
THE DESIGN
OF A PROCEDURELESS

PROGRAMMING LANGUAGE

Clair W. Goldsmith
Palyn Associates, Inc.
San Jose~ California

2.

ABSTRACT

The programming of d ig i t a l computers has
been a major concern of mainframe manufac-
turers, academicians, computer users and
software product manufacturers since the
f i r s t marketable computers were produced.
Most of ten, the machine execution order has
been e x p l i c i t at the level at which the
machine is programmed.

This paper takes as a premise that source
statement ordering does not have to describe
machine execution order. It describes a
speci f ic procedureless programming language
that requires no ordering of the source pro-
gram. This language includes pr imi t ives fo r
performing calculat ions on sets. In th is
language statements are not executable.
They are rules for def ining sets. The paper
concludes with a discussion of the usefulness
of the language for a typical programming
appl icat ion.

INTRODUCTION

Trad i t i ona l l y , programming languages are
c lass i f i ed as e i ther problem-oriented or
procedure-oriented [13,24,29]. Since there
is no general agreement, I f i r s t w i l l estab-
l ish working de f in i t i ons , I fo l low Sammet
[24], in def ining a procedure-oriented
language as one in which statements are taken
to be executable and the flow of control is
e x p l i c i t l y provided by the user. FORTRAN,
COBOL, and PL/I are examples of procedure-
oriented languages. I fo l low Katzan[13], in
def ining a problem-oriented language as one
res t r ic ted to a specialized appl icat ion area..
Both AMTRAN [22] and NAPSS [23] are examples
of problem-oriented languages fo r use in the
f i e l d of numerical computation.

Procedure-oriented languages are used to
describe algorithms. The coded algorithm
consists of a group of ordered source state-
ments. These source statements must be
translated into a machine-executable form
such that the execution order corresponds to
that described in the algorithm. Thus, the
source statements control the order in which
the machine-executable statements are per-
formed. Addi t iona l ly , the source language
descr ipt ion of the algorithm involves book-
keeping functions which are not rea l l y part
of the algorithm.

Procedure-oriented languages have consid-
erable flexibility. However, this flex-
ibility introduces additional programming
detail into the algorithm description, such
as: determining the end of the input data,
using index variables, controlling interative
loops, and assigning data storage. Such
languages require programming expertise on
the part of the user. For many applications,
the power available in common procedure-
oriented programming languages complicates,
rather than aids, the task of obtaining
results [24].

Problem-oriented languages used to perform
calculations for specific application areas
[22, 23, 25], usually consist of a set of
functions which may be referenced explicitly
or by the use of keywords. The functions
perform calculations such as solving simul-
taneous algebraic equations or performing
numerical integrations. Frequently, these
languages contain procedure~oriented features
so that the user may describe his own algo-
rithms. Due to their narrow applicability,
such languages do not have wide acceptance.
In general, no effort is made by the de~gners
of problemmoriented languages to reduce pro-
gramming detail. However, some reduction of
detail is a natural consequence of languages
that contain functions for a specific appli-
cation.

The reduction of programming detail is a
central issue of software engineering [19].
Various approaches are taken. AMTRAN L22J
and NAPSS [23], along with others, have
automatic storage allocation. Homer [lO]
suggests a scheme, very similar to macro-
facilities, for automatic statement sequenc-
ing. Dijkstra [6] proposes that explicit
statement ordering through the use of the
GOTO statement be eliminated. Balzer [2]
suggests the concept of programming without
considering data types.

These concepts address specific problems
in current programming languages. A need
clearly exists for programming languages
designed with the goal of suppressing pro-
gramming detail. The basis for such a
language is to consider statements in the
language as definitions. No statement must
be placed before any other statement in the
source language. The language is procedure-
less.

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942572.807041&domain=pdf&date_stamp=1974-03-28

3-

This paper will:

I. Define a procedureless language to
solve non-trivial programming problem~
based upon the concept of purely defi-
nitional statements.

2. Provide a set of primitive functions
to facilitate programming in this
language.

3- Describe the data structure necessary
to permit useful calculations.

4. Discuss the utility of this language
for practical programming problems.

THE LANGUAGE

3.1 Definitions

A procedureless language, which uses
only definitional statements, must have a
data representation that lends itself to un-
ordered processing. A set representation of
data is a logical choice for three reasons.
First, a set is an unordered collection of
elements (data). Second, a set representa-
tion of data is considered to be a funda-
mental computer data structure. Third, and
most importantly, a formal set definition is
procedureless in that it states rules for
ascertaining set memberships rather than a
procedure for selecting set elements [3].

In the context of a procedureless
programming language, a program will consist
of a series of set definitions. No formal
definition of a set will be given since the
traditional view of a set as a collection of
elements is adequate. The usual set nota-
tion consisting of elements enclosed in
braces will suffice. To show by enumeration
that the integers O, I, 2, and 5 constitute
a set, IO, I, 2, 5} will be written. This
set may be named with upper case letters by
stating:

m = IO, !, 2, 5}

Lower case letters will be used to designate
set elements. Thus defines the set of
natural numbers.

A = { x l x = l , 2, 3 . , . }

Set elements may a lso be ordered n - tup les ,
which are w r i t t e n :

(a I ,a 2 an).

Elements in the n-tuple are ordered by asso~
c la t ion with a par t icu lar posi t ion wi th in
the n-tuple. Lower case le t te rs w i l l be used
for a rb i t ra ry n-tuple elements.

Add i t iona l l y , a functional notat ion is
introduced to describe a t t r ibu tes of set
members. For example, le t U be a set con-
s ist ing of the real numbers. The set of
integers is a proper subset of the set of
reals. Thus, the elements of U may be
thought of as having two a t t r i bu tes , a value
which is a measure of the re la t i ve size of
the number and a type which is e i ther integer
or real . These a t t r ibu tes const i tute an
ordered pai r . U is then defined by

14

U : (Ul,U 2)

where u I is the value of the number and

u 2 is e i t h e r ~ in teger ' or ' r e a l '
according to the type of the
number.

