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Abstract 

This paper describes a system which 
organizes a natural language description of a 
program into a conventional program control 
structure, as a part of a larger system for 
converting informal natural language program 
specifications into running programs. Analysis of 
the input program fragments using a model of a 
human "reader" of specifications has been found to 
be a very successful adjunct to conventional 
"planning" methodologies. 

Natural language descriptions of programs can 
frequently be characterized as "rubble"--a very 
loosely organized set of almost independent 
description fragments [Schwartz]. Such 
specifications are often quif;e ~robust, due to a large 
degree of redundancy; they are also frequently quite 
concise, due to reliance on the readers" innate 
knowledge and their knowledge of the application 
domain. This paper discusses a paradigm for 
structuring the portion of "rubble" program 
descriptions which maps into conventional 
programming language control constructs and 
definition facilities. 

In order to focus on structuring natural 
language, it is necessary to indicate where this 
mapping fits in the broader scheme of 
"understanding" natural language program 
descriptions. The research described below is the 
basis for the design of an intermediate stage in the 
operation of the SAFE system [Balzer], a system 
designed and implemented at ISI to produce formal, 
operational specifications for programs described in 
natural language. In particular, a (parenthesized) 
natural language description of a program is given to 
the system--a description which retains most 
semantic ambiguities of natural language, but which 
avoids its syntactic ambiguities. The input first goes 
through a "domain acquisition" phase [Goldman], 
which acquires domain knowledge relating the 
objects and ~cti~ns of the modelled world. The 

"planning phase', described herein, is then used to 
structure the input into a program in conventional 
terms. Finally, a phase concerned with the 
resolution of fine details--anaphoric reference, type 
conversion, and some sequential structure 
resolution--is used to produce the final program. 
The respective phases deal in turn with the data and 
operation structure, the program definition and 
control structure, and the program variable and 
parameter structure. 

The SAFE system makes operational 
specifications more precise by filling in those details 
that were surpressed from the specification because 
they were deemed inferable by an "intelligent 
reader'. These specifications must be operati.onal, 
specifying informally and at a high level, how 
something is to be done, not merely what must be 
achieved. This requirement enables the 
corresponding formal program to be constructed 
without any deep problem solving activity by 
resolving the ambiguities contained in the 
specification within the context of program 
well-formedness rules and the constraints of the 
application domain. When an ambiguity cannot be 
resolved by the system, it asks the user which 
interpretation is intended. 

An E~amp~ 

There appear to be three basic problems 
when attempting to map natural language, 
operational descriptions of programs into program 
control constructs: the mapping is generally 
one-to-many (or even many-to-many); considerable 
reliance on implicit relationships between application 
domain primitives is used to disambiguate sequential 
relationships between events; and all descriptions 
are subject to contextual refinement and 
interpretation, a facility almost completely foreign to 
existing programming languages. To illustrate the 
problems that arise in converting natural language 
input into a program control structure, a small 
example is presented below. The example has 
application domain nouns and verbs replaced with 
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upper  case letters so that the reader is not able to 
use domain specific knowledge unavailable to the 
system: 

Normally, each P must be Xed before 
being Yed. Each P must also be Zed. 
However,  Wed Ps need not be Xed. It is 
necessary to X each of P's 0s. 

There are several ambiguities in this example: 
there  are ambiguities of action sequencing--are 
there  any sequential relationships among X, Y, and Z 
o ther  than the explicit one stated? The mapping of 
some sentences into program constructs is also 
ambiguous; e.g., is the first sentence a loop, a 
condit ional (if a P is in context) or even a "demon" 
(if Ps are created asynchronously)? Notice the 
contextual  modification that the "however" must 
cause: previous sentences' program images must 
now be embedded in a conditional which tests for 
the special case (Wed Ps). Is the last sentence a 
ref inement of the use of X in the first sentence, or 
does it indicate a separate invocation of X? Clearly, 
both the reader and our system would require more 
informat ion to resolve these ambiguities. All of the 
decisions needed to determine a correct control 
s t ructure for the above program rely heavily on 
relat ionships among the primit ive actions and object 
types and the context in which the input is 
in terpreted.  

