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ABSTRACT 

The programming of d ig i t a l  computers has 
been a major concern of mainframe manufac- 
turers,  academicians, computer users and 
software product manufacturers since the 
f i r s t  marketable computers were produced. 
Most of ten,  the machine execution order has 
been e x p l i c i t  at the level at which the 
machine is programmed. 

This paper takes as a premise that source 
statement ordering does not have to describe 
machine execution order. It  describes a 
speci f ic  procedureless programming language 
that requires no ordering of the source pro- 
gram. This language includes pr imi t ives fo r  
performing calculat ions on sets. In th is 
language statements are not executable. 
They are rules for  def ining sets. The paper 
concludes with a discussion of the usefulness 
of the language for  a typical programming 
appl icat ion.  

INTRODUCTION 

Trad i t i ona l l y ,  programming languages are 
c lass i f i ed  as e i ther  problem-oriented or 
procedure-oriented [13,24,29]. Since there 
is no general agreement, I f i r s t  w i l l  estab- 
l ish working de f in i t i ons ,  I fo l low Sammet 
[24], in def ining a procedure-oriented 
language as one in which statements are taken 
to be executable and the flow of control is 
e x p l i c i t l y  provided by the user. FORTRAN, 
COBOL, and PL/I are examples of procedure- 
oriented languages. I fo l low Katzan[13], in 
def ining a problem-oriented language as one 
res t r ic ted  to a specialized appl icat ion area.. 
Both AMTRAN [22] and NAPSS [23] are examples 
of problem-oriented languages fo r  use in the 
f i e l d  of numerical computation. 

Procedure-oriented languages are used to 
describe algorithms. The coded algorithm 
consists of a group of ordered source state-  
ments. These source statements must be 
translated into a machine-executable form 
such that the execution order corresponds to 
that described in the algorithm. Thus, the 
source statements control the order in which 
the machine-executable statements are per- 
formed. Addi t iona l ly ,  the source language 
descr ipt ion of the algorithm involves book- 
keeping functions which are not rea l l y  part 
of the algorithm. 

Procedure-oriented languages have consid- 
erable flexibility. However, this flex- 
ibility introduces additional programming 
detail into the algorithm description, such 
as: determining the end of the input data, 
using index variables, controlling interative 
loops, and assigning data storage. Such 
languages require programming expertise on 
the part of the user. For many applications, 
the power available in common procedure- 
oriented programming languages complicates, 
rather than aids, the task of obtaining 
results [24]. 

Problem-oriented languages used to perform 
calculations for specific application areas 
[22, 23, 25], usually consist of a set of 
functions which may be referenced explicitly 
or by the use of keywords. The functions 
perform calculations such as solving simul- 
taneous algebraic equations or performing 
numerical integrations. Frequently, these 
languages contain procedure~oriented features 
so that the user may describe his own algo- 
rithms. Due to their narrow applicability, 
such languages do not have wide acceptance. 
In general, no effort is made by the de~gners 
of problemmoriented languages to reduce pro- 
gramming detail. However, some reduction of 
detail is a natural consequence of languages 
that contain functions for a specific appli- 
cation. 

The reduction of programming detail is a 
central issue of software engineering [19]. 
Various approaches are taken. AMTRAN L22J 
and NAPSS [23], along with others, have 
automatic storage allocation. Homer [lO] 
suggests a scheme, very similar to macro- 
facilities, for automatic statement sequenc- 
ing. Dijkstra [6] proposes that explicit 
statement ordering through the use of the 
GOTO statement be eliminated. Balzer [2] 
suggests the concept of programming without 
considering data types. 

These concepts address specific problems 
in current programming languages. A need 
clearly exists for programming languages 
designed with the goal of suppressing pro- 
gramming detail. The basis for such a 
language is to consider statements in the 
language as definitions. No statement must 
be placed before any other statement in the 
source language. The language is procedure- 
less. 
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This paper will: 

I. Define a procedureless language to 
solve non-trivial programming problem~ 
based upon the concept of purely defi- 
nitional statements. 

2. Provide a set of primitive functions 
to facilitate programming in this 
language. 

3- Describe the data structure necessary 
to permit useful calculations. 

4. Discuss the utility of this language 
for practical programming problems. 

THE LANGUAGE 

3.1 Definitions 

A procedureless language, which uses 
only definitional statements, must have a 
data representation that lends itself to un- 
ordered processing. A set representation of 
data is a logical choice for three reasons. 
First, a set is an unordered collection of 
elements (data). Second, a set representa- 
tion of data is considered to be a funda- 
mental computer data structure. Third, and 
most importantly, a formal set definition is 
procedureless in that it states rules for 
ascertaining set memberships rather than a 
procedure for selecting set elements [3]. 

In the context of a procedureless 
programming language, a program will consist 
of a series of set definitions. No formal 
definition of a set will be given since the 
traditional view of a set as a collection of 
elements is adequate. The usual set nota- 
tion consisting of elements enclosed in 
braces will suffice. To show by enumeration 
that the integers O, I, 2, and 5 constitute 
a set, IO, I, 2, 5} will be written. This 
set may be named with upper case letters by 
stating: 

m = IO, !, 2, 5} 

Lower case letters will be used to designate 
set elements. Thus defines the set of 
natural numbers. 

A = { x l x  = l ,  2, 3 . , . }  

Set elements may a lso be ordered n - tup les ,  
which are w r i t t e n :  

(a I ,a 2 . . . . .  an). 

Elements in the n-tuple are ordered by asso~ 
c la t ion with a par t icu lar  posi t ion wi th in  
the n-tuple. Lower case le t te rs  w i l l  be used 
for a rb i t ra ry  n-tuple elements. 

