
and allow itself to be colored black before continuing.

The notion that processes must be marked as well as storage may explain some of the trouble
that Dijkstra and Lamport had when trying to prove their parallel garbage collection algorithm
correct [5,6,14,15]. Since their algorithm does not mark a user process by coloring it black (thereby
prohibiting it from directly touching white nodes), and allows these white processes to run, the
proof that the algorithm collects only and all garbage is long and very subtle (see [15]).

8. Coroutines and Generators

One problem with our "eager beaver" evaluator is that some expressions which have no finite
values will continue to be evaluated without mercy. Consider, for example, the infinite sequence of
squares of integers 0,1,4,9,... We give below a set of LISP-like functions for computing such a list.

losq a (Ax. (cons (e x x) (losq (# x I)))) ; Compute an element.

cons a (Ax y. (%z. (if (= z 'car) x y))) ; Define CONS function.

car n (Xx. (x 'car)) ; Ask for first component.

cdr n (Xx. (x 'cdr)) ; Ask for second component.

list-of-squares a (losq 0) ; Start the recursion.

The evaluation of "(losq 0)" will start off a future evaluating "(cons ...)", which will start up
another future evaluating "(losq I)", and so forth. Since this computation will not terminate, we
might worry whether anything useful will ever get done. One way to ensure that this computation
will not clog the system is to convert it into a "lazy" computation [9] by only allowing it to proceed
past a point in the infinite list when someone forces it to go that far. This can be easily done by
performing a lambda abstraction on the expression whose evaluation is to be. delayed. Since our
evaluator will not try to further evaluate a X-expression, this will protect its body from evaluation
by our eager beavers.

losq' a
(Xx. (cons (e x x)

(7z. ((losq' (. x 1)) z)))) ; Protect from early evaluation.

However, this "hack" is not really necessary if we use an exponential scheduler for the
proportion of effort assigned to each process. This scheduler operates recursively by assigning 1007.
of the system effort to the top-level future, and whenever this future spawns new futures, it
allocates only 50% of its allowed effort to its offspring. While a process is in the waiting queue of a
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future, it lends it processing effort to the computation of that future. However, a future which
finishes returns its effort to helping the system-not its siblings. Now the set of futures can be
ordered according to who created whom and this ordering forms a tree. As a result of our
exponential scheduling, the further down in this tree a future is from the top-level future, the
lower its priority in scheduling. Therefore, as our eager beavers produce more squares, they
become exponentially more discouraged. But if other processes enter the queue for the square of a
large number, they lend their encouragement to its computation,

In an evaluator which uses call-by-future for CONS, the obvious program for MAPCAR (the
LISP analog of APL's parallel application of a function to a vector of arguments) will
automatically do all of the function applications in parallel in a "pipe-lined" fashion. However,
due to the scheduler the values earlier In the list will be accorded more effort than the later ones.

Because this scheduler is not omniscient, system effort will still have to be reallocated by the
garbage collector as it discovers irrelevant processes and returns their computing power to help
with still relevant tasks.

4. Time and Space

"Lazy" evaluation [9] (call-by-name) using "evaluate-once" thunks is an optimal strategy for
evaluating applicative expressions on a single processor, in the sense that the minumum number of
reductions (procedure calls) are made 17,31 However, when more than one processor is available to
evaluate the expression, it is not clear what strategy would be optimal. If nothing is known about
the particular expression being evaluated, we conjecture that any reasonable strategy must allocate
one processor to lazy evaluation, with the other processors performing eager evaluation. We
believe that our "eager beaver" evaluator implements this policy, and unless the processors interfere
with one another excessively, a computation must always run faster with an eager evaluator
running on multiple processors than' a lazy evaluator running on a single processor. If there are
not enough processors to allocate one for every future, then we believe that our "exponential
scheduling" policy will dynamically allocate processor effort where it is most needed.

Although the universal creation of futures should reduce the time necessary to evaluate an
expression when an unbounded number of processors are available, we must consider how the
space requirements of this method compare with other methods. The space requirements of futures
are hard to calculate because under certain schedules, future order evaluation approximates
call-by-value, while with other schedules, it is equivalent to call-by-name (but evaluated only once).
In the worst case, the space requirements of futures can be arbitrarily bad, depending upon the
relative speed of the processors assigned to non-terminating futures.