A func t ion V is def ined on U such tha t

for xEU, V(x) = V((Ul,U2)) = u 1.

A second function T is defined on U such that

for xEU, T(x) = T((Ul,U2)) = u 2.

The set of a l l integers, I , may now be
defined as

I = {xtxEU, T(x) = ' i n t e g e r ' } .

The set I so defined consists of ordered
pairs containing the value and type informa-
t ion . To obtain the set of values of x wi th-
out the redundant type information, I ' , i t is
necessary to wr i te

I ' ~ {ylXEU,y = V(x)
where T(x) = ' i n t e g e r ' } .

While the notat ion used in the de f i n i t i on of
I ' is consistent with the usual mathematical
notat ion, th is de f i n i t i on w i l l be rewr i t ten
as

I ' = ly lxEu; i f T(x) = ' i n teger '
then y = V(x)}

to re f l ec t the normal programming language
notat ion. The semicolon is introduced to
separate the de f i n i t i on of the formal param-
eters from the rules describing set members.
The key word i f replaces the word where in
the mathematic'al notat ion. The keyword then
signals the de f i n i t i on of the n-tuple element
which is i m p l i c i t in the mathematical nota-
t i o n . In the programming no ta t i on , sets are
def ined on the basis o f a t t r i b u t e s o f e l e -
ments w i t h i n o ther sets.

In genera l , any set S may be de f ined ,
in t h i s no ta t i on , as

S = I (X l ,X2 Xn)IYlCYI,Y2CY 2

YmCYm;

x I = f l (Y l , Y 2 Ym) ,

x 2 = f2(Yl,Y2 Ym),

where

x n : fn(Y1~Y2 Ym)}

X l , X 2 , . . . , x n are elements of the
ordered n-tuple in
the set being
defined

YI'Y2 Ym are sets of i n t e r -
es t

y l , Y 2 , . . . , y m are elements of the
Yi

f l ' f 2 fn are functions
defined on the
V, .

1

The f i are interpreted as rules for selecting
set ~ements. Thus, the f~ are not proce-
dures, or algorithms, for ~alculat ing set
elements.

The procedureless language concept is
based upon the above notation for set de f in i -
t ion. I t w i l l be used as the fundamental
statement of the procedureless programming
language. Thus, the statements in the lan-
guage to be designed w i l l be d e f i n i t i o n a l ,
rather than procedural, in nature.

To re i te ra te then, a set consists of
n-tuples. The elements of the n-tuple are
ordered by being associated with a par t icu lar
posi t ion within the n-tuple. Sets are de-
f ined by using the set de f i n i t i on to choose
elements in the new set. The fol lowing
example w i l l i l l u s t r a t e the use of set def i -
n i t ions to solve the problem frequently
encountered in computer programming.

3.2 Example Problem

Consider a simple payrol l ca lculat ion
problem. The payrol l ca lculat ion is to be
done as fol lows:

Al l employees are hourly. Gross pay
is calculated from the base rate for the
f i r s t for ty hours and time and a hal f for
overtime. Net pay is gross pay less deduc-
t ions where deductions are:

I . Income tax based on gross pay and
number of exemptions,

2. Optional hosp i ta l i za t ion based on
number insured, and

3. Social Security based on gross
pay.

Records are to be read which contain the
employee number and the number of hours
worked. A sorted payrol l report is to be
produced along with to ta ls for the gross pay,
net pay, and the various categories of deduc-
t ions.

To begin with, the deductions are
tabular in nature and are shown in Figure i
below.

Income Tax (IT)

Exem)tions
Gross Pay 0 i 2 3

i00 25 20 15 I0

200 50 40 30 20

300 75 60 45 30

400 I00 80 60 40

500 125 i00 75 50

4

5

10

15

20

25

FIGURE 1

The common characteristic of these
data is that they are al l in tabular form.
The previously defined set notation may be
used to describe the tables as sets by
writing:

H = { (I , i) , (2,2), (3,3), (4,4), (5,~}

SS = I(I00,1), (200,2), (300,3),
(400,4), (500,5)}, and

IT = {(I00,0,25), (100,1,20),
(100,2,15), (i00,2,i0),
(100,4,5), (200,0,50),
(200,1,40), (200,2,30),
(200,3,20), (200,4,10),
(300,0,75), (300,I,60),
(300,2,45), (300,3,30),
(300,4,15), (400,0,i00),
(400,1,80), (400,2,60),
(400,3,40), (400,4,20),
(500,0,125), (500,I,I00),
(500,2,75), (500,3,50),
(500,4,25)}.

Add i t iona l l y , there is an employee roster
which contains the employee number, name, pay
rate, hosp i ta l i za t ion , exemptions, and depen-
dents information respect ively. This set is
a f i l e of records and is defined as:

ER = I (l , A.A.Jones, 1.00, no, O, 1),
(2, B.B.Smith, 1.50, yes, 2, 3),
(3, C.Doe, 2.00, no, I , 0),
(4, X.Brown, 2.50, yes, I , 0)}.

By reading a set of input records containing
the employee's number and the number of hours
worked, the ER f i l e can be searched to deter-
mine the employee'S name, base pay rate, and
deductions. This y ie lds net pay. The resul t
w i l l be a pay check for each ind iv idua l , and
a recapi tu la t ion of the amounts in the var i -
ous categories.

For each set i t is necessary to define
n a t t r i bu te selector functions, where n is
the number of a t t r ibutes (or elements in the
n~tuple). For the particular problem i t is
necessary to define al l of the possible
functions. For the hospitalization set, H,
define

HN(x) = the number of insured and

HP(x) = the premium.

