
AN INTERACTIVE BUSINESS DEFINITION SYSTEM

by

M. M. Hammer*
W. G. Howe

I. Wladawsky

Computer SciencesDepartment
IBM Thomas J. Watson Research Center

Yorktown Heights, New York, 10598

Abstract: This pape r presents a
structured approach for describing
business applications and a programming
language that embodies the approach.
This language provides business oriented
building blocks for formally specifying
the applications. The language is the
nucleus of a Business Definition System
in which users define their problems by
interacting with application models in a
question-answer mode.

I Introduction

Recently there has been considerable
interest in developing methodologies
which permit the specification of
applications with minimal assistance from
professional progranTners (1,2,3). The
reasons for this interest are varied.
From a technical point of view, i t is
important to understand the possibil i t ies
and limitations of human interaction with
computers in the human's terms.
Furthermore, the dramatic shif t which is
taking place in the relative costs of
hardware and software implies that the
use of computers could be greatly
expanded were i t not for the prohibitive
costs of developing and maintaining
programs.

High level, problem oriented
programming languages will certainly aid
in the specification of business
problems. But i t remains to be seen
whether non-programmers, especially in
the rather unstructured commercial area,
are able to cope with the r ig id i ty of
formal programming interfaces.

Interactive definition of
applications, in which users answer
questions and make statements in their
own terms, does not require much
knowledge of programming concepts. Such
systems require that a model of the
interaction be somehow bui l t into them,
with the fac i l i t y of prompting the user

for responses when necessary and
associating the appropriate actions with
the user responses. Knowledge
acquisition systems that allow the user
to hold a general and informal dialogue
with the computer are being studied
(1,4,5), but their use in defining real
applications is not foreseen in the near
future. On a more limited scope, models
have been written to permit programming
in general purpose languages by prompting
for the program fragments (6,7}. This is
of limited use to the non-programmer.
More recently, models have been produced
that permit the interactive definition of
applications for simulation purposes
(8,g,lO).

In the business area, the IBM
Application Customizer Service (ACS)
Cll,12) permits the specification of some
business applications, such as bi l l ing,
accounts receivable, inventory control
and sales analysis, by f i l l i ng out a
standard pre-printed questionnaire. Thus
ACS is not interactive. I f the ACS
models do not do not f i t a particular
user, the resulting RPG application has
to be modified, which is a rather costly
and error-prone process,

The work described in this paper is
an attempt to faci l i tate the interactive
definition of business applications. The
system has two main goals in mind. The
f i r s t is to provide an environment in
which experts can produce and modify
application models in a more natural and
easier manner than has so far been
possible. In this context, model is
simply defined to mean program fragments
incorporating all commonly used options,
along with an interactive user oriented
questionnaire. The second goal is to
permit the users, in the course of the
interaction, to introduce options which
have not been offered by the model and
which are required in their particular
business system. These points are further

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942572.807042&domain=pdf&date_stamp=1974-03-28

discussed in the next section.

I I General Approach

Producing a model for an application
area is i t se l f a formidable task.
Consequently, application models should
be ever-changing, reflecting the
increased knowledge and understanding of
the application area that wi l l surely
accompany the actual use of the model.
Any successful modelling strategy has to
deal with the problem of writing and
modifying the models, particularly i f
application experts rather than
traditional programmers are going to
design the models.

The most important way of helping
the model builder is to provide him with
a language for specifying the business
applications such that the options
specified in the questionnaire correspond
rather naturally to local units of the
language. This avoids situations in
which the sequences of code necessary to
implement an option are scattered al l
over the program, and therefore, interact
in a complicated way with other
previously defined sequences. Clearly, a
good programming language for building
models must isolate and embody the right
set of application building blocks.

The language must also be highly
structured to permit different sections
of programs resulting from selections of
different options to f i t together easily.
This requirement demands that the
language have very s t r i c t rules
concerning how building blocks f i t
together, i .e . , be highly formal, for
only then can i t be detected at
definit ion time whether the different
options do indeed f i t together and i f
not, appropriate action can be taken. In
addition, the number of different
building blocks should be as small as
possible, to fac i l i ta te the analysis of
programs for consistency and their
eventual interpretation or compilation.

I t is important that users defining
their applications understand the
consequences of their answers to
questions, especially i f they are allowed
to reject options and specify their own.
This is possible i f models are bui l t in a
rather disciplined and stylized way which
is explained to the user, rather than
simply asking a barrage of questions with
no apparent connection. The underlying
modelling language should encourage and
fac i l i ta te such an approach to building
models.