5. The Power of Futures

The intuitive semantics associated with a future is that it runs asynchronously with its
parent's evaluation. This effect can be achieved by either assigning a different processor to each
future, or by multiplexing all of the futures on a few processors. Given one such implementation,
the language can easily be extended with a construct having the following form:
"(EITHER cel> <e2> ... <en>)" means evaluate the expressions <el> in parallel and return the value
of "the first one that finishes". Ward [18] shows how to give a Scott-type lattice semantics for this
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construct. He starts with a power-set of the base domain and gives it the usual subset lattice
structure, then extends each primitive function to operate on sets of elements from the base domain
In the obvious way, and finally defines the result of the EITHER construct to be the least tupprr
bound (LUB) of all the <ei> in the subset lattice. The EITHER construct is approximated" by
spawning futures for all the <ei>, and polling them with the parent process until the first one
finishes. At that point, its answer is returned as the value of the "EITHER" expression, and the
other futures become inaccessible frorh the root of the heap.

We give several examples of the power of the "EITHER" construct:

(multiply x y) a (EITHER (if x-O then 0 else 1)
(if y-0 then 0 else 1)

x y))

(integrate exp bvar) =

(EITHER (fast-heuristic-integrate exp bvar)
(Risch-integrate exp bvar))

The first example is that of a numeric product routine whose value is zero if either of its
arguments are zero, even if the non-zero argument is undefined. The second example is an
integration routine for use in a symbolic manipulation language like Macsyma, where there is a
relatively fast heuristic integration routine which looks for common special cases, and a general but
slow decision procedure called the Rlsch algorithm. Since the values of both methods are
guaranteed to be the same (assuming that they perform integration properly), we need not worry
about the possibility of non-determinacy of the value of this expression (i.e. non-singleton subsets
of the base domain in Ward's lattice model).

One may ask what the power of such an "EITHER" construct is; i.e. does it increase the
expressive power of the language in which it is embedded? A partial answer to this question has
been given with respect to "uninterpreted" schemata. Uninterpreted schemata answer questions
about the expressive power of programming language constructs which are implicit in the
language, rather than being simulated. For example, one can compare the power of recursion
versus iteration in a context where stacks cannot be simulated. Hewitt and Patterson [II] have
shown that uninterpreted "parallel" schemata are strictly more powerful than recursive schemata.
The essense of this difference is that parallel schemata can simulate non-deterministic computation
without bogging down in some infinite branch by following all branches in parallel.

Also, Ward 18] has shown that the "EITHER" construct strictly increases the power of the
a-calculus in the sense that there exist functions over the base domain which are inexpressible
without "EITHER", but are trivially expressible with it.

2. This implementation is only an approximation because only singleton sets of elements of the base
domain can ever be returned.
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6. Shared Databases

The advantage that garbage collection has over the explicit killing of processes becomes
apparent when parallel processes have access to a shared database. These databases are usually
protected from inconsistency due to simultaneous update by a mutual exclusion method. However,
if some process were to be killed while it was inside such a database, the database would remain
locked, and hence unresponsive to the other processes requesting access.

The solution we propose is for the database to always keep a list of pointers to the processes
which it has currently inside. In this way, an otherwise irrelevant process will be accessible so long
as it is inside an accessible database. However, the moment it emerges, it will be forgotten by the
database, and subject to reclamation by garbage collection. The crowds component of a serializer, a
synchronization construct designed to manage parallel access to a shared database [121], automatically
performs such bookkeeping.

7. Conclusions

We have presented a method for managing the allocation of processors as well as storage to
the subcomputations of a computation in a way that tries to minimize the elapsed time required.
This is done by anticipating which subcomputations will be needed and starting them running in
parallel, before the results they compute are needed. Because of this anticipation, subcomputations
may be started whose results are not needed, and thus our method identifies and revokes these
allocations of storage and processing power through an incremental garbage collection method.

The scheme presented here assumes that all of the processors reside in a common, global
address space, like that of C.mmp [191 Since networks of local address spaces look promising for
the future, methods for garbage collecting those systems need to be developed.

There are currently no plans to implement this method due to the lack of access to suitable
hardware. However, it could be implemented on systems like C.mmp [19] in a straightforward
manner.
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