Hospital ization (H)

Number of Insured
1 2 3 5 ro um L, 1

Social Security (SS)

Gross Pay Rate
lO0 1
200 2
300 3
400 4
500 5

15

For the Social Security set, SS, define

SSGP(x) = gross pay and
SSR(x) = Social Security rate.

For the income tax set, IT, define

ITGP(x) = gross pay,
ITE(x) = number of exemptions, and
ITR(x) = income tax rate.

For the employee roster set, ER, define

EREN(x) = employee number,
ERN(x) = employee name,
ERBR(x) = base pay rate,
ERH(x) = hospital izat ion,
ERE(x) = number of exemptions, and
ERNI(x) = number of insured.

There is one additional set to be
defined, namely, that of the input set, which
is

IN = {(4,65), (1,20), (2,40), (3,45)}.

The input set has two functions

INN(x) = the employee number, and
INH(x) = the number of hours worked.

There are three output sets, the f i r s t
is CK, the set of checks with the functions

CKN(x) = employee number,
CKNA(x) = employee name, and
CKNP(x) = net pay.

The second output set to be defined is
the recapitulat ion, RC, which has the func-
tions

RCGPT(x) = gross pay to ta l ,
RCNPT(x) = net pay to ta l ,
RCHT(x) = hospital izat ion to ta l ,
RCSST(x) = Social Security to ta l , and
RCITT(x) = income tax to ta l .

The third output set is the sorted
payroll report, SPR, consisting of the
employee name, employee number, gross pay,
deductions, and net pay. The functions are

SPRN(x) = employee name,
SPREN(x) = employee number,
SPRGP(x) = gross pay,
SPRD(x) = deductions, and
SPRNP(x) = net pay.

Having defined a l l of the data sets,
i t remains only to write the set definit ions.
The f i r s t set is

RC = {(gpt, npt, ht, sst, i t t) l
gpt = SUM(GP), npt = SUM(NP),
sst = SUM(SSS), ht : SUM(HS),
i t t = SUM(ITS)}.

This requires the def in i t ion of the function
SUM, and the sets GP, NP, SSS, HS, and ITS.
The set operator SUM simply sums the elements
of the set named as i ts argument. The second
set to be defined is

SPR = ISORT((n,en,gp,D,np),l)l
yC_IN, x(ZER;
i f INR(y) = EREN(x) then
n =ERN(x),
en = INN(y),
i f INN(Y) : EREN(x) then

16

i f INH(y)<_40 then gp : INH(y)*
ERBR(x)

else gp = ERBR(x)*
(I.5*INH
(y)-20),

D = {(ss, h, i t) i
zESS; i f FLOOR(SSGP(z), gp)

then ss = SSR(z),
zCIT; i f INN(y) = ERE~I(x)

and ERE(x) = ITE(z)
and FLOOR(ITGP(z), g~
then i t = ITR(z),

~E:H; i f INN(y) = EREN(x)
and ERH(x) = 'yes'
and ERI|I(x) = HN(z)
THEFI h = HP(z)},

np = GP - (h + ss + i t) } .

The SORT func t ion simply sorts a set by
the given n- tup le index. The general form is
SORT(X, n) where

X is the name of the set to be sorted
and

n is the n - tup le index o f the entry to
be sorted.

The FLOOR func t ion has the general form
FLOOR(X(y), z) where

X is the at t r ibute f i e ld of interest,

y is a typical element of the set to
be searched~ and

z is the argument used in the determi-
nation of the result.

The invocation of FLOOR(X(y), z) causes the
set pointed to by y to be searched for the
largest X entry which divides z yielding a
number greater than 1. I f there is such an
entry then y w i l l point to that part icular
entry in the named set. I f there is not such
entry, then y is set to zero.

The remaining sets may be defined as

GP = EXT(SPR, 3),
NP = EXT(SPR, 5),
SSS = EXT(D, 2),
HS = EXT(D, 3), and
ITS = EXT(D, 4).

The function EXT extracts an entry from
every n-tuple in the argument set. The func-
t ion is written EXT(X, n) where

X is the set name and

n is the n-tuple index of the entry to
be extracted.

The remaining output set, CK, may be
defined as

CK = I (x, y, z)IuCSPR;
x = EXT(SPR, 2), y = EXT(SPR, l),
z = EXT(SPR, 3)}.

In the above notation, the set def in i -
t ion is similar to the ALGOL FOR statement.
The phrase yEIIN in the def in i t ion of SPR is a
declaration that defines y to be an element of
the IN set. The interpretat ion of the set
def in i t ion is, " for every element in the input
set, IN, perform the following calculations".

The definition of D within SPR is simply a
loop within a loop. However, the formal
parameter z is redefined for every entry in
the n-tuple.

The statement

if iNN(y) = EREN(x) then n = ERN(x)

causes the ER set to be searched until an
employee number is found which matches the
employee number in the input set, IN. The
declaration xCER established x as a formal
parameter of the ER set. For every occur-
rence of the match INN(y) = EREN(x), an
n-tuple in SPR is defined. The statement

n = ERN(x)

causes the name f i e l d fo r each x to be
extracted and assigned to an n, a formal
parameter for the f i r s t entry in each n-tuple
in the SPR set.

The goal of the procedureless language
is to reduce the amount of programming deta i l
necessary to specify the computer solut ion of
a problem. The i l l u s t r a t l v e problem shows
that a somewhat formal notat ion can be used
to define sets which form the solut ion of a
posed problem. The example c lear ly shows
that there are several areas in which the
reduction of programming deta i l can occur.

F i rs t , the procedureless language
should not require that sets be defined in
any order. In the example, the sets RC and
SPR are defined without consideration of the
fact that the elements of SPR must be defined
before the elements of RC can be defined.

Second, the language does not need to
provide methods for e x p l i c i t l y indexing
through the elements of a set. Def in i t ions
simply apply to all elements.