The language must satisfy two
requirements to permit users to introduce
their own options. First is the

aforementioned local i ty of definitions,
i .e . , the user introduced options must be
self-contained pieces of code, producing
no major side effects in the rest of the
applications. Second, the syntax of the
language should be business oriented, to
make i t easier for users to express their
individual definitions.

To summarize, in order to produce a
modelling system satisfying our goals we
must f i r s t define a structured, stylized
approach to defining business
applications which is as natural as
possible to businessmen, and this
approach must then be embodied in a
compact, formal programming language.
The rest of this paper deals with the
characteristics and definit ion of such a
language. The model building process
i t se l f wi l l be described in future
papers.

I l l Characteristics of Business Languages

The goal of a l l problem oriented
specification languages is to provide
concepts and rules that match the way
people understand their applications. In
areas where the application concepts are
universal and well understood, special
purpose languages have been quite
succesful (13,14,15). In the business
area, on the other hand, specification
languages are very hard to define because
there is no general agreement as to the
basic conepts and methods used in
describing business applications.

A number of business specification
languages exist or are being defined and
they each embody the designer's
understanding of business requirements.
Recent survey papers by Teichrow (16) and
Couger (17) analyze these languages and
highlight their s imi lar i t ies and
differences.

The requirements for the application
language described in the previous
section are somewhat different from most
of the current specification languages.
The Information Algebra (18), for
example, defines formal operations for
describing business functions, but i t
does not provide a user orienter language
for defining problems. The Problem
Statement Language (PSL) (19,20), on the
other hand, provides a complete interface
in which al l aspects of a business system
can be defined using business oriented
terms. PSL is a very rich language
containing a large number of concepts.
The application language defined in the
next section is closer to a conventional
programming language than PSL is, with a
small number of building blocks from
which the business terms are defined. I t
thus offers a more limited and structured

26

way of defining the business applications
than most specification languages, PSL
included. This is a requirement imposed
by modelling.

IV The Business Definition Language

The Business Definit ion Language
(BDL) is a specification level
programming language which not only meets
the aforementioned cr i ter ia but can also
be compiled into executable code. BDL is
composed of f ive (5) major components:
The Document Flow Component, The Document
Transformation Component, The Document
Definition Component, The Human
Interaction Component, and The Device
Linkage Component. We w i l l br ie f ly
indicate the basic constituents of each
of these components. This w i l l be
followed by a more detailed def ini t ion of
the f i r s t two.

The Document Flow Component (DFC) is
used to define the basic structure of the
application in terms of the organization
of the business and the information flow
within that organization. This structure
is defined by graphically representing
the documents involved in the application
and the organizational units within the
business that use these documents. In
BDL, the organizational units are called
Steps. Steps correspond to departments,
sections, clerks, etc. They are
connected by paths which carry the
appropriate documents. For example, a
typical organization might include a
subset such that the Sa les Order
Department generates, upon receipt of an
order, an invoice and a ledger copy which
are forwarded to the Bi l l ing Department.
The DFC representation would be:

ORDER~ INVOICE) ~
~_ORDER I"].F,_Q~_~L~ I

Figure l

That is, the Sales Order step
receives ORDERs and generate INVOICEs and
LEDGERs which are t hen sent to the
Bi l l ing step.

A step can be defined in terms of
other steps, to ref lect an organization
in which departments are composed of
other subdepartments. Such steps are
called organizational steps.

Once the flow of information and the
business organization have been
specified, the details of the processing
steps are defined by the Document
Transformation Component (DTC). The DTC

is a tabular language that is used to
define those steps which produce one or
more groups of documents from one or more
groups of other documents. DTC steps
d i f fer from organizational steps in that
they cannot be conveniently further
decomposed into other application
meaningful steps. Each output of a DTC
step is defined by a table. Each row of
the table corresponds to a single f ie ld
or collection of f ields that appear on
the document being produced. The columns
of the table subdivide the def ini t ion of
each f ie ld into relevant and convenient
categories, each of which has a
prescribed function and a limited set of
possible operators.

The Document Definition Component
(DDC) is used to define the structure and
attributes of each of the documents in
the application. Each of the f ields is
l isted with respect to structural
associations with the other f ields on the
same document. For example, the fact
that a Line Item on an Invoice is
composed of an Item, Quantity, Price etc.
is a structural association. The DDC is
also used to define the format of the
document in terms of the media that w i l l
eventually be used for the external
realization of the document.
Furthermore, the DDC wi l l be used to
define any domain restrictions that might
be present, e.g. Dollars, Date, Number,
etc., or any range expression that might
be composed from these domains.