SurnrnoJ'y o J" Basdc Method 

Considerable ef for t  in artificial intelligence has 
been spent attempting to automatically determine 
sequential  plans to accomplish some goal [Sacerdoti, 
Fikes]. We have very  l i t t le to add to that 
technology.  Our approach differs in that we are not 
concerned wi th creation of sophisticated plans which 
entai l  deep reasoning processes: the user is 
responsib le for formulating the plan--our system 
"mere ly"  makes it formal. It is fortunate that we can 
make this assumption, for the sequential ambiguities 
interact  s t rongly wi th the contextual and statement 
form ambiguit ies: the combination is quite complex. 

Our contr ibut ion lies in the resolution of the 
contextual  ambiguit ies--the discovery and 
incorporat ion of refinements of, and modifications to, 
s t ructures produced from the text. We know of no 
o ther  ef for ts which attack this problem in program 
understanding systems, but see analogs in general 
natural  language understanding [Riesbeck] and dialog 
understanding [Mann] systems. Our general 
approach is to f irst postulate a program structure 
based solely ons ta t i c  evidence. A second pass over 
the result ing program is used to further resolve-- in 
a more dynamic way--prob lems left unsolved in the 
f i rst  pass. 

The static analysis of the program weakly 
models a human reader of program specifications. 
Such a reader tends to predict what the next 
sentence will do to the context he has already 
obtained. For example, if a particular verb is not 

used in a manner consistent with the reader's 
understanding of its usage, (perhaps X cannot be 
used on a P in the example above) he may predict 
that  more will be said to refi.ne his understanding of 
the verb.  Some linguistic cues explicit ly force 
predict ion, such as the use of "normally" above, if a 
reader  has some perception of a goal of a process, 
and that goal has not been met, he may predict that 
fu r the r  sentences will be at the same level as the 
las t - -w i l l  be successors to it in a control construct 
sense. In the example above, if Ying did not 
produce the goal of the process, a successor to Y 
would  be predicted. Furthermore, if a perceived 
goal has been met, the reader may predict that the 
next  sentence will change eontezts--the current 
context  has been specified fully. 

Natural ly, the reader does not rely ent i rely on 
predic t ion for his structural understanding, but is 
qui te wi l l ing to adept when explicit or implicit cues 
contradict  his predictions. In such cases, he may 
remember the predict ion (or more accurately, the 
problem which lead to the prediction), but will 
cer ta in ly  accept the next sentence for whet it is. 
For example, the reader faced with a new paragraph 
when the goals of the previous paragraph were not 
met, wil l  probably  change contexts in accord with 
the f i rs t  sentence of the new paragraph. In the 
above example, if Z was the sole producer of an 
input requi red by Y, the reader would adapt and 
place Z as the predecessor of Y, despite a prediction 
that  the sentence will be a successor for Y. 

In order  to model human reading skills (at this 
v e r y  shal low level), the planning phase considers 
each sentence in order, and attempts to predict what 
the next  sentence will do to the program being 
constructed (its "context ') .  Then, when considering 
the next sentence, i t  examines it for surface and 
der ived  features, and, when possible, incorporates it 
into the program in a manner consistent with one of 
its predict ions. If it cannot incorporate it, it either 
adapts by  acting according to explicit directive 
in format ion in the sentence (as arises with the 
"however "  in the example above), or it creates a 
new context  in which it interprets subsequent 
sentences, until the new context's relationship with 
the prev ious context can be established. 

