
AUTOMATED DERIVATION OF PROGRAM CONTROL STRUCTURE

FROM NATURAL LANGUAGE PROGRAM DESCRIPTIONS

David Wile
Robert Balzer
Neil Goldman

USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, Ca. 90291

Abstract

This paper describes a system which
organizes a natural language description of a
program into a conventional program control
structure, as a part of a larger system for
converting informal natural language program
specifications into running programs. Analysis of
the input program fragments using a model of a
human "reader" of specifications has been found to
be a very successful adjunct to conventional
"planning" methodologies.

Natural language descriptions of programs can
frequently be characterized as "rubble"--a very
loosely organized set of almost independent
description fragments [Schwartz]. Such
specifications are often quif;e ~robust, due to a large
degree of redundancy; they are also frequently quite
concise, due to reliance on the readers" innate
knowledge and their knowledge of the application
domain. This paper discusses a paradigm for
structuring the portion of "rubble" program
descriptions which maps into conventional
programming language control constructs and
definition facilities.

In order to focus on structuring natural
language, it is necessary to indicate where this
mapping fits in the broader scheme of
"understanding" natural language program
descriptions. The research described below is the
basis for the design of an intermediate stage in the
operation of the SAFE system [Balzer], a system
designed and implemented at ISI to produce formal,
operational specifications for programs described in
natural language. In particular, a (parenthesized)
natural language description of a program is given to
the system--a description which retains most
semantic ambiguities of natural language, but which
avoids its syntactic ambiguities. The input first goes
through a "domain acquisition" phase [Goldman],
which acquires domain knowledge relating the
objects and ~cti~ns of the modelled world. The

"planning phase', described herein, is then used to
structure the input into a program in conventional
terms. Finally, a phase concerned with the
resolution of fine details--anaphoric reference, type
conversion, and some sequential structure
resolution--is used to produce the final program.
The respective phases deal in turn with the data and
operation structure, the program definition and
control structure, and the program variable and
parameter structure.

The SAFE system makes operational
specifications more precise by filling in those details
that were surpressed from the specification because
they were deemed inferable by an "intelligent
reader'. These specifications must be operati.onal,
specifying informally and at a high level, how
something is to be done, not merely what must be
achieved. This requirement enables the
corresponding formal program to be constructed
without any deep problem solving activity by
resolving the ambiguities contained in the
specification within the context of program
well-formedness rules and the constraints of the
application domain. When an ambiguity cannot be
resolved by the system, it asks the user which
interpretation is intended.

An E~amp~

There appear to be three basic problems
when attempting to map natural language,
operational descriptions of programs into program
control constructs: the mapping is generally
one-to-many (or even many-to-many); considerable
reliance on implicit relationships between application
domain primitives is used to disambiguate sequential
relationships between events; and all descriptions
are subject to contextual refinement and
interpretation, a facility almost completely foreign to
existing programming languages. To illustrate the
problems that arise in converting natural language
input into a program control structure, a small
example is presented below. The example has
application domain nouns and verbs replaced with

This research was supported by the Defense Advanced Research Projects Agency (OARPA)
under Contract No. DAHC15 72 C 0308.

77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800228.806935&domain=pdf&date_stamp=1977-08-01

upper case letters so that the reader is not able to
use domain specific knowledge unavailable to the
system:

Normally, each P must be Xed before
being Yed. Each P must also be Zed.
However, Wed Ps need not be Xed. It is
necessary to X each of P's 0s.

There are several ambiguities in this example:
there are ambiguities of action sequencing--are
there any sequential relationships among X, Y, and Z
o ther than the explicit one stated? The mapping of
some sentences into program constructs is also
ambiguous; e.g., is the first sentence a loop, a
condit ional (if a P is in context) or even a "demon"
(if Ps are created asynchronously)? Notice the
contextual modification that the "however" must
cause: previous sentences' program images must
now be embedded in a conditional which tests for
the special case (Wed Ps). Is the last sentence a
ref inement of the use of X in the first sentence, or
does it indicate a separate invocation of X? Clearly,
both the reader and our system would require more
informat ion to resolve these ambiguities. All of the
decisions needed to determine a correct control
s t ructure for the above program rely heavily on
relat ionships among the primit ive actions and object
types and the context in which the input is
in terpreted.