Add i t iona l l y ,  a functional notat ion is 
introduced to describe a t t r ibu tes  of set 
members. For example, le t  U be a set con- 
s ist ing of the real numbers. The set of 
integers is a proper subset of the set of 
reals. Thus, the elements of U may be 
thought of as having two a t t r i bu tes ,  a value 
which is a measure of the re la t i ve  size of 
the number and a type which is e i ther  integer 
or real .  These a t t r ibu tes  const i tute an 
ordered pai r .  U is then defined by 
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U : (Ul,U 2) 

where u I is  the value of  the number and 

u 2 is  e i t h e r  ~ in teger '  or ' r e a l '  
according to the type of  the 
number. 

A func t ion  V is  def ined on U such tha t  

for  xEU, V(x) = V((Ul,U2)) = u 1. 

A second function T is defined on U such that  

for  xEU, T(x) = T((Ul,U2)) = u 2. 

The set of a l l  integers, I ,  may now be 
defined as 

I = {xtxEU, T(x) = ' i n t e g e r ' } .  

The set I so defined consists of ordered 
pairs containing the value and type informa- 
t ion .  To obtain the set of values of  x wi th-  
out the redundant type information, I ' ,  i t  is 
necessary to wr i te  

I '  ~ {ylXEU,y = V(x) 
where T(x) = ' i n t e g e r ' } .  

While the notat ion used in the de f i n i t i on  of 
I '  is consistent with the usual mathematical 
notat ion,  th is  de f i n i t i on  w i l l  be rewr i t ten 
as 

I '  = ly lxEu;  i f  T(x) = ' i n teger '  
then y = V(x)} 

to re f l ec t  the normal programming language 
notat ion. The semicolon is introduced to 
separate the de f i n i t i on  of the formal param- 
eters from the rules describing set members. 
The key word i f  replaces the word where in 
the mathematic'al notat ion.  The keyword then 
signals the de f i n i t i on  of  the n-tuple element 
which is  i m p l i c i t  in the mathematical nota-  
t i o n .  In the programming no ta t i on ,  sets are 
def ined on the basis o f  a t t r i b u t e s  o f  e l e -  
ments w i t h i n  o ther  sets.  

In genera l ,  any set  S may be de f ined ,  
in t h i s  no ta t i on ,  as 

S = I (X l ,X2 . . . . .  Xn)IYlCYI,Y2CY 2 . . . . .  

YmCYm; 

x I = f l ( Y l , Y 2  . . . . .  Ym ) ,  

x 2 = f2(Yl,Y2 . . . . .  Ym ), 

where 

x n : fn(Y1~Y2 . . . . .  Ym )} 

X l , X 2 , . . . , x  n are elements of the 
ordered n-tuple in 
the set being 
defined 

YI'Y2 . . . . .  Ym are sets  of i n t e r -  
es t  

y l , Y 2 , . . . , y m  are elements of  the 
Yi 



f l ' f 2  . . . . .  fn are functions 
defined on the 
V, .  
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The f i  are interpreted as rules for  selecting 
set ~ements. Thus, the f~ are not proce- 
dures, or algorithms, for  ~alculat ing set 
elements. 

The procedureless language concept is 
based upon the above notation for  set de f in i -  
t ion.  I t  w i l l  be used as the fundamental 
statement of the procedureless programming 
language. Thus, the statements in the lan- 
guage to be designed w i l l  be d e f i n i t i o n a l ,  
rather than procedural, in nature. 

To re i te ra te  then, a set consists of 
n-tuples. The elements of the n-tuple are 
ordered by being associated with a par t icu lar  
posi t ion within the n-tuple. Sets are de- 
f ined by using the set de f i n i t i on  to choose 
elements in the new set. The fol lowing 
example w i l l  i l l u s t r a t e  the use of set def i -  
n i t ions to solve the problem frequently 
encountered in computer programming. 

3.2 Example Problem 

Consider a simple payrol l  ca lculat ion 
problem. The payrol l  ca lculat ion is to be 
done as fol lows: 

Al l  employees are hourly. Gross pay 
is calculated from the base rate for  the 
f i r s t  for ty  hours and time and a hal f  for  
overtime. Net pay is gross pay less deduc- 
t ions where deductions are: 

I .  Income tax based on gross pay and 
number of exemptions, 

2. Optional hosp i ta l i za t ion  based on 
number insured, and 

3. Social Security based on gross 
pay. 

Records are to be read which contain the 
employee number and the number of hours 
worked. A sorted payrol l  report is to be 
produced along with to ta ls  for  the gross pay, 
net pay, and the various categories of deduc- 
t ions. 

To begin with, the deductions are 
tabular in nature and are shown in Figure i 
below. 

Income Tax (IT) 

Exem)tions 
Gross Pay 0 i 2 3 

i00 25 20 15 I0 

200 50 40 30 20 

300 75 60 45 30 

400 I00 80 60 40 

500 125 i00 75 50 

4 

5 

10 

15 

20 

25 

FIGURE 1 

The common characteristic of these 
data is that they are al l  in tabular form. 
The previously defined set notation may be 
used to describe the tables as sets by 
writing: 

H = { ( I , i ) ,  (2,2), (3,3), (4,4), (5,~} 

SS = I(I00,1), (200,2), (300,3), 
(400,4), (500,5)}, and 

IT = {(I00,0,25), (100,1,20), 
(100,2,15), (i00,2,i0), 
(100,4,5), (200,0,50), 
(200,1,40), (200,2,30), 
(200,3,20), (200,4,10), 
(300,0,75), (300,I,60), 
(300,2,45), (300,3,30), 
(300,4,15), (400,0,i00), 
(400,1,80), (400,2,60), 
(400,3,40), (400,4,20), 
(500,0,125), (500,I,I00), 
(500,2,75), (500,3,50), 
(500,4,25)}. 