The program resulting from the application of 
the reading model is then simulated by the planning 
phase in order  to see if problems discovered in the 
static model wil l be resolved dynamically. Such 
resolut ion might occur when some calling context 
produces relationships known to be required by the 
called program, but not known to have been 
produced during the reading model analysis of the 
called program. Some minor modifications to the 
sequent ial  structure of the program can be made 
during_ this phase, but the definit ion (refinement) 
s t ruc ture  is considered to be constant at this point. 
The dynamic modelling mechanism is based on a 
qui te tradit ional (STRIPS-like) "meta-evaluation" 
technique. 
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Central to the paradigm is the information 
used to relate the primitive objects, actions, and 
events of the domain. The basic methods for 
discovering problems and isolating contexts (for 
modifications and refinements) rely on an abstract 
representation of the program in terms of sets of 
relzt ion and type names used by the events. The 
sets associated with events represent the relations 
and types consumed by the event, those both 
produced and consumed by the event, and those just 
produced by the event. Producer/consumer 
relationships between events are expressible as set 
operations (membership, inclusion, intersection) on 
these. Although some ad hoc measures are required 
for second order events (,events with events as 
parameters) and some detailed refinement 
considerations are required, the abstract 
representation yields a rather clean mechanism for 
analysis of problems in "rubble" representations. 

The SAFE system is an operational system 
which has been applied to several moderate sized 
examples (around ten English sentences). Below we 
outline the environment in which the planning phase 
runs, explicate the basis it uses for collecting 
information, and ther, explain the context model 
mentioned above in more detail, demonstrating it 
wi th an example. 

Enuironment of Planning Phase 

The planning phase processes programs after 
linguistic analysis has determined the data and 
procedure specification structure and before a 
"meta--evaluation" process determines anaphoric 
refe,'ents, type conversions, defaults and other 
details relevant to formalizing the specification as an 
operational program. It is necessary to understand 
both the input/output format of the planning phase 
and the model world in which final programs are run 
to understand the actions of the planning phase. 

The SAFE" system attempts to convert 
parenthesized natural language specifications into a 
precise program in a high level programming 
language whose major distinction is that it supports 
a relational data base with backtrackable pattern 
matching, automatic inference, constraint and demon 
invocation features. Output programs are in an 
event-or iented representation in which actions 
manipulate objects and their relationships with one 
another by modifying the contents of the global 
relational data base. An euent is an invocation of an 
action--a procedure call in traditional programming 
languages. It is the sequencing of events and the 
definitions of actions as sequences of events which 
is the prime responsibility of the planning phase. 

The input to the planning phase is a fleshed 
out translation of the natural language input into a 
form we call euent descriptors. These descriptors 
correspond approximately with instantiated 
case-frames for basic actions and relations known to 
the system either as primitives or domain-specific 

actions. In the process of building the event 
descriptors for the input sentences, the linguistic 
phase builds up a model of the relations, types and 
actions which will be used by the program being 
specified. (This model may be augmented by an 
explicit model given to the system preceding 
linguistic analysis.) The model contains a 
st rongly- typed specification of each relation and 
action's parameters. Additionally, some inference 
rules may have been established for the domain. 

The basic event descriptor types into which 
the input sentences are mapped are: events (from 
verbs), objects and sets (from nouns and plurals--the 
arguments to events), conditionals, conjunctions, 
loops (from verbs with set objects) and 
sequences (from explicit enumerations of steps). 
The planning phase manipulates the 
paragraph~sentence~clause structure of the input 
into a program structure, represented in terms of 
the same types of event descriptors. A few 
additional types are needed to represent the 
programs output by the planning phase: paraLleL 
euent descriptor, choice o f  euents descriptor 
(ambiguous events to be decided by the final phase), 
a n d  selector o f  euents descriptor. With the 
exception of choice of event descriptors, each 
descriptor has a natural analog ir i the programming 
language into which the final phase ultimately 
translates the program specification. 

Abstract Input Representation 

The planning phase has three tasks: to choose 
programming language control constructs to 
represent English language syntactic constructs, to 
determine the sequence in which events Must be 
called, and to determine the definition and calling 
structure of the input events. In this section, we 
describe the evidence used by the planning phase to 
make the decisions required to accomplish these 
tasks. 