SurnrnoJ'y o J" Basdc Method

Considerable ef for t in artificial intelligence has
been spent attempting to automatically determine
sequential plans to accomplish some goal [Sacerdoti,
Fikes]. We have very l i t t le to add to that
technology. Our approach differs in that we are not
concerned wi th creation of sophisticated plans which
entai l deep reasoning processes: the user is
responsib le for formulating the plan--our system
"mere ly" makes it formal. It is fortunate that we can
make this assumption, for the sequential ambiguities
interact s t rongly wi th the contextual and statement
form ambiguit ies: the combination is quite complex.

Our contr ibut ion lies in the resolution of the
contextual ambiguit ies--the discovery and
incorporat ion of refinements of, and modifications to,
s t ructures produced from the text. We know of no
o ther ef for ts which attack this problem in program
understanding systems, but see analogs in general
natural language understanding [Riesbeck] and dialog
understanding [Mann] systems. Our general
approach is to f irst postulate a program structure
based solely ons ta t i c evidence. A second pass over
the result ing program is used to further resolve-- in
a more dynamic way--prob lems left unsolved in the
f i rst pass.

The static analysis of the program weakly
models a human reader of program specifications.
Such a reader tends to predict what the next
sentence will do to the context he has already
obtained. For example, if a particular verb is not

used in a manner consistent with the reader's
understanding of its usage, (perhaps X cannot be
used on a P in the example above) he may predict
that more will be said to refi.ne his understanding of
the verb. Some linguistic cues explicit ly force
predict ion, such as the use of "normally" above, if a
reader has some perception of a goal of a process,
and that goal has not been met, he may predict that
fu r the r sentences will be at the same level as the
las t - -w i l l be successors to it in a control construct
sense. In the example above, if Ying did not
produce the goal of the process, a successor to Y
would be predicted. Furthermore, if a perceived
goal has been met, the reader may predict that the
next sentence will change eontezts--the current
context has been specified fully.

Natural ly, the reader does not rely ent i rely on
predic t ion for his structural understanding, but is
qui te wi l l ing to adept when explicit or implicit cues
contradict his predictions. In such cases, he may
remember the predict ion (or more accurately, the
problem which lead to the prediction), but will
cer ta in ly accept the next sentence for whet it is.
For example, the reader faced with a new paragraph
when the goals of the previous paragraph were not
met, wil l probably change contexts in accord with
the f i rs t sentence of the new paragraph. In the
above example, if Z was the sole producer of an
input requi red by Y, the reader would adapt and
place Z as the predecessor of Y, despite a prediction
that the sentence will be a successor for Y.

In order to model human reading skills (at this
v e r y shal low level), the planning phase considers
each sentence in order, and attempts to predict what
the next sentence will do to the program being
constructed (its "context ') . Then, when considering
the next sentence, i t examines it for surface and
der ived features, and, when possible, incorporates it
into the program in a manner consistent with one of
its predict ions. If it cannot incorporate it, it either
adapts by acting according to explicit directive
in format ion in the sentence (as arises with the
"however " in the example above), or it creates a
new context in which it interprets subsequent
sentences, until the new context's relationship with
the prev ious context can be established.

The program resulting from the application of
the reading model is then simulated by the planning
phase in order to see if problems discovered in the
static model wil l be resolved dynamically. Such
resolut ion might occur when some calling context
produces relationships known to be required by the
called program, but not known to have been
produced during the reading model analysis of the
called program. Some minor modifications to the
sequent ial structure of the program can be made
during_ this phase, but the definit ion (refinement)
s t ruc ture is considered to be constant at this point.
The dynamic modelling mechanism is based on a
qui te tradit ional (STRIPS-like) "meta-evaluation"
technique.