Add i t iona l l y ,  there is an employee roster 
which contains the employee number, name, pay 
rate, hosp i ta l i za t ion ,  exemptions, and depen- 
dents information respect ively.  This set is 
a f i l e  of records and is defined as: 

ER = I ( l ,  A.A.Jones, 1.00, no, O, 1), 
(2, B.B.Smith, 1.50, yes, 2, 3), 
(3, C.Doe, 2.00, no, I ,  0), 
(4, X.Brown, 2.50, yes, I ,  0)}. 

By reading a set of input records containing 
the employee's number and the number of hours 
worked, the ER f i l e  can be searched to deter- 
mine the employee'S name, base pay rate, and 
deductions. This y ie lds net pay. The resul t  
w i l l  be a pay check for  each ind iv idua l ,  and 
a recapi tu la t ion of the amounts in the var i -  
ous categories. 

For each set i t  is necessary to define 
n a t t r i bu te  selector functions, where n is 
the number of a t t r ibutes (or elements in the 
n~tuple). For the particular problem i t  is 
necessary to define al l  of the possible 
functions. For the hospitalization set, H, 
define 

HN(x) = the number of insured and 

HP(x) = the premium. 

Hospital ization (H) 

Number of Insured 
1 2 3 5  ro um L, 1 

Social Security (SS) 

Gross Pay Rate 
lO0 1 
200 2 
300 3 
400 4 
500 5 
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For the Social Security set, SS, define 

SSGP(x) = gross pay and 
SSR(x) = Social Security rate. 

For the income tax set, IT, define 

ITGP(x) = gross pay, 
ITE(x) = number of exemptions, and 
ITR(x) = income tax rate. 

For the employee roster set, ER, define 

EREN(x) = employee number, 
ERN(x) = employee name, 
ERBR(x) = base pay rate, 
ERH(x) = hospital izat ion, 
ERE(x) = number of exemptions, and 
ERNI(x) = number of insured. 

There is one additional set to be 
defined, namely, that of the input set, which 
is 

IN = {(4,65), (1,20), (2,40), (3,45)}. 

The input set has two functions 

INN(x) = the employee number, and 
INH(x) = the number of hours worked. 

There are three output sets, the f i r s t  
is CK, the set of checks with the functions 

CKN(x) = employee number, 
CKNA(x) = employee name, and 
CKNP(x) = net pay. 

The second output set to be defined is 
the recapitulat ion, RC, which has the func- 
tions 

RCGPT(x) = gross pay to ta l ,  
RCNPT(x) = net pay to ta l ,  
RCHT(x) = hospital izat ion to ta l ,  
RCSST(x) = Social Security to ta l ,  and 
RCITT(x) = income tax to ta l .  

The third output set is the sorted 
payroll report, SPR, consisting of the 
employee name, employee number, gross pay, 
deductions, and net pay. The functions are 

SPRN(x) = employee name, 
SPREN(x) = employee number, 
SPRGP(x) = gross pay, 
SPRD(x) = deductions, and 
SPRNP(x) = net pay. 

Having defined a l l  of the data sets, 
i t  remains only to write the set definit ions. 
The f i r s t  set is 

RC = {(gpt, npt, ht, sst, i t t ) l  
gpt = SUM(GP), npt = SUM(NP), 
sst = SUM(SSS), ht : SUM(HS), 
i t t  = SUM(ITS)}. 

This requires the def in i t ion of the function 
SUM, and the sets GP, NP, SSS, HS, and ITS. 
The set operator SUM simply sums the elements 
of the set named as i ts argument. The second 
set to be defined is 

SPR = ISORT((n,en,gp,D,np),l)l 
yC_IN, x(ZER; 
i f  INR(y) = EREN(x) then 
n =ERN(x), 
en = INN(y), 
i f  INN(Y) : EREN(x) then 

16 

i f  INH(y)<_40 then gp : INH(y)* 
ERBR(x) 

else gp = ERBR(x)* 
(I.5*INH 
(y)-20), 

D = {(ss, h, i t ) i  
zESS; i f  FLOOR(SSGP(z), gp) 

then ss = SSR(z), 
zCIT; i f  INN(y) = ERE~I(x) 

and ERE(x) = ITE(z) 
and FLOOR(ITGP(z), g~ 
then i t  = ITR(z), 

~E:H; i f  INN(y) = EREN(x) 
and ERH(x) = 'yes' 
and ERI|I(x) = HN(z) 
THEFI h = HP(z)}, 

np = GP - (h + ss + i t ) } .  

The SORT func t ion  simply sorts a set by 
the given n- tup le  index. The general form is 
SORT(X, n) where 

X is  the name of  the set to be sorted 
and 

n is the n - tup le  index o f  the entry to 
be sorted. 

The FLOOR func t ion  has the general form 
FLOOR(X(y), z) where 

X is the at t r ibute f i e ld  of interest,  

y is a typical element of the set to 
be searched~ and 

z is the argument used in the determi- 
nation of the result.  

The invocation of FLOOR(X(y), z) causes the 
set pointed to by y to be searched for the 
largest X entry which divides z yielding a 
number greater than 1. I f  there is such an 
entry then y w i l l  point to that part icular 
entry in the named set. I f  there is not such 
entry, then y is set to zero. 

The remaining sets may be defined as 

GP = EXT(SPR, 3), 
NP = EXT(SPR, 5), 
SSS = EXT(D, 2), 
HS = EXT(D, 3), and 
ITS = EXT(D, 4). 

The function EXT extracts an entry from 
every n-tuple in the argument set. The func- 
t ion is written EXT(X, n) where 

X is the set name and 

n is the n-tuple index of the entry to 
be extracted. 