Third, there need be no explicit
method for performing iterative calculations.
The set definitions are automatically intera-
tive in that the set definition is performed
as many times as necessary to completely
define the set.

Fourth, there need not be a method for
explicitly specifying the number of elements
a set contains.

Fifth, no method exists for explicitly
associating the elements within a n-tuple
with the correct n-tuple. For example, the
definition of SPR does not make clear that the
employee name, en, will be associated with
the correct employee number, n. The implica-
tion is that the language compiler must keep
account of these variables andaccomplish the
correct association.

Thus, the procedureless language con-
cept is that a description of the problem
solution is all that is necessary to define
a computer solution for that problem. The
procedure for the computer solution need not
be specified. In effect, all that must be
stated is a prototype solution.

3-3 Syntax Specification

The sample problem in the Section 3.2

17

illustrated the procedureless language con-
cept. The language provides a means for
describing a computer solution of a problem
without specifying the detailed calculative
procedure for that problem. The salient
features of the procedureless language concept
must be relected in the programming language
design. In addition, there are certain arbi -
trary choices that must be made. For exam~e,
the language is required to process both
numeric data and character data rather than
being limited to numeric data. To clarify
the formal description of the programming
language, the general requirements of the
language are described.

The procedureless programming language
is to be used to solve problems in diverse
areas of the computing field Therefore,
both numeric and character string constants
will be valid representations of data. The
language deals only with sets, thus there is
a requirement for a statement in the pro-
gramming language that defines sets consisdng
of constants.

The language must provide the usual
arithmetic operators for performing calcula-
tions on numeric data. The usual relational
operators and Boolean operators are included
t o f a c i l i t a t e d e c i s i o n making, The r e l a t i o n ~
o p e r a t o r s must p r o v i d e f o r compar ison o f
c h a r a c t e r s t r i n g data in a d d i t i o n to compar i -
son o f numer ic d a t a .

There must be a method f o r r e f e r e n c i n g
e lements w i t h i n an n - t u p l e which co r responds
to the f u n c t i o n a l n o t a t i o n used in the p r o -
c e d u r e l e s s language concep t . Thus, the l a n -
guage must p r o v i d e a f a c i l i t y f o r d e f i n i n g
a p r o t o t y p e se t e lement . Th is f a c i l i t y must
e s t a b l i s h the name o f each e lement w i t h i n the
n - t u p l e and i t s p o s i t i o n w i t h i n the n - t u p i e .
F u r t h e r , the p r o t o t y p e n - t u p l e d e f i n i t i o n
must i d e n t i f y the set f o r which the d e f i n i -
t i o n is v a l i d .

S ince a se t is an unordered da ta s t r u c -
t u r e , e lement i n d i c e s must be i m p l i c i t . Thus,
a p a r t i c u l a r set e lement may no t be accessed
by d i r e c t r e f e r e n c e . The e lement may o n l y be
accessed by sea rch ing f o r t h a t e lement . Ca l -
c u l a t i o n s i n v o l v i n g set e lements imply us ing
a l l e lements in the s e t . Consequen t l y , the
language has no p r o v i s i o n f o r p e r f o r m i n g
e x p l i c i t loop c a l c u l a t i o n s . Along these same
l i n e s , the number o f e lements in a g i v e n set
is i m p l i c i t in the set d e f i n i t i o n ,

In the p r o c e d u r e l e s s programming lan -
guage, set d e f i n i t i o n s a re i n t e r p r e t e d as
r u l e s f o r s e l e c t i n g set e lements . The p r o -
cedure f o r c a l c u l a t i n g the set e lements is
not p r o v i d e d to the c o m p i l e r . The c o m p i l e r
accep ts a d e s c r i p t i o n o f the s o l u t i o n and
g e n e r a t e s a p rocedure f o r accomp l i sh ing the
r e q u i r e d r e s u l t s . In do ing t h i s , the com~ler
must i n su re t h a t the e lements w i t h i n a p a r -
t i c u l a r n - t u p l e be long to t h a t n - t u p l e f o r
t h a t s e t .

The language must pe rm i t s ta tements to
appear in any o r d e r . A se t need not be
d e f i n e d b e f o r e i t is r e f e r e n c e d , The

prototype element of a set need not be
defined before the set is defined.

3.3.1 Metalanguage

The language description tech-
nique chosen is based on that of the IBM
Vienna Laboratories. The syntax description
was developed to describe the concrete syntax
of PL/I [16]. The description language is an
extended Backus Normal Form (BNF) notation,
which is considerably more compact than BNF.
In brief, the description introduces the
ellipse, "...", to indicate the repetition of
syntactic signs; braces,{ I , to indicate man-
datory choice; and brackets, [], to indicate
optional choice (including none).

The character set chosen for
the language includes both upper case and
lower case letters as well as special symbols,
In the following description, lower case
letters will be used in a metalinguistic
variable names. The metalinguistic variable
names will be hyphenated or terminate with a
hyphen. These variable names will be chosen
so as to indicate the object for which the
variable stands. In case of conflict between
metalinguistic symbols and syntactic signs,
the symbols in the language being described
will be underlined.

The description of the lan-
guage will be done in sections following the
traditional methods. Thus, constants,
variables, statements, etc. are described in
a hierarchical order to facilitate under-
standing the language.