78

Central to the paradigm is the information
used to relate the primitive objects, actions, and
events of the domain. The basic methods for
discovering problems and isolating contexts (for
modifications and refinements) rely on an abstract
representation of the program in terms of sets of
relzt ion and type names used by the events. The
sets associated with events represent the relations
and types consumed by the event, those both
produced and consumed by the event, and those just
produced by the event. Producer/consumer
relationships between events are expressible as set
operations (membership, inclusion, intersection) on
these. Although some ad hoc measures are required
for second order events (,events with events as
parameters) and some detailed refinement
considerations are required, the abstract
representation yields a rather clean mechanism for
analysis of problems in "rubble" representations.

The SAFE system is an operational system
which has been applied to several moderate sized
examples (around ten English sentences). Below we
outline the environment in which the planning phase
runs, explicate the basis it uses for collecting
information, and ther, explain the context model
mentioned above in more detail, demonstrating it
wi th an example.

Enuironment of Planning Phase

The planning phase processes programs after
linguistic analysis has determined the data and
procedure specification structure and before a
"meta--evaluation" process determines anaphoric
refe,'ents, type conversions, defaults and other
details relevant to formalizing the specification as an
operational program. It is necessary to understand
both the input/output format of the planning phase
and the model world in which final programs are run
to understand the actions of the planning phase.

The SAFE" system attempts to convert
parenthesized natural language specifications into a
precise program in a high level programming
language whose major distinction is that it supports
a relational data base with backtrackable pattern
matching, automatic inference, constraint and demon
invocation features. Output programs are in an
event-or iented representation in which actions
manipulate objects and their relationships with one
another by modifying the contents of the global
relational data base. An euent is an invocation of an
action--a procedure call in traditional programming
languages. It is the sequencing of events and the
definitions of actions as sequences of events which
is the prime responsibility of the planning phase.

The input to the planning phase is a fleshed
out translation of the natural language input into a
form we call euent descriptors. These descriptors
correspond approximately with instantiated
case-frames for basic actions and relations known to
the system either as primitives or domain-specific

actions. In the process of building the event
descriptors for the input sentences, the linguistic
phase builds up a model of the relations, types and
actions which will be used by the program being
specified. (This model may be augmented by an
explicit model given to the system preceding
linguistic analysis.) The model contains a
st rongly- typed specification of each relation and
action's parameters. Additionally, some inference
rules may have been established for the domain.

The basic event descriptor types into which
the input sentences are mapped are: events (from
verbs), objects and sets (from nouns and plurals--the
arguments to events), conditionals, conjunctions,
loops (from verbs with set objects) and
sequences (from explicit enumerations of steps).
The planning phase manipulates the
paragraph~sentence~clause structure of the input
into a program structure, represented in terms of
the same types of event descriptors. A few
additional types are needed to represent the
programs output by the planning phase: paraLleL
euent descriptor, choice o f euents descriptor
(ambiguous events to be decided by the final phase),
a n d selector o f euents descriptor. With the
exception of choice of event descriptors, each
descriptor has a natural analog ir i the programming
language into which the final phase ultimately
translates the program specification.

Abstract Input Representation

The planning phase has three tasks: to choose
programming language control constructs to
represent English language syntactic constructs, to
determine the sequence in which events Must be
called, and to determine the definition and calling
structure of the input events. In this section, we
describe the evidence used by the planning phase to
make the decisions required to accomplish these
tasks.

A significant portion of the task of choosing
control constructs is presently done by the linguistic
phase--as is indicated by the event descriptor types
which are passed to the planning phase. However,
we hope to lessen this reliance on the linguistic
phase" in the future and consider delaying more
control construct choices. Because the linguistic
phase never considers intersentential relationships,
except to keep the domain model consistent across
sentences, all distributed control constructs are
missed by the linguistic phase.