The remaining output set, CK, may be 
defined as 

CK = I (x,  y, z)IuCSPR; 
x = EXT(SPR, 2), y = EXT(SPR, l), 
z = EXT(SPR, 3)}. 

In the above notation, the set def in i -  
t ion is similar to the ALGOL FOR statement. 
The phrase yEIIN in the def in i t ion of SPR is a 
declaration that defines y to be an element of 
the IN set. The interpretat ion of the set 
def in i t ion is,  " for every element in the input 
set, IN, perform the following calculations". 



The definition of D within SPR is simply a 
loop within a loop. However, the formal 
parameter z is redefined for every entry in 
the n-tuple. 

The statement 

if iNN(y) = EREN(x) then n = ERN(x) 

causes the ER set to be searched until an 
employee number is found which matches the 
employee number in the input set, IN. The 
declaration xCER established x as a formal 
parameter of the ER set. For every occur- 
rence of the match INN(y) = EREN(x), an 
n-tuple in SPR is defined. The statement 

n = ERN(x) 

causes the name f i e l d  fo r  each x to be 
extracted and assigned to an n, a formal 
parameter for  the f i r s t  entry in each n-tuple 
in the SPR set. 

The goal of the procedureless language 
is to reduce the amount of  programming deta i l  
necessary to specify the computer solut ion of 
a problem. The i l l u s t r a t l v e  problem shows 
that a somewhat formal notat ion can be used 
to define sets which form the solut ion of a 
posed problem. The example c lear ly  shows 
that there are several areas in which the 
reduction of programming deta i l  can occur. 

F i rs t ,  the procedureless language 
should not require that sets be defined in 
any order. In the example, the sets RC and 
SPR are defined without consideration of the 
fact  that the elements of SPR must be defined 
before the elements of RC can be defined. 

Second, the language does not need to 
provide methods for  e x p l i c i t l y  indexing 
through the elements of a set. Def in i t ions 
simply apply to all elements. 

Third, there need be no explicit 
method for performing iterative calculations. 
The set definitions are automatically intera- 
tive in that the set definition is performed 
as many times as necessary to completely 
define the set. 

Fourth, there need not be a method for 
explicitly specifying the number of elements 
a set contains. 

Fifth, no method exists for explicitly 
associating the elements within a n-tuple 
with the correct n-tuple. For example, the 
definition of SPR does not make clear that the 
employee name, en, will be associated with 
the correct employee number, n. The implica- 
tion is that the language compiler must keep 
account of these variables andaccomplish the 
correct association. 

Thus, the procedureless language con- 
cept is that a description of the problem 
solution is all that is necessary to define 
a computer solution for that problem. The 
procedure for the computer solution need not 
be specified. In effect, all that must be 
stated is a prototype solution. 

3-3 Syntax Specification 

The sample problem in the Section 3.2 
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illustrated the procedureless language con- 
cept. The language provides a means for 
describing a computer solution of a problem 
without specifying the detailed calculative 
procedure for that problem. The salient 
features of the procedureless language concept 
must be relected in the programming language 
design. In addition, there are certain arbi - 
trary choices that must be made. For exam~e, 
the language is required to process both 
numeric data and character data rather than 
being limited to numeric data. To clarify 
the formal description of the programming 
language, the general requirements of the 
language are described. 

The procedureless programming language 
is to be used to solve problems in diverse 
areas of the computing field Therefore, 
both numeric and character string constants 
will be valid representations of data. The 
language deals only with sets, thus there is 
a requirement for a statement in the pro- 
gramming language that defines sets consisdng 
of constants. 

The language must provide the usual 
arithmetic operators for performing calcula- 
tions on numeric data. The usual relational 
operators and Boolean operators are included 
t o  f a c i l i t a t e  d e c i s i o n  making,  The r e l a t i o n ~  
o p e r a t o r s  must p r o v i d e  f o r  compar ison o f  
c h a r a c t e r  s t r i n g  data  in a d d i t i o n  to  compar i -  
son o f  numer ic d a t a .  

There must be a method f o r  r e f e r e n c i n g  
e lements  w i t h i n  an n - t u p l e  which co r responds  
to  the f u n c t i o n a l  n o t a t i o n  used in the  p r o -  
c e d u r e l e s s  language concep t .  Thus,  the l a n -  
guage must p r o v i d e  a f a c i l i t y  f o r  d e f i n i n g  
a p r o t o t y p e  se t  e lement .  Th is  f a c i l i t y  must 
e s t a b l i s h  the name o f  each e lement  w i t h i n  the 
n - t u p l e  and i t s  p o s i t i o n  w i t h i n  the n - t u p i e .  
F u r t h e r ,  the p r o t o t y p e  n - t u p l e  d e f i n i t i o n  
must i d e n t i f y  the set  f o r  which the d e f i n i -  
t i o n  is v a l i d .  