In any business, there w i l l also
exist a need for periodic human
interaction with the executing
application. For example, many source
documents w i l l require human approval at
various stages. The expectations and
restrictions on this human intervention
w i l l be defined by using The Human
Interaction Component (HIC).

Finally, the application def ini t ion
w i l l be completed by defining a linkage
between the logical media described by
the source documents and the physical
media which w i l l actually be used. For
example, a Point-Of-Sale application
might use a magnetic coded wand reader in
conjunction with a keyboard in order to
input a Line Item consisting of Item #
and Quantity. In this case, two
dif ferent physical media are used to l ink
with a single logical medium. This
linkage w i l l be defined by the Device
Linkage Component (DLC). With this br ief
description of each of the components of
BDL in hand, we w i l l provide more detail

• for the Document Flow and Document
Transformation components, since these
are the more interesting and novel
sections of BDL.

27

A The Document Flow Component

As previously stated, the DFC is
used to define the basic structure of the
application in terms of the flow of
information and organizational units of
the business. The DFC is a graphical
language which is composed of Steps,
Paths, Documents, and Files. In BDL,
Files are simply a collection of
instances of Documents. Therefore, there
is a dif ferent File for each potential ly
persistent type of Document.

The application designer then draws
an information flow graph by connecting
the Steps by Paths and indicating the
Files that are to be accessed by these
Steps. This graph can be easily
generated in a top-down fashion following
the organization of the business. For
example, the previous example showed
connections between the B i l l ing Step and
the Sales Order Step. I f the Sales Order
Step can be further decomposed into other
Steps such as Order Entry and Produce
Invoice, then the DFC graph can be
enhanced to accommodate this further
def in i t ion, as shown in Figure 2. This
top-down def ini t ion technique continues
unt i l no further decomposition is
possible.

SALES ORDER

ORDER | INVOICE__If i

Figure 2

Eventually, the application designer
reaches a point at which no further
decomposition is possible. These Steps
are then defined by using the DTC
language and are called DTC Steps. A DTC
Step is available for execution when al l
of i ts inputs are present. Whenever i t
executes, a DTC Step produces al l of i ts
outputs "simultaneously". Each Path
contains an in t r ins ic queue so that the
inputs to DTC Steps can be coordinated.

Files are represented in BDL by a
c i rc le and a File access by a dotted l ine
as in Figure 3 where CM represents the
File.

Whenever ORDERs arrive at the Order
Entry Step and i t executes, the entire
contents of the CM File are made
available and the Step produces Pending
Orders. The synchronization between
several di f ferent Steps accessing the
same File is solved by permitting only
one step to update a File at any given

time. Since the entire File is locked for
update any other access for update must
be delayed unt i l the f i r s t update is
completed. However, there is no reason
to prevent read-only accesses. This is
precisely the semantics of File access in
BDL.

ORDER
DERI PENDING
RY i ORDER

®

INVOICE,
r

Figure 3

As w i l l be seen later, the DTC
language w i l l be oriented around
aggregate operations. This orientation
also suggests that the input to these
Steps should be groups of documents
whenever possible. The semantics of the
DFC language are that Paths carry groups
of Documents. In a transaction oriented
system the groups on certain paths may
degenerate to singleton groups but this
w i l l not cause any burden on the
application designer as he w i l l not have
to be overly concerned with the
dist inct ion between singleton groups and
individual Documents.

The DFC language also contains
several special purpose Steps to aid in
the def in i t ion of the information flow.
For example, an Accumulate Step is
included to collect smal l groups of
Documents and form larger groups out of
them, e.g. collect daily groups of ORDERs
for a week to produce a weekly ~ummary
report. Similarly, a Stream Step
performs the inverse operation. A Copy
Step duplicates the group and a Join Step
merges groups by time of arr ival .

Several other special purpose Steps
also exist but they w i l l not be
enumerated here. Once the document flow
has been completed to a point such that
no further decomposition exists, the
application designer is ready to f i l l in
the details of the application by writ ing
al l of the applicable DTC tables.

B The Document Transformation Component

The Document Transformation
Component (DTC) is used by the
application designer to define the
generation and use of the Documents that
constitute the application. Each DTC
Step in the application w i l l produce one
or more groups of Documents as output.
The def in i t ion of a DTC Step is oriented

28

around the concept of defining the output
in terms of the input. This is
accomplished by completing a tabular
definit ion for each of the different
outputs of the DTC Step.

The definit ion of a DTC table begins
by l is t ing the fields that wi l l appear on
the associated Document along with the
structural association of these f ields.
Some of the fields are single valued
while others are repeating structures.
Repeating structure fields are indicated
by the keyword Group following the f ie ld
name. The structural associations are
indicated by indentations. A typical
l i s t of Document f ie ld names appears in
Figure 4.