These are handled by the planning phase in
the "reading model" phase sketched above. These
all tend to be canonical mappings ba~ed on English
usage patterns, often involving explicit syntax
indicating cases or exceptions--such as, "normally",
~otherwise", "an exception is...", etc. In addition,
some second order actions are indicative of
distr ibuted control construct usage. Some adverbs
indicate explicit demonic application is
desi red-- 'whenever x occurs do y".

79

Although control construct choice is based
pr imar i ly on syntactic cues, sequential evidence is
about equal ly implicit and explicit. Explicit
sequential relationships between events are
indicated via conjunctions--e.g. "...and then...',
adverbs--e.g. "first", "next", and by explicit
statements of expectat ion or purpose--e.g. "...the
purpose of x is to determine y".

As implicit evidence for sequential
relat ionships between event descriptors, a
producer /consumer analysis is done by the planning
phase. Because the events are incomplete (e.g.,
missing parameters, have incorrect parameter types,
have no var iable names bound), the analysis is much
more abstract than that done in the precise
mathematical proof systems used for goal directed
planning schemes like STRIPS.

The method that is used is to define
precondi t ion and postcondition abstractions for all
pr imi tve events (calls on actions). These conditions
are represented as sets of names of relations and
types used as parameters to events along with the
types and relat ion names defined for the
precondit ions to the primit ive actions which they
invoke.

For example, the event representing "catch
the green ball from the red player" would have as
abstract precondit ion the set { color ball player },
plus whatever precondit ion the action associated
wi th the verb "catch" might require (which would
cer ta in ly contain some relation like "thrown',
"tossed", "in motion", etc.). Notice that color in the
above is an implicit relation which was determined
by the linguistic phase as the way of relating green
wi th ball and red with player. The postcondition of
the same event depends ent i rely on the
postcondi t ion of catch, which would at least include a
t ype such as "location."

Precondit ion and postcondition abstractions
are extended to control constructs containing
pr imi t ive event descriptors in the obvious way. For
example, the precondit ion for a conditional event
consists of the union of the names of relations and
types used in the condition with the precondition
abstract ions of the "then" and "else" parts. The
postcondi t ion abstraction is the union of the
postcondi t ion abstractions of the "then" and "else"
parts. Af ter extending the abstract precondition
and postcondit ion set concept to all event descriptor
types, we can make the definition: event A intp/J.ci, tLy
precedes event B if the abstract precondition of
event B intersected with the abstract postcondition
of event A is not empty.

Finally, we must consider what evidence may
be used to indicate that one event was intended to
def ine or "ref ine" another. Naturally, we must look
to English usage for the clues. Since we know of no
prev ious research attempting to deduce the
ref inement structure of program descriptions we
have had to develop our own simple theory of
ref inement clues. There are two very common
devices used in English to indicate that a particular
event actually references another event--i.e.,

requires refinement. First, there are a large number
of "second order" constructs (which take events as
parameters), which explici t ly require refinement.
Verbs such as process, determine, compute, treat
and establish become explicit euent uarLabLes; each is
handled individual ly by the planning phase, although
a general pre and postcondition analysis can be used

• for purposes of determinin~ refinements. In
addit ion, some preposit ions (e.g., before, after and
by) also occasion the creation of event variables.

Other devices used to indicate that an event is
indeed an event variable are omission of parameters
to an action and type mismatching in which a set is
used in place of an element type. These are implicit
methods for expressing the need for refinement. It
o f ten (usually) turns out that events are "self
re f in ing" - - the user intended that the system fill in
the missing details rather than match a more
precisely specif ied event elsewhere. However, the
faci l i ty is a very powerful Enlish facil ity when used
as an event reference, and one which deserves
special attent ion in program description
understanding. It is absolutely necessary to
recognize refinements when a specification is
presented to the system in the most ideal way: as a
s tepwise ref inement of previous events.