S ince a se t  is an unordered  da ta  s t r u c -  
t u r e ,  e lement  i n d i c e s  must be i m p l i c i t .  Thus, 
a p a r t i c u l a r  set  e lement may no t  be accessed 
by d i r e c t  r e f e r e n c e .  The e lement  may o n l y  be 
accessed by sea rch ing  f o r  t h a t  e lement .  Ca l -  
c u l a t i o n s  i n v o l v i n g  set  e lements  imply us ing  
a l l  e lements  in the s e t .  Consequen t l y ,  the 
language has no p r o v i s i o n  f o r  p e r f o r m i n g  
e x p l i c i t  loop c a l c u l a t i o n s .  Along these same 
l i n e s ,  the number o f  e lements  in a g i v e n  set  
is i m p l i c i t  in the set  d e f i n i t i o n ,  

In the p r o c e d u r e l e s s  programming lan -  
guage, set  d e f i n i t i o n s  a re  i n t e r p r e t e d  as 
r u l e s  f o r  s e l e c t i n g  set  e lements .  The p r o -  
cedure  f o r  c a l c u l a t i n g  the set  e lements  is  
not  p r o v i d e d  to  the c o m p i l e r .  The c o m p i l e r  
accep ts  a d e s c r i p t i o n  o f  the s o l u t i o n  and 
g e n e r a t e s  a p rocedure  f o r  accomp l i sh ing  the 
r e q u i r e d  r e s u l t s .  In do ing  t h i s ,  the com~ler 
must i n su re  t h a t  the e lements  w i t h i n  a p a r -  
t i c u l a r  n - t u p l e  be long to  t h a t  n - t u p l e  f o r  
t h a t  s e t .  

The language must pe rm i t  s ta tements  to 
appear  in any o r d e r .  A se t  need not  be 
d e f i n e d  b e f o r e  i t  is  r e f e r e n c e d ,  The 



prototype element of a set need not be 
defined before the set is defined. 

3.3.1 Metalanguage 

The language description tech- 
nique chosen is based on that of the IBM 
Vienna Laboratories. The syntax description 
was developed to describe the concrete syntax 
of PL/I [16]. The description language is an 
extended Backus Normal Form (BNF) notation, 
which is considerably more compact than BNF. 
In brief, the description introduces the 
ellipse, "...", to indicate the repetition of 
syntactic signs; braces,{ I , to indicate man- 
datory choice; and brackets, [], to indicate 
optional choice (including none). 

The character set chosen for 
the language includes both upper case and 
lower case letters as well as special symbols, 
In the following description, lower case 
letters will be used in a metalinguistic 
variable names. The metalinguistic variable 
names will be hyphenated or terminate with a 
hyphen. These variable names will be chosen 
so as to indicate the object for which the 
variable stands. In case of conflict between 
metalinguistic symbols and syntactic signs, 
the symbols in the language being described 
will be underlined. 

The description of the lan- 
guage will be done in sections following the 
traditional methods. Thus, constants, 
variables, statements, etc. are described in 
a hierarchical order to facilitate under- 
standing the language. 

3.3.2 Basic Symbols 

The procedureless programming 
language is built up from the following basic 
symbols: 

basic-symbol ::= alpha-numeric delimiter- 

alpha-numeric ::= letter- digit- 

digit- ::= O111213141516171819 

letter- ::= AIBICIDIEIFIGIHIIIJIKILIMINIO I 
PIQIRISITIUIVIWIXIYIZIalblCld I 
elflglhlilJlkIllmlnlOlPlqlrlS I 
tlUlVlWlXlYlZ 

delimiter- ::= DEFINEIPROTOTYPEIENDIDO I 
operator-I;I,I~Cblank 

operator- ::= arithmetic-operator I 
comparison-operator I 
Boolean-operator 

3.3.3 Constants 

I. Numbers 
integer- ::= digit-... 

signed-integer :: =[+ -] 
integer- 

numberic-constant ::= 
signed-integer[. ]I 
[signed-integerlTl-]~ 
integer- 

Thus, a integer- is any number 
of digits, while a signed-integer is simply 
an algebraic sign followed by any number of 
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digits. The numeric constant allows for 
signed numbers in the algebraic sense. 

Examples: 

5 +5 -.6 8.9 

2. Strings 

string-character ::= alpha- 
numericI;I:L,I"Iblank 

This rule defines the available 
string-characters as all of the alpha-numerics 
plus the semicolon, comma, period and double 
quite (succession of two single quotes). The 
double quote introduced as a string character 
is used to place a single quote in the char- 
acter string. 

character-string ::= 
'[str ing-character...] ' 

Thus, a character-string is any sequence of 
characters enclosed in single quotes. 

Examp I es : 

' A<B ' 

3.3.4 

'gX.=' ,,,i 

Identifiers 

identifier- ::= 
letter- ~Ipha-numeric..~ 

An identifier must begin with 
a letter and is followed by any number, 
including none, of alpha-numerics. 

Examples: 

a B CC X4 V3c 

3-3.5 Set Constants 

Sets which are composed 
entirely of constants are defined by the 
rules: 

define-statement ::=IDEFINEconstant''se I-,. . 

set-constant ;:= Set-name=~l,.n-tuple...l 

n-tuple :~= (l,.constant-...l) 

constant- ::= numeric-constantl 
character-string 

Thus, a single define- 
statement can declare any number of set- 
constants. Each set-constant may have any 
number of n-tuples. Each n-tuple is required 
to have the same number of fields as all the 
other n-tuples in the set. 

Examples: 

X = I(2,4),(5,6) I. DEFINE 

DEFINE Y = I('yes'),('no'),('maybe')~, 

Z = I(1,'true'),(o,'false')l. 

3.3.6 Data Description 

A notation for describing the 
data to be processed must be provided. Since 
the data is thought of as a set this may be 
organized in whatever fashion the user deems 
appropriate, flexible rules for describing 
sets must be available. A set may be thought 
of as a file. The n~tuples in a set may then 



be thought of as a record in a file. The 
composition of the records in the file will 
be defined by the prototype statement. 