A significant portion of the task of choosing 
control constructs is presently done by the linguistic 
phase--as is indicated by the event descriptor types 
which are passed to the planning phase. However, 
we hope to lessen this reliance on the linguistic 
phase" in the future and consider delaying more 
control construct choices. Because the linguistic 
phase never considers intersentential relationships, 
except to keep the domain model consistent across 
sentences, all distributed control constructs are 
missed by the linguistic phase. 

These are handled by the planning phase in 
the "reading model" phase sketched above. These 
all tend to be canonical mappings ba~ed on English 
usage patterns, often involving explicit syntax 
indicating cases or exceptions--such as, "normally", 
~otherwise", "an exception is...", etc. In addition, 
some second order actions are indicative of 
distr ibuted control construct usage. Some adverbs 
indicate explicit demonic application is 
desi red-- 'whenever x occurs do y". 
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Although control construct choice is based 
pr imar i ly  on syntactic cues, sequential evidence is 
about equal ly implicit and explicit. Explicit 
sequential relationships between events are 
indicated via conjunctions--e.g. "...and then...', 
adverbs--e.g.  "first", "next", and by explicit 
statements of expectat ion or purpose--e.g. "...the 
purpose of x is to determine y". 

As implicit evidence for sequential 
relat ionships between event descriptors, a 
producer /consumer analysis is done by the planning 
phase. Because the events are incomplete (e.g., 
missing parameters, have incorrect parameter types, 
have no var iable names bound), the analysis is much 
more abstract than that done in the precise 
mathematical proof systems used for goal directed 
planning schemes like STRIPS. 

The method that is used is to define 
precondi t ion and postcondition abstractions for all 
pr imi tve events (calls on actions). These conditions 
are represented as sets of names of relations and 
types used as parameters to events along with the 
types and relat ion names defined for the 
precondit ions to the primit ive actions which they 
invoke. 

For example, the event representing "catch 
the green ball from the red player" would have as 
abstract precondit ion the set { color ball player }, 
plus whatever  precondit ion the action associated 
wi th  the verb  "catch" might require (which would 
cer ta in ly  contain some relation like "thrown',  
"tossed", "in motion", etc.). Notice that color in the 
above is an implicit relation which was determined 
by  the linguistic phase as the way of relating green 
wi th  ball and red with player. The postcondition of 
the same event depends ent i rely on the 
postcondi t ion of catch, which would at least include a 
t ype  such as "location." 

Precondit ion and postcondition abstractions 
are extended to control constructs containing 
pr imi t ive event descriptors in the obvious way. For 
example, the precondit ion for a conditional event 
consists of the union of the names of relations and 
types used in the condition with the precondition 
abstract ions of the "then" and "else" parts. The 
postcondi t ion abstraction is the union of the 
postcondi t ion abstractions of the "then" and "else" 
parts. Af ter  extending the abstract precondition 
and postcondit ion set concept to all event descriptor 
types,  we can make the definition: event A intp/J.ci, tLy 
precedes event B if the abstract precondition of 
event  B intersected with the abstract postcondition 
of event  A is not empty. 

Finally, we must consider what evidence may 
be used to indicate that one event was intended to 
def ine or "ref ine" another. Naturally, we must look 
to English usage for the clues. Since we know of no 
prev ious research attempting to deduce the 
ref inement structure of program descriptions we 
have had to develop our own simple theory of 
ref inement clues. There are two very  common 
devices used in English to indicate that a particular 
event  actually references another event--i.e., 

requires refinement. First, there are a large number 
of "second order"  constructs (which take events as 
parameters),  which explici t ly require refinement. 
Verbs such as process, determine, compute, treat 
and establish become explicit euent uarLabLes; each is 
handled individual ly by the planning phase, although 
a general  pre and postcondition analysis can be used 

• for  purposes of determinin~ refinements. In 
addit ion, some preposit ions (e.g., before, after and 
by)  also occasion the creation of event variables. 