3.3.2 Basic Symbols

The procedureless programming
language is built up from the following basic
symbols:

basic-symbol ::= alpha-numeric delimiter-

alpha-numeric ::= letter- digit-

digit- ::= O111213141516171819

letter- ::= AIBICIDIEIFIGIHIIIJIKILIMINIO I
PIQIRISITIUIVIWIXIYIZIalblCld I
elflglhlilJlkIllmlnlOlPlqlrlS I
tlUlVlWlXlYlZ

delimiter- ::= DEFINEIPROTOTYPEIENDIDO I
operator-I;I,I~Cblank

operator- ::= arithmetic-operator I
comparison-operator I
Boolean-operator

3.3.3 Constants

I. Numbers
integer- ::= digit-...

signed-integer :: =[+ -]
integer-

numberic-constant ::=
signed-integer[.]I
[signed-integerlTl-]~
integer-

Thus, a integer- is any number
of digits, while a signed-integer is simply
an algebraic sign followed by any number of

18

digits. The numeric constant allows for
signed numbers in the algebraic sense.

Examples:

5 +5 -.6 8.9

2. Strings

string-character ::= alpha-
numericI;I:L,I"Iblank

This rule defines the available
string-characters as all of the alpha-numerics
plus the semicolon, comma, period and double
quite (succession of two single quotes). The
double quote introduced as a string character
is used to place a single quote in the char-
acter string.

character-string ::=
'[str ing-character...] '

Thus, a character-string is any sequence of
characters enclosed in single quotes.

Examp I es :

' A<B '

3.3.4

'gX.=' ,,,i

Identifiers

identifier- ::=
letter- ~Ipha-numeric..~

An identifier must begin with
a letter and is followed by any number,
including none, of alpha-numerics.

Examples:

a B CC X4 V3c

3-3.5 Set Constants

Sets which are composed
entirely of constants are defined by the
rules:

define-statement ::=IDEFINEconstant''se I-,. .

set-constant ;:= Set-name=~l,.n-tuple...l

n-tuple :~= (l,.constant-...l)

constant- ::= numeric-constantl
character-string

Thus, a single define-
statement can declare any number of set-
constants. Each set-constant may have any
number of n-tuples. Each n-tuple is required
to have the same number of fields as all the
other n-tuples in the set.

Examples:

X = I(2,4),(5,6) I. DEFINE

DEFINE Y = I('yes'),('no'),('maybe')~,

Z = I(1,'true'),(o,'false')l.

3.3.6 Data Description

A notation for describing the
data to be processed must be provided. Since
the data is thought of as a set this may be
organized in whatever fashion the user deems
appropriate, flexible rules for describing
sets must be available. A set may be thought
of as a file. The n~tuples in a set may then

be thought of as a record in a file. The
composition of the records in the file will
be defined by the prototype statement.

Since each record has to have
a length, this length will be specified by
the sum of the lengths of the fields in the
record. The field lengths will be specified
in characters, so that the language descrip-
tion is machine independent. The number of
bits necessary to represent a character for
a particular machine will then define the
record length for a given implementation.
Thus, the statement defining prototype set
elements is governed by the rules:

prototype-statement ::= PROTOTYPE
I," set -prototype- . .L

set-prototype ::= set-name =
(I , . e l e m e n t - l i s t . . . })

e l e m e n t - l i s t : := f i e l d - s p e c i f i c a t i o n I
set name

f i e l d - s p e c i f i c a t i o n : := field-name
(integer-)

field-name ::= identifier-

identifier ::= identifier-

The set-name is the name by which the set
may be referenced. A field-name is the name

of that particular field in all of the ele-
ments of the set. The prototype n-tuple has
the ordering imposed by the order in which
the fields are named. The field-names are of
particular importance since they play a key
role in subset selection. These names will
be required to act as functions which will
allow accessing that field in a given element
in a set. The element-list may alternatively
contain set-names. A set so used is a con-
venient way of referencing a group of elemen~
in the current n~tuple by one name. Each
element in the current n-tuple is associated
with only one element in the referenced set.

Examples:

PROTOTYPE X = (A(B),B(1)).

PROTOTYPE Y = (C(2),D(3)),

Z = (E(4),Y).

3,3.7 Set Definition

Set definitions are the analogs
of the executable statements in the usual pro-
gramming languages. They require that a
prototype statement be declared in order to
specify the element length and the field
identifiers, field-names. All calculations
that are performed upon set elements as well
as all comparison and decision making capa-
bilities are part of the set definition. The
rules pertaining to set definition are below:

set-definition ::= set-name=In-tuple-reference±I,.selector-function...}!

n-tuple-reference ::= n-tuple-variablelfunction-call

n-tuple-variable ::= (I,.identifier-..,l)

selector-function ::= [declaration-part]selector-part
d e c l a r a t i o n - p a r t ::= {,.declaration-...l;

declaration- ::= formal-parameterCset-name

formal-parameter ::= identifier-

selector-part ::= if-statementlassignment-

assignment- ::= variable-=expression-

variable- ::= set-name-lformal-parameter

if-statement ::= IF expression THEN block-[ELSEblock-J

block- ::= DO block-body

block-body ::= I,.selector-part... 1 end-clause

end-clause ::= END

expression- ::= expression-fourlexpression-Boolean-operator expression-four

Boolean-operator ::= andlor

expression-four ::= expression-threelexpression-four comparison-operator expression-three

comparison-operator : := >121=1<1~1~1~1~

expression-three ::= expression-twolexpression-threeI+l- 1 expression-two

expression-two ::= expression-onelexpression-twoI*I/}expression-one

expression-one ::= basic-expressioniI+l- 1 expression-one

basic-expression ::= formal-parameterlfield-name (forma]-parameter)isimple-constantl
function-call

simple-constant ::= character-stringlunsigned-number

::= integer [~]l[integer]~ integer unsigned-number

19

The declaration- is a preamble
which defines a formal-parameter which stands
for some element in the named set. Once a
declaration for a formal-parameter occurs, it
remains so defined until it is redefined in
a subsequent declaration. Thus, any reference
to the formal-parameter in the selector-
function automatically references the set for
which it is defined. The selector-part per-
forms set definition. It contains the usual
assignment statements as well as IF statements
for decision making.

The semantics of the comparison-
operator can best be illustrated by an example:

PROTOTYPE U = IA(6) I

v : 18(6) ,c(4)} .