Since each record has to have 
a length, this length will be specified by 
the sum of the lengths of the fields in the 
record. The field lengths will be specified 
in characters, so that the language descrip- 
tion is machine independent. The number of 
bits necessary to represent a character for 
a particular machine will then define the 
record length for a given implementation. 
Thus, the statement defining prototype set 
elements is governed by the rules: 

prototype-statement ::= PROTOTYPE 
I," set -prototype- . .L  

set-prototype ::= set-name = 
( I , . e l e m e n t - l i s t . . . } )  

e l e m e n t - l i s t  : :=  f i e l d - s p e c i f i c a t i o n  I 
set name 

f i e l d - s p e c i f i c a t i o n  : := field-name 
(integer-) 

field-name ::= identifier- 

identifier ::= identifier- 

The set-name is the name by which the set 
may be referenced. A field-name is the name 

of that particular field in all of the ele- 
ments of the set. The prototype n-tuple has 
the ordering imposed by the order in which 
the fields are named. The field-names are of 
particular importance since they play a key 
role in subset selection. These names will 
be required to act as functions which will 
allow accessing that field in a given element 
in a set. The element-list may alternatively 
contain set-names. A set so used is a con- 
venient way of referencing a group of elemen~ 
in the current n~tuple by one name. Each 
element in the current n-tuple is associated 
with only one element in the referenced set. 

Examples: 

PROTOTYPE X = (A(B),B(1)).  

PROTOTYPE Y = (C(2),D(3)),  

Z = (E(4),Y). 

3,3.7 Set Definition 

Set definitions are the analogs 
of the executable statements in the usual pro- 
gramming languages. They require that a 
prototype statement be declared in order to 
specify the element length and the field 
identifiers, field-names. All calculations 
that are performed upon set elements as well 
as all comparison and decision making capa- 
bilities are part of the set definition. The 
rules pertaining to set definition are below: 

set-definition ::= set-name=In-tuple-reference±I,.selector-function...}! 

n-tuple-reference ::= n-tuple-variablelfunction-call 

n-tuple-variable ::= (I,.identifier-..,l) 

selector-function ::= [declaration-part]selector-part 
d e c l a r a t i o n - p a r t  ::= {,.declaration-...l; 

declaration- ::= formal-parameterCset-name 

formal-parameter ::= identifier- 

selector-part ::= if-statementlassignment- 

assignment- ::= variable-=expression- 

variable- ::= set-name-lformal-parameter 

if-statement ::= IF expression THEN block-[ELSEblock-J 

block- ::= DO block-body 

block-body ::= I,.selector-part... 1 end-clause 

end-clause ::= END 

expression- ::= expression-fourlexpression-Boolean-operator expression-four 

Boolean-operator ::= andlor 

expression-four ::= expression-threelexpression-four comparison-operator expression-three 

comparison-operator : :=  >121=1<1~1~1~1~ 

expression-three ::= expression-twolexpression-threeI+l- 1 expression-two 

expression-two ::= expression-onelexpression-twoI*I/}expression-one 

expression-one ::= basic-expressioniI+l- 1 expression-one 

basic-expression ::= formal-parameterlfield-name (forma]-parameter)isimple-constantl 
function-call 

simple-constant ::= character-stringlunsigned-number 

::= integer [~]l[integer]~ integer unsigned-number 
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The declaration- is a preamble 
which defines a formal-parameter which stands 
for some element in the named set. Once a 
declaration for a formal-parameter occurs, it 
remains so defined until it is redefined in 
a subsequent declaration. Thus, any reference 
to the formal-parameter in the selector- 
function automatically references the set for 
which it is defined. The selector-part per- 
forms set definition. It contains the usual 
assignment statements as well as IF statements 
for decision making. 

The semantics of the comparison- 
operator can best be illustrated by an example: 

PROTOTYPE U = IA(6) I 

v : 18(6) ,c(4)} .  

Z = ~ (z)IxCU,yCV; 
IF A(x) = B(y) THEN 
z = C ( y ) }  

The d e c l a r a c t i o n  x C U  e s s e n t i a l l y  e s t a b l i s h e s  
an i t e r a t i v e  loop which w i l l  c o n s i d e r  each 
e lement  o f  U p a i r e d  w i t h  each e lement  o f  V. 
The IF s ta tement  has the i n t e r p r e t a t i o n  o f  a 
search .  Thus, f o r  each e lement  in U, the 
e n t i r e  V set  is searched f o r  e q u a l i t y  on the 
B f i e l d .  The r e s u l t  is  a set  o f  p a i r s  o f  the 
form ( x , Y ) .  The THEN c l ause  then o p e r a t e s  on 
these o rde red  p a i r s  to  c r e a t e  the e lements  o f  
Z by e x t r a c t i n g  the C f i e l d  in e v e r y  e lement  
o f  V p o i n t e d  to  by an ( x , y ) .  I f  no match is  
found ,  then the Z set  is not c r e a t e d .  In a l l  
cases the f o r m a l - p a r a m e t e r  de te rm ines  which 
se t  is r e f e r e n c e d .  

3 . 3 . 8  Func t i ons  

function-call ::= function- 
identifier argument-list 

function-identifier ::= 
identifier- 

argument-list ::= 

(I, .argument- I) 
argument- ::= basic-expressionl 

set-nameln-tuple-variable 

Since the language is set 
oriented, there is a requirement to operate 
upon sets. The nature of the elements of the 
sets are sufficiently complicated that a func- 
tion subroutine will have to be used in order 
to perform the required evaluation. Some 
functions are defined to accept a variable 
number of arguments. If the function receives 
only one argument, then it must be a field 
name and a formal parameter defining the set 
to be referenced. If the function receives 
two arguments, then the first is a set name 
and the second is an ordinal index specifying 
the field within the elements of the set which 
is to be used in the evaluation of the func- 
tion. For functions which require additional 
input arguments, these arguments are simply 
added to the argument-list, 

The following functions are 
defined as part of the language, 

I. SUM For one argument, sum the 
field specified in all the 
elements of the set, For two 
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2. 

3- 

4. 

5. 

6. 