Other devices used to indicate that an event is 
indeed an event  variable are omission of parameters 
to an action and type mismatching in which a set is 
used in place of an element type. These are implicit 
methods for expressing the need for refinement. It 
o f ten  (usually) turns out that events are "self 
re f in ing" - - the  user intended that the system fill in 
the missing details rather than match a more 
precisely specif ied event elsewhere. However, the 
faci l i ty  is a very powerful  Enlish facil ity when used 
as an event  reference, and one which deserves 
special attent ion in program description 
understanding.  It is absolutely necessary to 
recognize refinements when a specification is 
presented to the system in the most ideal way: as a 
s tepwise ref inement of previous events. 

Recognition that an event is an event variable 
is the easier half of the refinement problem. 
Discovering which event refines an event 
var iable-- i .e. ,  the event variable's binding--is more 
diff icult. The candidates are drawn from those 
events  wi th consistent producer/consumer 
abstract ions (for second order verbs) and from those 
which call the same action (for domain action 
ref inements). The latter analysis is a bit ad 
hoc- -parameters  are counted and corresponding 
parameters of possible ref inement-related events 
are checked for upward type compatability. 

To summarize, the information used by the 
planning phase to determine the sequencing of 
events,  definit ions of domain actions and refinements 
of events,  includes both explicit and implicit notions 
of sequence and event invocation. Implicit 
sequencing is determined from an abstract 
representat ion of the preconditions and 
postcond~tions to events and actions. Implicit 
re f inement  requirements come about from a 
subsett ing analysis of parameters to events. 

The Reading Model 

The initial version of the planning 
phase--completed in October, 1975-- t reated the 
problems of action definit ion (aggregation, 
ref inement)  and event sequencing as separable. 
Candidate ref inements were determined~ definitions 
made, and then a STRIPS-like simulation (in the 
abstract space of sets of relation and type names) 
was used to incorporate the remaining uncalled 
events.  This worked surprisingly well considering 
that the order  of sentence input was •absolutely 
ignored and that decisions were only made wher~..~l 
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unique producer/consumer relationship could be 
established. A moderate size message-processing 
example was successfully run through this system 
[Balzer] .  

Further examples quickly established the 
weaknesses of this approach. It should be 
ment ioned that although we do not eschew user 
interact ion, we would prefer that it be minimized and 
reserved for rather difficult and important questions. 
Hence, although almost any scheme that narrows 
down sequential choices is amenable to a "menu" 
interact ion mechanism, it is now quite clear to u s  

that program understanding systems need some 
not ion of "context"  to exhibit intelligence. 

Intui t ively, we want a context to correspond to 
a "state of mind" of a reader of a program 
specif ication. This translates most naturally into a 
set of event  descriptors. Once it is established that 
a part icular contezt--set of event descriptors--is 
re levant ,  all ef forts will be directed toward relating 
successive event descriptors (from the input 
sequence) to the event descriptors in the given 
context.  The major benefit this has is to make some 
abstract relationships unique which would otherwise 
be ambiguous due to possible relationships with 
events  in other contexts. For example, an event 
which implicitly; precedes two events, only one of 
which is in context, may be put into the program as 
the predecessor of the event in context. Naturally, 
since these relationships are used to determine an 
event 's  posit ion in the program structure--both 
sequent ial ly and definit ionally--uniqueness avoids 
user interaction. 

We emphasize: a context is a set of event 
descr iptors. When it is established that a new event 
descr iptor  should be related to a given context, even 
the most obscure relationship with event descriptors 
in that context will be tr ied before a different 
context 's  events are considered. 

The number of relationships between event 
descr iptors in any context may be quite large. Also, 
the events are changed by the planning phase 
dynamically--precedence and refinement 
relat ionships have to be recomputed f requent ly-- for  
they  are of ten recursive functions of the extant 
program structure. Hence, it is somewhat important 
to minimize the number of relations considered when 
at tempt ing to incorporate a new event into the 
program. This is done by predicting how a 
successor sentence will be used. This limits the 
number of relationships with the current context 
which are necessary to consider. In addition, a 
predic t ive mechanism is necessary for some 
intersentent ia l  linguistic (syntactic) forms. The 
predict ions present an interesting dichotomy to the 
contexts:  whi le contexts limit the euetzt$ considered 
in relat ionships with successive input events, 
predict ions limit the rel~t~ortship= considered with 
them. 