Recognition that an event is an event variable
is the easier half of the refinement problem.
Discovering which event refines an event
var iable-- i .e. , the event variable's binding--is more
diff icult. The candidates are drawn from those
events wi th consistent producer/consumer
abstract ions (for second order verbs) and from those
which call the same action (for domain action
ref inements). The latter analysis is a bit ad
hoc- -parameters are counted and corresponding
parameters of possible ref inement-related events
are checked for upward type compatability.

To summarize, the information used by the
planning phase to determine the sequencing of
events, definit ions of domain actions and refinements
of events, includes both explicit and implicit notions
of sequence and event invocation. Implicit
sequencing is determined from an abstract
representat ion of the preconditions and
postcond~tions to events and actions. Implicit
re f inement requirements come about from a
subsett ing analysis of parameters to events.

The Reading Model

The initial version of the planning
phase--completed in October, 1975-- t reated the
problems of action definit ion (aggregation,
ref inement) and event sequencing as separable.
Candidate ref inements were determined~ definitions
made, and then a STRIPS-like simulation (in the
abstract space of sets of relation and type names)
was used to incorporate the remaining uncalled
events. This worked surprisingly well considering
that the order of sentence input was •absolutely
ignored and that decisions were only made wher~..~l

80

unique producer/consumer relationship could be
established. A moderate size message-processing
example was successfully run through this system
[Balzer] .

Further examples quickly established the
weaknesses of this approach. It should be
ment ioned that although we do not eschew user
interact ion, we would prefer that it be minimized and
reserved for rather difficult and important questions.
Hence, although almost any scheme that narrows
down sequential choices is amenable to a "menu"
interact ion mechanism, it is now quite clear to u s

that program understanding systems need some
not ion of "context" to exhibit intelligence.

Intui t ively, we want a context to correspond to
a "state of mind" of a reader of a program
specif ication. This translates most naturally into a
set of event descriptors. Once it is established that
a part icular contezt--set of event descriptors--is
re levant , all ef forts will be directed toward relating
successive event descriptors (from the input
sequence) to the event descriptors in the given
context. The major benefit this has is to make some
abstract relationships unique which would otherwise
be ambiguous due to possible relationships with
events in other contexts. For example, an event
which implicitly; precedes two events, only one of
which is in context, may be put into the program as
the predecessor of the event in context. Naturally,
since these relationships are used to determine an
event 's posit ion in the program structure--both
sequent ial ly and definit ionally--uniqueness avoids
user interaction.

We emphasize: a context is a set of event
descr iptors. When it is established that a new event
descr iptor should be related to a given context, even
the most obscure relationship with event descriptors
in that context will be tr ied before a different
context 's events are considered.

The number of relationships between event
descr iptors in any context may be quite large. Also,
the events are changed by the planning phase
dynamically--precedence and refinement
relat ionships have to be recomputed f requent ly-- for
they are of ten recursive functions of the extant
program structure. Hence, it is somewhat important
to minimize the number of relations considered when
at tempt ing to incorporate a new event into the
program. This is done by predicting how a
successor sentence will be used. This limits the
number of relationships with the current context
which are necessary to consider. In addition, a
predic t ive mechanism is necessary for some
intersentent ia l linguistic (syntactic) forms. The
predict ions present an interesting dichotomy to the
contexts: whi le contexts limit the euetzt$ considered
in relat ionships with successive input events,
predict ions limit the rel~t~ortship= considered with
them.

It is perhaps best now to describe the reading
model in more detail, fol lowed quickly with an
example of how it works. The overall model is to
at tempt to incorporate each clause of each sentence

81

of each paragraph (considered in input order) into
the program. The initial state is set up to have
severa l (empty) contexts predef ined--one for each
ac.tion to be defined, one for the main program and
one for "problems" which arise. The default context
is the main program.