7, 

EXT 

SORT 

MAX 

MIN 

FLOOR 

CEILING 

arguments, in the named set, 
sum the field whose index 
corresponds to the second argu- 
ment. The result of SUM is a 
single number. 

For one argument, extract the 
named field from all the ele- 
ments in the set. For two 
arguments, extract the field 
whose index corresponds to the 
second argument from all ele- 
ments. The result of EXT is a 
set. 

For one argument, sort the set 
on the named field. For two 
arguments, sort the set on the 
field whose index corresponds 
to the second argument. The 
result is the sorted set. 

For one argument, find the 
largest of the named field in 
all the elements. For two 
arguments, find the largest of 
the fields in all the elements 
based on the second argument. 
The result is a single number. 

For one argument, find the 
smallest of the named field in 
all the elements of the set. 
For two arguments, find the 
smallest of the field in all 
the elements based on the 
second argument. The result 
is a single number. 

For two arguments, the first 
is the field name and formal 
parameter. The second is an 
argument to be used in the 
calculation of the result. 
The set is searched for the 
largest field entry which 
divides the second.argument 
giving a number greater than 
or equal to I. If there is 
such an entry, then on exit 
the formal parameter points to 
that entry. The value of the 
function is then true. If 
there is no such entry, the 
value is false. For three 
arguments, the first is a set 
name and the second is the 
ordinal index of the set to be 
searched, The third is the 
argument to be used in the 
calculation. The calculation 
proceeds as described in the 
two argument case. The result 
is a single number. 

For two arguments, the first 
is a field name and formal 
parameter. The second is the 
argument to be used in the 
evaluation of the function. 
The set is searched for the 
smallest number which when 
divided into the second argu- 
ment yields a result less than 
I. If there is such an entry, 



then on exit the formal para- 
meter points to that entry and 
the value of the function is 
true. If there is no such 
entry, the value of the func- 
tion is false. For three 
arguments, the first is the set 
name, the second is the ordinal 
index of the field to be 
searched, and the third is the 
argument to be used in the cal- 
culation. The evaluation of 
the function proceeds as de- 
scribed for the two argument 
case. The result is a single 
number. 

8. CARDINAL The function accepts only one 
argument which is the name of 
a set. The function counts 
the number of elements of the 
named set and returns this 
number. The result of the 
function is a single number. 

3.3.9 Descriptions- 

The composite group of state- 
ments which describes a problem solution is 
called a description. Statements within a 
description may appear in any order with the 
exception of the END statement. Naturally, 

the END statement must be the last statement 
in the description. The rules defining a 
description are: 

descr ip t ion-  :;= I , . s t a temen t - . . . }  
end-clause 

statement- ::= assignment-lset-definitionl 
prototype-statementl 
define-statement 

Through these definitions assignment-statements 
can occur outside of a set,definition. IF 
statements, however, must be imbedded in a 
set-definition. 

3.3,10 Example 

To illustrate the usefulness 
and to further clarify the sematics of the 
language, an example program will be exhibited. 
The purpose of this program is to show that 
programming can be done on a definitional, 
rather than procedural, basis, 

For this example, the problem 
from Section 3.2 will be programmed. The 
same problem definition, set names, field 
names, and formal parameters will be used. 

Some coding conventions are 
observed to make reading the program easier. 
These are listed below; 

I. Set names and field names are upper case, 
2. Formal parameters are lower case. 
3. Set names are acronymns of the set description. 
4. Field names begin with the set name. 
5. Set constants are defined with their elements arranged in a readable order; however, the 

programs take no advantage of this. 

PROTOTYPE D = (DR(6),DSS(6),DH(6),DTT(6)), 

H = (HN(1),HP(1)), 

SS = ( S S G P ( 3 ) , S S R ( I ) ) ,  

IT = (ITGP(3),ITE(1),ITR(3)), 

ER = (EREN(1),ERN(20),ERBR(4),ERH(3),ERE(1),ERNI(1)), 

GP = (GPI(6)), 

NP = (NPI(6)), 

sss = ( s s s i ( 6 ) ) ,  

HS = (HSI(6)), 

ITS = ( ITSI(6)) ,  

CK = (CKN(1),CKNA(20),CKNP(6)), 

SPR = (SPRN(20),SPREN(1),SPRGP(6),SPRD(6),SPRNP(6))., 

DEFINE IN = I(4,65),(1,20),(2,40),(3,45)}, 

ER = I(I,'A.A.JONES',I.OO,'no',O,I), (2~"B.B.SMITH',I.50,~yes',2,3), 
(3,'C.DOE',2.00,'no',I,O), (4,'X.BROWN',2.50,'yes',I,O)}, 

H = {(1,1),(2,2),(3,3),(4,4)}, 

SS = 1(I00,I),(200,2),(300,3)~(400,4),(500,5)}, 

IT = I(I00,0,25),(100,1,20),(I00,2,15),(I00,3,10)~(I00,3,4)~(200,0,50)~(200,I,40), 
(200,3,20),(200,4,10),(300,0,75),(300,1,60),(300,2,45),(300,3,30),(300,4,15), 
( 4 ~ 1 ~ ) ~ ( 4 ~ , ~ , ~ ) ~ ( 4 ~ 2 ~ 6 ~ 4 ~ , 3 ~ 4 ~ ) ~ ( 4 ~ 4 ~ 2 ~ ) ~ ( 5 ~ 2 5 ) ~ ( ~ 1 ~ ) ~  
(500,2,75),(500,3,50),(500,4,25)}. 