It is perhaps best now to describe the reading 
model in more detail, fol lowed quickly with an 
example of how it works. The overall model is to 
at tempt to incorporate each clause of each sentence 
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of each paragraph (considered in input order) into 
the program. The initial state is set up to have 
severa l  (empty)  contexts predef ined--one for each 
ac.tion to be defined, one for the main program and 
one for "problems" which arise. The default context 
is the main program. 

With each clause we first establish a context 
f rom expl ici t  cues in the sentence, if necessary. 
These could be occasioned by English statements of 
the form "during X do Y" or more obliquely "after 
Zing"--where Zing is. done only in one 
part icular  context. Given a context, we attempt to 
incorporate the clause into the context and then 
predict  what the next clause will do to the context. 
To summarize, the top level reading model does the 
fo l lowing:  

Init ialize context to main program; 
Each paragraph: 

Each sentence: 
Each clause: 

Establish context; 
Incorporate clause into context; 
Predict next clause's effect. 

Change context back to main program. 

As mentioned above, the context is established 
by  considering information explicit ly included in the 
event .  In order  to incorporate the current clause 
into the program, the planning phase first 
determines those predictions which can be satisfied 
by the current  clause in the current context. If 
those predict ions are consistent, actions are then 
taken based on the predictions. (A set of 
predict ions can simultaneously be satisfied--an 
act ion may ref ine a superior action, and at the same 
time establish the enabling conditions for a second 
act ion-- thus preceding it.) If the satisfiable 
predict ions are inconsistent, then not enough 
informat ion is known to unambiguously determine 
how to use the event, so a problem context is 
establ ished wi th the clause as its sole member. (An 
event  which could both precede and follow another 
event  in a context would give rise to inconsistent 
predict ions both being satisfiable.) 

If no predictions are satisfied, the clause is 
examined for explicit directive information to see if 
some coordinating conjunction was used (e.g., 
and-tl ' len, f inally, f irst, etc.). Lacking these, a "last 
di tch" attempt is made to see if the new event could 
possib ly  parallel some other event in context 
(consuming and producing approximately the same 
information). Then (finally) the reading model 
considers changing back to a previous context to 
at tempt to incorporate the event. 

We can summarize the incorporation of the 
cur rent  clause, thus: 

Determine satisfiable predictions; 
If consistent, 

take actions indicated by predictions; 
If inconsistent, establish a "problem" context; 
If no satisfiable predictions: 

Attempt to use explicit information; 
Attempt to use a paralle! construct; 
All else failed: Change contexts. 



Predictions for the next clause are made 
based on the effects of the current clause on the 
context .  All newly incorporated clauses are subject 
to abstract pre and post condition analysis to decide 
whether  to predict that the successive clause will 
precede or foIJ~ow the current clause. 
Addit ional ly,  all event descriptors which are calls on 
actions are subject to possible refinement 
predict ions (based on parameter information as 
ment ioned above). 

Conditionals and some second order actions 
can cause predictions that the next clause will 
speci fy another subcase of the current conditional, or 
that it may subsume the current clause, by providing 
a def in i t ion for an exceptional condition (the case 
when "normal ly"  is used). 

The actions taken based on satisfied 
predict ions are basically t r iv ia l - - the event is 
incorporated as the successor, predecessor, 
ref inement,  or  subcase in a straight- forward manner. 
The only interest ing situations left to describe 
invo lve the consistency of predictions and what goes 
on when changing contexts--specif ically, how do 
problems ever  become resolved, contexts popped, 
etc. 

Consistency of predictions is a difficult 
problem. Fortunately, the assumption that 
predict ions are inconsistent has the effect of forcing 
the user to decide which predictions are satisfied (in 
most cases) because the planning phase changes to a 
"problem context ' .  An arb i t rary design decision has 
been made to permit only one such problem context 
to exist at any given time. Hence, if a second 
problem arises when already in a problem context, 
the system will be forced to resolve the problem, 
usual ly by calling the user. 