With each clause we first establish a context
f rom expl ici t cues in the sentence, if necessary.
These could be occasioned by English statements of
the form "during X do Y" or more obliquely "after
Zing"--where Zing is. done only in one
part icular context. Given a context, we attempt to
incorporate the clause into the context and then
predict what the next clause will do to the context.
To summarize, the top level reading model does the
fo l lowing:

Init ialize context to main program;
Each paragraph:

Each sentence:
Each clause:

Establish context;
Incorporate clause into context;
Predict next clause's effect.

Change context back to main program.

As mentioned above, the context is established
by considering information explicit ly included in the
event . In order to incorporate the current clause
into the program, the planning phase first
determines those predictions which can be satisfied
by the current clause in the current context. If
those predict ions are consistent, actions are then
taken based on the predictions. (A set of
predict ions can simultaneously be satisfied--an
act ion may ref ine a superior action, and at the same
time establish the enabling conditions for a second
act ion-- thus preceding it.) If the satisfiable
predict ions are inconsistent, then not enough
informat ion is known to unambiguously determine
how to use the event, so a problem context is
establ ished wi th the clause as its sole member. (An
event which could both precede and follow another
event in a context would give rise to inconsistent
predict ions both being satisfiable.)

If no predictions are satisfied, the clause is
examined for explicit directive information to see if
some coordinating conjunction was used (e.g.,
and-tl ' len, f inally, f irst, etc.). Lacking these, a "last
di tch" attempt is made to see if the new event could
possib ly parallel some other event in context
(consuming and producing approximately the same
information). Then (finally) the reading model
considers changing back to a previous context to
at tempt to incorporate the event.

We can summarize the incorporation of the
cur rent clause, thus:

Determine satisfiable predictions;
If consistent,

take actions indicated by predictions;
If inconsistent, establish a "problem" context;
If no satisfiable predictions:

Attempt to use explicit information;
Attempt to use a paralle! construct;
All else failed: Change contexts.

Predictions for the next clause are made
based on the effects of the current clause on the
context . All newly incorporated clauses are subject
to abstract pre and post condition analysis to decide
whether to predict that the successive clause will
precede or foIJ~ow the current clause.
Addit ional ly, all event descriptors which are calls on
actions are subject to possible refinement
predict ions (based on parameter information as
ment ioned above).

Conditionals and some second order actions
can cause predictions that the next clause will
speci fy another subcase of the current conditional, or
that it may subsume the current clause, by providing
a def in i t ion for an exceptional condition (the case
when "normal ly" is used).

The actions taken based on satisfied
predict ions are basically t r iv ia l - - the event is
incorporated as the successor, predecessor,
ref inement, or subcase in a straight- forward manner.
The only interest ing situations left to describe
invo lve the consistency of predictions and what goes
on when changing contexts--specif ically, how do
problems ever become resolved, contexts popped,
etc.

Consistency of predictions is a difficult
problem. Fortunately, the assumption that
predict ions are inconsistent has the effect of forcing
the user to decide which predictions are satisfied (in
most cases) because the planning phase changes to a
"problem context ' . An arb i t rary design decision has
been made to permit only one such problem context
to exist at any given time. Hence, if a second
problem arises when already in a problem context,
the system will be forced to resolve the problem,
usual ly by calling the user.

The main decision in the planning phase is
whether or not to "change contexts." It is a
subsequent and separate decision whether to push a
new context, pop to an old, etc., once a change has
been init iated. This decision procedure is quite
simple. Contexts are organized into a set, some of
whose elements are ordered into a stack. If a
problem context exists, it is the top of the context
stack, and once the problem is resolved, will most
l ikely be incorporated into the context which is the
second element of the stack. If we change contexts
to a context which is already on the stack, the stack
is popped to that context. Otherwise, the new
context becomes the top of the stack. However, a
problem context is always resolved before any
act iv i ty is permit ted on the context stack.