INVOICE
CUSTOMER NUMBER
CUSTOMER NAME
CUSTOMER ADDRESS
ITEM GROUP

ITEM NUMBER
ITEM COST
QUANTITY
AMOUNT
TAXCODE

DISCOUNT
TOTAL
TOTAL TAXABLE
TOTAL DUE

Figure 4

Before defining the rest of the DTC,
we must digress for a moment. As stated
previously, the paths carry groups of
Documents. These groups are then the
input to DTC steps and other groups of
Documents are the output. The
application designer defines a DTC step
by specifying the transformation between
the input groups and the output group.
This is accomplished by focusing on a
prototypical element of the output group
and specifying completely how this single
Document is produced from a subset of the
input group. This specification can then
be used as a template and al l of the
required output documents can then be
produced from an input group. This
method is analogous to the definit ion of
a functional mapping from one set to
another, in that a general function is
given for a prototypical element of the
output set in terms of the input set.

In DTC the functional mapping
corresponds to the definit ion of a table.
As with functional mappings, one must
define the conditions under which any
given element of the output is produced.
For example, one element of the output
group might be generated for each element
of the input group. Another possibi l i ty
would be to have one element of the

output group generated for each element
of a partit ion of the input. In this
case, the definit ion would also have to
contain a specification of the
partitioning.

In the DTC we call this concept
Causality. For each DTC table we have to
specify the causality of the Documents
that are to be produced by the DTC step.
This is done by f i r s t indicating the name
of the input group to be used, followed
by an indication of the conditions to be
used in determining which subgroup of
that input group is to be used for the
generation of the prototypical output
element. This subgroup is called the
Causality Sub Group.

The Causality of a group of
Documents is specified by f i l l i n g in the
Domain, Group and Fi l ter columns of a
table next to the name of the document,
as shown in Figure 5.

An [Output Group Name] is the name
of thegroup of Documents that are to be
generated by the execution of this DTC
step. A [Group Name] is the name of any
group available within this Step. In
general, this wi l l be the name of one of
the input groups. A [Group Expr.] is the
specification of a subsetting function to
be applied to the Domain. The most
common [Group Expr.] is to name some
f ie ld within the Domain Group. This
causes the Domain Group to be partitioned
by the unique values of that f ie ld name.
For example, the production of one
Invoice for each customer who had made an
Order would be specified as in Figure 6.

One other possibi l i ty for specifying
the Causality of the group of Documents
is to exp l ic i t l y l i s t a set of range
expressions for a f ie ld in the Domain.
In this case, the subsetting function
does not, in general, constitute a
partit ion as in the previous
specification since overlapping range
expressions may generate overlapping
subroups. Other possibi l i t ies exist but
they wi l l not be enumerated here.

The causality of a group of
Documents defines the subgroup of the
input group that is to be used for the
production of each of the Documents and
the cardinality of the output group.
Once the causality has been defined, the
application designer now focuses on a
prototypical Document and uses the
Causality Sub Group for that Document to
define the rest of the f ields on that
document.

In order to define a single valued
f ie ld , the application designer must
define what information is needed to
compute a value and the computation that

29

NAME

[Output Group Name]

DOMAIN

[Group Name]

GROUP

[Group Expr.]

Figure 5

FILTER

[Boolean Condition]

NAME

INVOICE GROUP

DOMAIN

ORDER GROUP

GROUP

CUSTOMER #

FILTER

Figure 6

NAME DOMAIN GROUP FILTER DERIVATION

Figure 7

is to be performed. The information
needed to compute a value for a given
f ie ld is called the Dependency of that
f ie ld. In most cases, the Dependency of
a f ie ld is simply the Causing Sub Group,
However, in general, the Dependency of a
f ie ld can be any group that is
construct~ble within this DTC Step.
Therefore, the same three columns that
were used for the specification of the
Causality are also used for the
specification of the Dependency. In the
case that the Dependency is simply the
Causing Sub Group, the abbreviation CSG
is written in the Domain column next to
the name of the f ie ld being defined.

Once the Dependency for a f ie ld has
been defined, the only thing that is l e f t
is the specification of the computation
required to achieve a value. This
specification is written in a column
labeled Derivation which is juxtaposed
with the Fi l ter column. The Derivation
is specified in terms of the basic
arithmetic operations or aggregate
operations such as SUM, COUNT, etc.
Several special purpose operat--t-l-on-s have
also been defined. For example, SEQ is
an operation which generates the next
number in a sequence. Second, the
operation COM takes a f ie ld name of a
group as t--F~-argument and checks the
value of that f ie ld in each element of
the group. I f al l of these values are
identical, that value is selected, but i f
they are not al l identical, an error is
generated. Although this is not a
complete l i s t of the potential operations
that can be used in the specification of
a Derivation, i t is a fa i r indication of
the kind of operations that are planned.