Z = ~ (z)IxCU,yCV;
IF A(x) = B(y) THEN
z = C (y) }

The d e c l a r a c t i o n x C U e s s e n t i a l l y e s t a b l i s h e s
an i t e r a t i v e loop which w i l l c o n s i d e r each
e lement o f U p a i r e d w i t h each e lement o f V.
The IF s ta tement has the i n t e r p r e t a t i o n o f a
search . Thus, f o r each e lement in U, the
e n t i r e V set is searched f o r e q u a l i t y on the
B f i e l d . The r e s u l t is a set o f p a i r s o f the
form (x , Y) . The THEN c l ause then o p e r a t e s on
these o rde red p a i r s to c r e a t e the e lements o f
Z by e x t r a c t i n g the C f i e l d in e v e r y e lement
o f V p o i n t e d to by an (x , y) . I f no match is
found , then the Z set is not c r e a t e d . In a l l
cases the f o r m a l - p a r a m e t e r de te rm ines which
se t is r e f e r e n c e d .

3 . 3 . 8 Func t i ons

function-call ::= function-
identifier argument-list

function-identifier ::=
identifier-

argument-list ::=

(I, .argument- I)
argument- ::= basic-expressionl

set-nameln-tuple-variable

Since the language is set
oriented, there is a requirement to operate
upon sets. The nature of the elements of the
sets are sufficiently complicated that a func-
tion subroutine will have to be used in order
to perform the required evaluation. Some
functions are defined to accept a variable
number of arguments. If the function receives
only one argument, then it must be a field
name and a formal parameter defining the set
to be referenced. If the function receives
two arguments, then the first is a set name
and the second is an ordinal index specifying
the field within the elements of the set which
is to be used in the evaluation of the func-
tion. For functions which require additional
input arguments, these arguments are simply
added to the argument-list,

The following functions are
defined as part of the language,

I. SUM For one argument, sum the
field specified in all the
elements of the set, For two

20

2.

3-

4.

5.

6.

7,

EXT

SORT

MAX

MIN

FLOOR

CEILING

arguments, in the named set,
sum the field whose index
corresponds to the second argu-
ment. The result of SUM is a
single number.

For one argument, extract the
named field from all the ele-
ments in the set. For two
arguments, extract the field
whose index corresponds to the
second argument from all ele-
ments. The result of EXT is a
set.

For one argument, sort the set
on the named field. For two
arguments, sort the set on the
field whose index corresponds
to the second argument. The
result is the sorted set.

For one argument, find the
largest of the named field in
all the elements. For two
arguments, find the largest of
the fields in all the elements
based on the second argument.
The result is a single number.

For one argument, find the
smallest of the named field in
all the elements of the set.
For two arguments, find the
smallest of the field in all
the elements based on the
second argument. The result
is a single number.

For two arguments, the first
is the field name and formal
parameter. The second is an
argument to be used in the
calculation of the result.
The set is searched for the
largest field entry which
divides the second.argument
giving a number greater than
or equal to I. If there is
such an entry, then on exit
the formal parameter points to
that entry. The value of the
function is then true. If
there is no such entry, the
value is false. For three
arguments, the first is a set
name and the second is the
ordinal index of the set to be
searched, The third is the
argument to be used in the
calculation. The calculation
proceeds as described in the
two argument case. The result
is a single number.

For two arguments, the first
is a field name and formal
parameter. The second is the
argument to be used in the
evaluation of the function.
The set is searched for the
smallest number which when
divided into the second argu-
ment yields a result less than
I. If there is such an entry,

then on exit the formal para-
meter points to that entry and
the value of the function is
true. If there is no such
entry, the value of the func-
tion is false. For three
arguments, the first is the set
name, the second is the ordinal
index of the field to be
searched, and the third is the
argument to be used in the cal-
culation. The evaluation of
the function proceeds as de-
scribed for the two argument
case. The result is a single
number.

8. CARDINAL The function accepts only one
argument which is the name of
a set. The function counts
the number of elements of the
named set and returns this
number. The result of the
function is a single number.

3.3.9 Descriptions-

The composite group of state-
ments which describes a problem solution is
called a description. Statements within a
description may appear in any order with the
exception of the END statement. Naturally,

the END statement must be the last statement
in the description. The rules defining a
description are:

descr ip t ion- :;= I , . s t a temen t - . . . }
end-clause

statement- ::= assignment-lset-definitionl
prototype-statementl
define-statement

Through these definitions assignment-statements
can occur outside of a set,definition. IF
statements, however, must be imbedded in a
set-definition.

3.3,10 Example

To illustrate the usefulness
and to further clarify the sematics of the
language, an example program will be exhibited.
The purpose of this program is to show that
programming can be done on a definitional,
rather than procedural, basis,

For this example, the problem
from Section 3.2 will be programmed. The
same problem definition, set names, field
names, and formal parameters will be used.

Some coding conventions are
observed to make reading the program easier.
These are listed below;

I. Set names and field names are upper case,
2. Formal parameters are lower case.
3. Set names are acronymns of the set description.
4. Field names begin with the set name.
5. Set constants are defined with their elements arranged in a readable order; however, the

programs take no advantage of this.