The resolut ion of the problem is conceptually
qui te neat - - the context itself is treated as a clause
and the normal routine for incorporating the current
clause is called recursively. If it can be
incorporated, it is. Otherwise, the (ambiguous) set
of satisf iable predictions is presented to the user
who decides how the clause should be incorporated.
It must be mentioned that while a problem context
exists, it acts like any other context: successive
sentences are incorporated into it. This
incorporat ion may cause the original problem to go
away and allow the mechanism just described to
reso lve the problem.

82

An E~anzple

To i l lustrate the ut i l i ty of the reading model
we wil l sketch the path of a small example through
the program. The example is a modification of a
larger example on which the program has run
successful ly:

Screen each message before it is output. To
screen a message, match each of the
message IDs with the guard list. During
screening, init ial ly validate the message. If it
is valid, determine the guard list by
prompt ing the operator.

Af ter screening, if a match occurs, send the
message with the matching ID as key.
Otherwise,...

A ve r y styl ized version of the event descriptors
output by the linguistic phase for the above is:

1. Each message:
screen(message);
output(message).

2. screen(message)=
Each ID (message): match (ID, guard-list).

3. duri.ng screen: dni.tially: validate(message).
4. i f valid(something):

determine (guard-list, prompt(operator))
5. af ter screen:

i f match(something):
send(message, match(ID, something))

6. otherwise: ...

Assuming now that validate, output, match, prompt
and send are all pr imi t ive--and that prompt and send
are output routines, the reading model would
procede as follows.

The f irst clause will become the main program
(default start ing point) since it does not explicit ly
change the context. Predictions will be set up to
requ i re a producer of a set of messages (something
must precede the main program) and a refinement of
the output event--s ince a device parameter is
missing.

The second clause will then be read; as a
def ining clause of screen, the context consisting of
the main program will be pushed, and the loop will
become the body of screen. (Immediate
act ions-- l ike def in i t ion-- are actually taken care of
be fore the attempt to incorporate current clause is
made.) No producer of a guard-l ist is known. Let's
assume there is an inference rule relating messages
to IDs, so the only prediction of a predecessor will
be that something will produce a guard-list; i.e., a
predecessor to the match will be predicted. In
addit ion, nothing consumes the match result, so a
successor to the body of screen will be predicted
also.

The third clause will establish that the context
should indeed be screen. (It is actually ambiguous
af ter sentence 2 which context is predominant--the
main program or screen. We have no good ideas on
how to adapt the context mechanism's dominance,
yet .) At any rate, if we assume that the validate
produces no useful result for match--viz., no
guard - l i s t - -we have no reason to put it in front of
the body of screen from a producer/consumer
analysis standpoint. In addition, it is ambiguous
whether the validate should precede the loop or the
match within the loop. This ambiguity must be
d iscovered by the explicit routine that attempts to
incorporate " ini t ial ly" clauses. (Very similar routines
must exist for the other relative conjunctions when
they are not incorporated via predictions.) Hence, a
problem context is created. The context stack
consists of: problem (sentence 3) at the top, screen
def in i t ion second, and the main program last. Since
no one consumes the validate results, the model
predicts a successor to validate will be forthcoming.
(In this problem context, no one produces a message,
so a predecessor will be predicted as well.)

The fourth sentence then comes in, succeeds
the val idating, thus fulfil l ing a prediction in the
cur rent context, and will be incorporated into the
cur rent context. No one Consumes the guard-list, so
a successor to sentence 4 will be predicted. In
addit ion, no action was specified to be ' taken when
val idat ion failed. Hence, a prediction that this will
be specif ied subsequently is made.

Sentence .5 first attempts to change contexts
into one in which screening has occurred--the main
program. This forces the problem context to be
popped: hence, the problem must be solved.
However, the "init ial ly" now makes sense, for the
ent i re problem context now produces a guard-list
which can precede the match. Unfortunately, it
remains ambiguous as to whether the guard list is
determined each time through the loop or only once.
(Had the second clause used an ID, for example, this
ambiguity would have been resolved.) The user must
be prompted to make this determination (whose
outcome is i r re levant to this discussion).