The main decision in the planning phase is 
whether  or not to "change contexts." It is a 
subsequent and separate decision whether to push a 
new context,  pop to an old, etc., once a change has 
been init iated. This decision procedure is quite 
simple. Contexts are organized into a set, some of 
whose elements are ordered into a stack. If a 
problem context  exists, it is the top of the context 
stack, and once the problem is resolved, will most 
l ikely be incorporated into the context which is the 
second element of the stack. If we change contexts 
to a context  which is already on the stack, the stack 
is popped to that context. Otherwise, the new 
context  becomes the top of the stack. However, a 
problem context is always resolved before any 
act iv i ty  is permit ted on the context stack. 

The resolut ion of the problem is conceptually 
qui te neat - - the  context itself is treated as a clause 
and the normal routine for incorporating the current 
clause is called recursively. If it can be 
incorporated,  it is. Otherwise, the (ambiguous) set 
of satisf iable predictions is presented to the user 
who decides how the clause should be incorporated. 
It must be mentioned that while a problem context 
exists, it acts like any other context: successive 
sentences are incorporated into it. This 
incorporat ion may cause the original problem to go 
away and allow the mechanism just described to 
reso lve the problem. 
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An E~anzple 

To i l lustrate the ut i l i ty of the reading model 
we  wil l  sketch the path of a small example through 
the program. The example is a modification of a 
larger  example on which the program has run 
successful ly: 

Screen each message before it is output. To 
screen a message, match each of the 
message IDs with the guard list. During 
screening, init ial ly validate the message. If it 
is valid, determine the guard list by 
prompt ing the operator.  

Af ter  screening, if a match occurs, send the 
message with the matching ID as key. 
Otherwise,... 

A ve r y  styl ized version of the event descriptors 
output  by  the linguistic phase for the above is: 

1. Each message: 
screen(message); 
output(message). 

2. screen(message)= 
Each ID (message): match (ID, guard-list). 

3. duri.ng screen: dni.tially: validate(message). 
4. i f  valid(something): 

determine (guard-list, prompt(operator)) 
5. af ter  screen: 

i f  match(something): 
send(message, match(ID, something)) 

6. otherwise: ... 

Assuming now that validate, output, match, prompt 
and send are all pr imi t ive--and that prompt and send 
are output  routines, the reading model would 
procede as follows. 

The f irst clause will become the main program 
(default  start ing point) since it does not explicit ly 
change the context. Predictions will be set up to 
requ i re  a producer of a set of messages (something 
must precede the main program) and a refinement of 
the output  event--s ince a device parameter is 
missing. 

The second clause will then be read; as a 
def ining clause of screen, the context consisting of 
the main program will be pushed, and the loop will 
become the body of screen. (Immediate 
act ions-- l ike def in i t ion--  are actually taken care of 
be fore  the attempt to incorporate current clause is 
made.) No producer of a guard-l ist is known. Let's 
assume there is an inference rule relating messages 
to IDs, so the only prediction of a predecessor will 
be that something will produce a guard-list; i.e., a 
predecessor to the match will be predicted. In 
addit ion, nothing consumes the match result, so a 
successor to the body of screen will be predicted 
also. 



The third clause will establish that the context 
should indeed be screen. (It is actually ambiguous 
af ter  sentence 2 which context is predominant--the 
main program or screen. We have no good ideas on 
how to adapt the context mechanism's dominance, 
yet . )  At any rate, if we assume that the validate 
produces no useful result for match--viz., no 
guard - l i s t - -we  have no reason to put it in front of 
the body of screen from a producer/consumer 
analysis standpoint. In addition, it is ambiguous 
whether  the validate should precede the loop or the 
match within the loop. This ambiguity must be 
d iscovered by the explicit routine that attempts to 
incorporate " ini t ial ly" clauses. (Very similar routines 
must exist for the other relative conjunctions when 
they  are not incorporated via predictions.) Hence, a 
problem context is created. The context stack 
consists of: problem (sentence 3) at the top, screen 
def in i t ion second, and the main program last. Since 
no one consumes the validate results, the model 
predicts a successor to validate will be forthcoming. 
(In this problem context, no one produces a message, 
so a predecessor will be predicted as well.) 