PROTOTYPE D = (DR(6),DSS(6),DH(6),DTT(6)),

H = (HN(1),HP(1)),

SS = (S S G P (3) , S S R (I)) ,

IT = (ITGP(3),ITE(1),ITR(3)),

ER = (EREN(1),ERN(20),ERBR(4),ERH(3),ERE(1),ERNI(1)),

GP = (GPI(6)),

NP = (NPI(6)),

sss = (s s s i (6)) ,

HS = (HSI(6)),

ITS = (ITSI(6)) ,

CK = (CKN(1),CKNA(20),CKNP(6)),

SPR = (SPRN(20),SPREN(1),SPRGP(6),SPRD(6),SPRNP(6)).,

DEFINE IN = I(4,65),(1,20),(2,40),(3,45)},

ER = I(I,'A.A.JONES',I.OO,'no',O,I), (2~"B.B.SMITH',I.50,~yes',2,3),
(3,'C.DOE',2.00,'no',I,O), (4,'X.BROWN',2.50,'yes',I,O)},

H = {(1,1),(2,2),(3,3),(4,4)},

SS = 1(I00,I),(200,2),(300,3)~(400,4),(500,5)},

IT = I(I00,0,25),(100,1,20),(I00,2,15),(I00,3,10)~(I00,3,4)~(200,0,50)~(200,I,40),
(200,3,20),(200,4,10),(300,0,75),(300,1,60),(300,2,45),(300,3,30),(300,4,15),
(4 ~ 1 ~) ~ (4 ~ , ~ , ~) ~ (4 ~ 2 ~ 6 ~ 4 ~ , 3 ~ 4 ~) ~ (4 ~ 4 ~ 2 ~) ~ (5 ~ 2 5) ~ (~ 1 ~) ~
(500,2,75),(500,3,50),(500,4,25)}.

RC = I(gpt,npt,ht~sst,itt)Igpt = SUM(GPoI)~ npt = SUM(NP,I), sst = SUM(SSS,I),
ht = SUM(HSS,I), i t t = SUM(ITS,I)~,

21

SPR = ~SORT((n,en,gp,D,np), l) lyCIN,xCER;

GP

NP

SSS

HS

ITS

CK

END

IF INN(y) = EREN(x) THEN DO n = ERN(x) ,
en = INN(y) END

IF INH(y)<40 THEN gp = INH(y)*ERBR(x) ELSE gp = ERBR(x)*(I.5*INH(y)-20i,

D = ~(ss,h,it)l

z CSS; IF FLOOR (SSGP(z),gp) THEN ss = SSR(z), z C IT; IF ERE(x) = ITE(z) and
FLOOR (ITGP(z),gp) THEN it = ITR(z), z H; IF ERH(x) = 'yes' and ERNI = HN(z)
THEN h = HP(z)~

hp = gp - D

ENDI,

= EXT (SPR,3),

= EXT (S P R , 5) ,

= EXT (D , 2) ,

= EXT (D , 3) ,

= EXT (D , 4) ,

= I (x ,y ,z) IuCSPR; x = EXT (SPR,2), y = EXT (SPR,I), z = EXT (SPR,3)}

4.

The statement

IF INN(y) = EREN(x)

causes an o r d e r e d t r i p l e t o be d e f i n e d . T h i s
t r i p l e a s s o c i a t e s one e l emen t o f SPR w i t h an
e l e m e n t o f IN and ER. T h i s i n s u r e s t h a t t he
e l emen ts o f t h e SPR se t a r e p r o p e r l y con -
s t r u c t e d . The second IF statement generates
two.sets which are acted upon by the THEN and
ELSE clauses.

CONCLUSIONS

The procedureless programming language
which I will call PPL, draws its basis from
set theory. This is a reasonable starting
point since much of the data used in pro-
gramming applications can be described in
terms of sets. Set theory is also attractive
since the usual notation for defining a set
has procedureless aspects. The example de-
scription provides proof that a procedureless
language can solve a non-trivial programming
problem.

The language is described as procedureless
because all statements, with the exception of
END, can occur in any order. The actual
execution of set definitions occurs in the
correct order regardless of the order in
which the definitions occur in the source
description. As a convenience in expressing
problem descriptions, some procedural attri-
butes are included in the language. In
particular, n-tuple variable assignments must
occur within the scope of the braces which
enclose the set definition. The statement
parentheses, DO and END, require that state-
ments belonging to a particular DO-END pair
be located within the scope of that DO-END.
Finally, the END statement is included in the
language to allow the user to indicate the
termination of the source language description.

Certainly, the END statement is not nec-
essary. The compiler can always determine
whether or not a set definition is complete.
For an interactive environment, the language

could be implemented as an interpreter. The
interpreter would accept input statements and
perform set definitions as information became
available. For undefined sets, the interpreter
would ask the user for the required definition.
In a standard batch processing system, the
compiler would simply terminate with the
diagnostic that a certain set is undefined.
Hence, the END statement is a convenience to
the user and the compiler.

The DO-END pair likewise is not necessary.
Its introduction allows elimination of re-
dundant statements by the user. This economy
of notation brings some degree of procedural
organization into the language. To remove
DO-END from the language requires that every
n-tuple variable assignment be preceeded by
an IF statement which binds the formal para-
meters in that statement. The DO-END pair
frees the user from repeating the IF state-
ment. Nothing in the language itself requires
the use of the DO-END pair; it is a user
convenience. Thus, within the set definition,
the statements may be unordered, if desired.

The requirement that set definition state-
ments occur within a set of braces introduces
another element of procedural organization.
Again, this would not be required in a
completely procedureless language. The
requirement could have been stated in another
manner: all variable and set names must be
unique. Then a sort routine would determine
statement ordering. Since a goal of the
language is to improve man-machine communica-
tion, this is an unnecessary requirement. The
generality provided by such a tool may be
easily misused by accident.

Thus, a completely procedureless pro-
gramming language can be designed. However,
compromising the language design to include
some procedural features is necessary to
obtain a more readily usable language. In
PPL, the user must group his statements; but
neither the statements within a group nor the
groups themselves must be ordered.

22

Clearly, a language such as FORTRAN cannot
be made procedureless by simply sorting the
statements into the order in which the vari-
ables are defined. Two statements prohibit
this: GO TO and assignment. The GO TO state-
ment provides no clue as to where it might
belong in the program. The assignment which
redefines a variable may provide no informa-
tion as to the ordering of the definitions.
Thus, any language which has explicit transfer
of control statements cannot be procedure]ess
nor can any language which allows arbitrary
redefinition of variables.