Now sentence 5 has reestablished the main
program as its context. Because send can be an
output routine, ei ther send or the whole conditional
can be a ref inement of output. Choosing the
condit ional satisfies the prediction of refinement of
output and incorporates the whole clause. The
condit ional then causes the prediction of extra cases
to be made.

Hence, the otherwise in sentence 6 will be
incorporated as the case when no match occurs_.

It should be clear how the reading model is
intended to work at this point. We mentioned

ear l ier that a dynamic model is used after the
reading model to resolve problems which depend on
a more dynamic context. It can be used to decide
that problems predicted by the reading model are
not actually probiems, by showing that some
relat ions are consumed dynamically. For example,
the match produced by screen looks like a problem
to the reading model, for no one consumes it inside
of screen. However, the dynamic model will be quite
happy, for match is consumed by the main program.
In addit ion, the dynamic model can insert some trivial
events which it invents when relations are consumed
for which there is only one possible producer. What
once was the most important part of the planning
phase- - the dynamic model--is now basically a
consistency checker. More experience is needed
wi th the reading model to determine where its
presumpt iveness requires delaying some decisions to
this last dynamic phase.

Conclusions

It is clear to us that natural language program
specif ications can be automatically understood by
machines--given the abil i ty to interact with the
specif ier. It i s now a matter of how large a
vocabulary and how sophisticated the reasoning
processes need to be to constitute a useful facility.
Al though it is conceivable that program
specif ications can be structured from "rubble"
w i thout a "reading model", it is almost certain that
some of the natural language f lexibi l i ty of event
re ference and specification imprecision must be lost
if the input organization is ignored.

We are quite pleased that this phase has
serendip i tously attained an unexpected measure of
robustness. Recall that we were forced to abstract
our character izat ion of events to a point far less
precise than might be considered desirable--sets of
re lat ions and types were used instead of precise
predicates wi th variables, quantifiers, etc. In so
doing, the number of relationships between events
became too large--more events seemed to be
re lated than were in reality. The reading model has
exact ly the right proper ty of narrowing down the
number o, ~ events considered so that the number of
re lat ionships between events is actually brought in
l ine wi th what might be expected from a less
abstract model in the first place! The competition
and integrat ion of these alternative information
sources provides a balanced approach not inherent
in ei ther. This ult imately gives the planning phase a
robustness unusual in complex systems.

For the immediate future, we intend to run
several small examples through the system, probably
doing some perturbat ion analysis on paraphrases of
the examples. Within the next few years we intend
to attack a much larger example (2Q pages) and face
the sizing issues necessary for the development of a
system of any real ut i l i ty to specifiers.

83

REFERENCES

2.

3.

4.

5.

6.

7.

Balzer, R. M., Goldman, N. Ivl., Wile, D. S.
Informality in program specifications.
USC/Information Sciences Institute. (April,
1977) ISI/RR-77-59.

Fikes, R. and Nilsson, N. STRIPS: a new
approach to the application of theorem proving
to problem solving. ArtiJ'/.cioJ Jntell;gence. 2
(1971).

Goldman, N. M., Balzer, R. M., Wile, D. S.
The inference of domain structure from informal
process descriptions, in Proceedings of a
Workshop on Pattern-Directed Inference
Systems, May 23-27, Honolulu.

Levin, J. A. and Moore, J. A. Dialogue
games: meta-communication structures for
natural lansuage interaction. USC/ Information
Sciences Institute (January, 1977) ISI/RR-77-53.

Riesbeck, C. and Schank, R. Comprehension
by computer: analysis of sentences in context.
Yale Univ., Dept. of Comp. Sci., Research
Report 78, Oct. 1976.

Sacerdoti, F. The nonlinear nature of plans.
Stanford Research Institute, AI Group Technical
Note 101, Jan. 1975.

Schwartz, J. Structureless programming.
Courant Institute, SETL Newsletter 135A, Jul.
1974.

84