The fourth sentence then comes in, succeeds 
the val idating, thus fulfil l ing a prediction in the 
cur rent  context, and will be incorporated into the 
cur rent  context. No one Consumes the guard-list, so 
a successor to sentence 4 will be predicted. In 
addit ion, no action was specified to be ' taken when 
val idat ion failed. Hence, a prediction that this will 
be specif ied subsequently is made. 

Sentence .5 first attempts to change contexts 
into one in which screening has occurred--the main 
program. This forces the problem context to be 
popped: hence, the problem must be solved. 
However,  the "init ial ly" now makes sense, for the 
ent i re  problem context now produces a guard-list 
which can precede the match. Unfortunately, it 
remains ambiguous as to whether the guard list is 
determined each time through the loop or only once. 
(Had the second clause used an ID, for example, this 
ambiguity would have been resolved.) The user must 
be prompted to make this determination (whose 
outcome is i r re levant to this discussion). 

Now sentence 5 has reestablished the main 
program as its context. Because send can be an 
output  routine, ei ther send or the whole conditional 
can be a ref inement of output. Choosing the 
condit ional satisfies the prediction of refinement of 
output  and incorporates the whole clause. The 
condit ional then causes the prediction of extra cases 
to be made. 

Hence, the otherwise in sentence 6 will be 
incorporated as the case when no match occurs_. 

It should be clear how the reading model is 
intended to work  at this point. We mentioned 

ear l ier  that a dynamic model is used after the 
reading model to resolve problems which depend on 
a more dynamic context. It can be used to decide 
that problems predicted by the reading model are 
not actually probiems, by showing that some 
relat ions are consumed dynamically. For example, 
the match produced by screen looks like a problem 
to the reading model, for no one consumes it inside 
of screen. However, the dynamic model will be quite 
happy,  for match is consumed by the main program. 
In addit ion, the dynamic model can insert some trivial 
events  which it invents when relations are consumed 
for  which there is only one possible producer. What 
once was the most important part of the planning 
phase- - the dynamic model--is now basically a 
consistency checker. More experience is needed 
wi th  the reading model to determine where its 
presumpt iveness requires delaying some decisions to 
this last dynamic phase. 

Conclusions 

It is clear to us that natural language program 
specif ications can be automatically understood by 
machines--given the abil i ty to interact with the 
specif ier.  It i s  now a matter of how large a 
vocabulary  and how sophisticated the reasoning 
processes need to be to constitute a useful facility. 
Al though it is conceivable that program 
specif ications can be structured from "rubble" 
w i thout  a "reading model", it is almost certain that 
some of the natural language f lexibi l i ty of event 
re ference and specification imprecision must be lost 
if the input organization is ignored. 

We are quite pleased that this phase has 
serendip i tously attained an unexpected measure of 
robustness. Recall that we were forced to abstract 
our character izat ion of events to a point far less 
precise than might be considered desirable--sets of 
re lat ions and types were used instead of precise 
predicates wi th variables, quantifiers, etc. In so 
doing, the number of relationships between events 
became too large--more events seemed to be 
re lated than were in reality. The reading model has 
exact ly  the right proper ty  of narrowing down the 
number o, ~ events considered so that the number of 
re lat ionships between events is actually brought in 
l ine wi th  what might be expected from a less 
abstract model in the first place! The competition 
and integrat ion of these alternative information 
sources provides a balanced approach not inherent 
in ei ther.  This ult imately gives the planning phase a 
robustness unusual in complex systems. 

For the immediate future, we intend to run 
several  small examples through the system, probably 
doing some perturbat ion analysis on paraphrases of 
the examples. Within the next few years we intend 
to attack a much larger example (2Q pages) and face 
the sizing issues necessary for the development of a 
system of any real ut i l i ty to specifiers. 
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