An interesting phenomenon of the language
is that all elements of the result set could
be calculated in parallel. Hence, PPL may
yield some clues as to methods for isolating
parallelism in programs.

The writing of descriptions does require
some orientation for one who is used to
procedure-oriented languages. Primarily, the

5-

thought process must be more clearly focused
on the data whereas in the usual procedure-
oriented language it is focused on the logic
necessary to solve the problem. Thus, a
procedureless language moves the user a level
further away from the machine code solution to
his problem. The compiler itself constructs a
larger portion of the algorithm than a
procedure-oriented language compiler. There-
fore, the amount of programming detail pro-
vided by the user is appreciably reduced.
This is the most significant improvement PPL
offers over the traditional programming lan-
guages.

ACKNOWLEDGMENT

I would like to thank Robert M. McClure
for his comments and suggestions concerning
PPL.

BIBLIOGRAPHY

I. "An Information Algebra." Communications of the ACM, vol. 5, no. 4, April 1962, pp. 190-204.

2. Balzer, R.M. "Dataless Programming." AFIPS Proceedings of the FJCC, 1967, pp. 535-544.

3. Berztiss, A.T. Data Structures. Theory and Practice. New York: Academic Press. 1971.

4. Burge, W. H. "Combinatory Programming and Combinatorial Analysis." IBM Journal of Research and
Development, vol. 16, no. 5, September 1972, pp. 450-461.

5. Cocke, John, and Schwartz, J. T. Pro@ramming Languages and Their Compilers. 2nd rev. ed. New York:
Courant Institute of Mathematical Sciences. 1970.

6. Dijkstra, E. W. "Letter to the Editor." Communications of the ACM, vol. 11, no. 3, March 1968,
pp. 147-148.

7. Dodd, G. G. "APL--A Language for Associative Data Handling in PL/I." AFIPS Proceedings of the FJCC,
1966, pp. 677-684.

8. Feldman, Jerome A., and Rovner, Paul D. "An Algol-Based Association Language." Communications of the
ACM, vol. 12, no. 8, August 1969, pp. 439-449.

9. Harrison, Malcolm. Data-Structures and Programming. rev. ed. New York: Courant Institute of
Mathematical Sciences. 1971.

lO. Homer, E. D. "An Algorithm for Selecting and Sequencing Statements as a Basis for a Problem-Oriented
Programming System." Proceedings of the ACM 21st National Conference, 1966, pp. 305-312.

11. Iverson, Kenneth E. A Programming Language. New York: John Wiley and Sons, Inc. 1962.

12. Katz, Jesse H., and McGee, William C. "An Experiment in Non-Procedural Programming." AFIPS Proceedings
of the FJCC, 1963, pp. 1-13.

13. Katzan, Harry, Jr. Ad__vanced Programming. New York: Van Norstrand Reinhold Co. 1970.

14. Klerer, Melvin, and May, Jack. "Automatic Dimensioning." Communications of the ACM, vol. 10, no. 3,
March 1967, pp. 165-166.

15. Knuth, Donald E. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Reading,
Massachusetts: Addison-Wesley Publishing Company. 1968.

16. Lucas, P., Lauer, P., and Stigleitner, H. Method and Notation for the Journal Definition of Programming
Languages. IBM TR25,087. IBM Laboratory: Vienna, Austria. 1968.

17. McCarthy, J. "Recursive Functions of Symbolic Expressions and Their Computation by Machine."
Communications of the ACM, vol. 3, no. 4, April 1960, pp. 184-195.

18. Naur, Peter, ed. "Revised Report on the Algorithmic Language Algol 6~." Communications of the ACM,
vol. 6, no. I, January 1963, pp. 1-17.

19. Naur, Peter, and Randell, Brian, eds. Software Engineering. Scientific Affairs Division NATO,
Brussels, Belgium. 1969.

20. Neuhold, E. J. ~'The Formal Description of Programming Languages." IBM Systems Journal, vol. 10, no. 2,
1971, pp. 86-112.

23

2i. PICL Users Guide. Telpar, Inc., Dallas, Texas. 1970.

22. Reinfelds, J., et al. "AMTRAN--An Interactive Computing System." AFIPS Proceedings of the SJCC,
1970, pp. 537-542.

23. Rice, John R., and Rosen, Saul. "NAPSS-A Numerical Analysis Problem Solving System." Proceedings of
the ACM 21st National Conference, 1966, pp. 51-56.

24. Sammet, Jean E. Programmihg Languages: History and Fundamentals. Englewood Cliffs, New Jersey:
Prentice-Hall. 1969.

25. Schlesinger, I., and Sashkin, L. "POSE: A Language for Posing Problems to a Computer." CommuniCations
of the ACM, vol. 10, no. 5, May 1967, pp. 279-285.

26. Schwantz, Jacob T. On Programmin ~ An Interim Report on the SETL Project Installment I. New York:
Courant Institute of Mathematical Sciences. 1973.

27. Swinehart, Dan, and Sproull, Bob. Sail. Stanford, California: Stanford Artificial Intelligence
Project. 1970.

28. Symes, Lawrence R. "Manipulation of Data Structures in a Numerical Analysis Problem Solving System--
NAPSS." AFIPS Proceedings of the SJCC, 1970, pp. 157-164.

29. Wegner, Peter. Pro@ramming Languages, Information Structures, and Machine Organization. New York:
McGraw-Hill Book Company. 1968.

36. Whiteman, I. R. "New Computer Languages." International Science and Technology, April 1966, pp. 62-68.

31. YoUng, J. W., Jr. "Non-Procedural-Languages." Presented at ACM Southern California Chapter's Seventh
Annual Technical Symposium, March 23,]965.

24