RC = I(gpt,npt,ht~sst,itt)Igpt = SUM(GPoI)~ npt = SUM(NP,I), sst = SUM(SSS,I), 
ht = SUM(HSS,I), i t t  = SUM(ITS,I)~, 
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SPR = ~SORT((n,en,gp,D,np), l) lyCIN,xCER; 

GP 

NP 

SSS 

HS 

ITS 

CK 

END 

IF INN(y )  = EREN(x) THEN DO n = ERN(x ) ,  
en = INN(y) END 

IF INH(y)<40 THEN gp = INH(y)*ERBR(x) ELSE gp = ERBR(x)*(I.5*INH(y)-20i, 

D = ~(ss,h,it)l 

z CSS; IF FLOOR (SSGP(z),gp) THEN ss = SSR(z), z C IT; IF ERE(x) = ITE(z) and 
FLOOR (ITGP(z),gp) THEN it = ITR(z), z H; IF ERH(x) = 'yes' and ERNI = HN(z) 
THEN h = HP(z)~ 

hp = gp - D 

ENDI, 

= EXT (SPR,3), 

= EXT ( S P R , 5 ) ,  

= EXT ( D , 2 ) ,  

= EXT ( D , 3 ) ,  

= EXT ( D , 4 ) ,  

= I (x ,y ,z ) IuCSPR;  x = EXT (SPR,2), y = EXT (SPR,I), z = EXT (SPR,3)} 

4. 

The statement 

IF INN(y )  = EREN(x) 

causes an o r d e r e d  t r i p l e  t o  be d e f i n e d .  T h i s  
t r i p l e  a s s o c i a t e s  one e l emen t  o f  SPR w i t h  an 
e l e m e n t  o f  IN and ER. T h i s  i n s u r e s  t h a t  t he  
e l emen ts  o f  t h e  SPR se t  a r e  p r o p e r l y  con -  
s t r u c t e d .  The second IF statement generates 
two.sets which are acted upon by the THEN and 
ELSE clauses. 

CONCLUSIONS 

The procedureless programming language 
which I will call PPL, draws its basis from 
set theory. This is a reasonable starting 
point since much of the data used in pro- 
gramming applications can be described in 
terms of sets. Set theory is also attractive 
since the usual notation for defining a set 
has procedureless aspects. The example de- 
scription provides proof that a procedureless 
language can solve a non-trivial programming 
problem. 

The language is described as procedureless 
because all statements, with the exception of 
END, can occur in any order. The actual 
execution of set definitions occurs in the 
correct order regardless of the order in 
which the definitions occur in the source 
description. As a convenience in expressing 
problem descriptions, some procedural attri- 
butes are included in the language. In 
particular, n-tuple variable assignments must 
occur within the scope of the braces which 
enclose the set definition. The statement 
parentheses, DO and END, require that state- 
ments belonging to a particular DO-END pair 
be located within the scope of that DO-END. 
Finally, the END statement is included in the 
language to allow the user to indicate the 
termination of the source language description. 

Certainly, the END statement is not nec- 
essary. The compiler can always determine 
whether or not a set definition is complete. 
For an interactive environment, the language 

could be implemented as an interpreter. The 
interpreter would accept input statements and 
perform set definitions as information became 
available. For undefined sets, the interpreter 
would ask the user for the required definition. 
In a standard batch processing system, the 
compiler would simply terminate with the 
diagnostic that a certain set is undefined. 
Hence, the END statement is a convenience to 
the user and the compiler. 

The DO-END pair likewise is not necessary. 
Its introduction allows elimination of re- 
dundant statements by the user. This economy 
of notation brings some degree of procedural 
organization into the language. To remove 
DO-END from the language requires that every 
n-tuple variable assignment be preceeded by 
an IF statement which binds the formal para- 
meters in that statement. The DO-END pair 
frees the user from repeating the IF state- 
ment. Nothing in the language itself requires 
the use of the DO-END pair; it is a user 
convenience. Thus, within the set definition, 
the statements may be unordered, if desired. 

The requirement that set definition state- 
ments occur within a set of braces introduces 
another element of procedural organization. 
Again, this would not be required in a 
completely procedureless language. The 
requirement could have been stated in another 
manner: all variable and set names must be 
unique. Then a sort routine would determine 
statement ordering. Since a goal of the 
language is to improve man-machine communica- 
tion, this is an unnecessary requirement. The 
generality provided by such a tool may be 
easily misused by accident. 

Thus, a completely procedureless pro- 
gramming language can be designed. However, 
compromising the language design to include 
some procedural features is necessary to 
obtain a more readily usable language. In 
PPL, the user must group his statements; but 
neither the statements within a group nor the 
groups themselves must be ordered. 
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Clearly, a language such as FORTRAN cannot 
be made procedureless by simply sorting the 
statements into the order in which the vari- 
ables are defined. Two statements prohibit 
this: GO TO and assignment. The GO TO state- 
ment provides no clue as to where it might 
belong in the program. The assignment which 
redefines a variable may provide no informa- 
tion as to the ordering of the definitions. 
Thus, any language which has explicit transfer 
of control statements cannot be procedure]ess 
nor can any language which allows arbitrary 
redefinition of variables. 

An interesting phenomenon of the language 
is that all elements of the result set could 
be calculated in parallel. Hence, PPL may 
yield some clues as to methods for isolating 
parallelism in programs. 

The writing of descriptions does require 
some orientation for one who is used to 
procedure-oriented languages. Primarily, the 

5- 

thought process must be more clearly focused 
on the data whereas in the usual procedure- 
oriented language it is focused on the logic 
necessary to solve the problem. Thus, a 
procedureless language moves the user a level 
further away from the machine code solution to 
his problem. The compiler itself constructs a 
larger portion of the algorithm than a 
procedure-oriented language compiler. There- 
fore, the amount of programming detail pro- 
vided by the user is appreciably reduced. 
This is the most significant improvement PPL 
offers over the traditional programming lan- 
guages. 
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