The specification of a repeating
structure f ie ld is identical to the
specification of a Document. First, the

Causality of the group is established
and then the individual f ields within the
repeating structure are individually
defined. Just as in the case of Document
definit ion, the Causing Sub Group is
denoted by CSG. However, in this case
the Causing Sub Group refers to the
Causality of the repeating structure and
not the Causality of the Document. The
Causality of the Document can be
referenced by the composed name
consisting of the Domain column entry in
the Causality of the Document subscripted
by the Document name. For example, the
Causality of the Invoice as defined in
Figure 6 is referenced by ORDER
GROUP{INVOICE). This naming scheme can
be used to reference any Causality that
has been defined within the scope of the
structural associations of a f ie ld.

The only remaining feature of the
DTC is the Conditional Derivation. In
some cases, i t may be necessary to select
from several different Derivations for
the same f ie ld, For example, several
different rates may be used to compute
the discount and the appropriate one is
chosen as a function of the customer
classification that is associated with
each ORDER. This is indicated by l is t ing
the boolean expressions next to the
appropriate Derivation in the Derivation
column for that f ie ld. The boolean
expressions are separated from the
derivation by a solid l ine. A
conditional derivation is evaluated as a
McCarthy conditional,

The standard DTC table is shown in
Figure 7

V Example

The basic ideas of the DTC can be

30

ORDER ~ INVOICE>

I

Figure 8

ORDER GROUP
CUSTOMER #
CUSTOMER NAME
CLASS
CUSTOMER ADDRESS
ITEM GROUP

I T E M T
QUANTITY

Figure 9

IM GROUP
ITEM~
PRICE
TAXCODE

NAME DOMAIN

I . INVOICE GROUP ORDER GROUP
2. CUSTOM~ C S G ~
3. CUSTOMER NAME CSG
4. CUSTOMER ADDR CSG
5. ITEM GROUP CSG
6. ITEM ~ CSG
7. ITEM COST IM GROUP

8. QUANTITY CSG
9. AMOUNT INVOICE

lO. TAXCODE IM GROUP

I I . DISCOUNT CSG

12. TOTAL INVOICE
13. TOTAL TAXABLE INVOICE
14. TOTAL DUE INVOICE

GROUP

CUSTOMER #

ITEM #

Figure lO

FILTER

IM.ITEM # =
INVOICE.ITEM #

IM.ITEM # =
INVOICE.ITEM #

TAXCODE = "*"

DERIVATION

CUSTOMER #
CUSTOMER NAME
CUSTOMER ADDR

ITEM #
IM.PRICE

SUMCQUANTITY)
ITEM COST x qUANTITY
IM.TAXCODE

CLASS=A I .l x TOTAL
CLASS=B I'05 x TOTAL
CLASS=C 0
SUM(AMOUNT)
SUM(AMOUNT)
TOTAL - DISCOUNT

shown in terms of an example that
produces INVOICEs f r om ORDERs and
accesses the IM (Item Master) File, as
shown in Figure 8. Figure 9 gives the
definition of the ORDER and IM documents.
This is a simplified example that does
not accommodate the inspection of the
Item Master to determine i f the
quantity-on-hand is sufficient. This can
easily be done in a previous step and the
unfi l lable ORDERs can be routed to a
different step. Therefore, we wi l l
assume that al l ORDERs can be f i l l ed . The
Document Transformation table for
INVOICEs is shown in Figure lO.

Line l The Causality of the INVOICE
is specified as one INVOICE
for each customer making an
ORDER.

Line 2,3,4 The appropriate values are
retrieved from the Causing Sub
Group of ORDERs.

Line 5 The Causality of the ITEM is
specified as one Item for each
unique Item on the ORDER.
since a customer may make
separate ORDERs for the same
item, this prevents

Line 6

Line 7

Line 8

Line 9

Line lO

Line I I

duplicating that item on the
INVOICEs.

The appropriate value is
retrieved from the Causing Sub
Group of Items.

The Price of the Item is
retrieved from the IM f i l e by
locating the appropriate
record with the Fi l ter.

Since there may have been more
than one ORDER for the same
item by the same customer the
Quantity f ie ld is summed to
get the correct value for the
INVOICE.

The amount is computed from
fields in the INVOICE.

The Taxcode is also retrieved
from the IM f i l e .

The Discount is computed as a
Conditional Derivation from
the Class that has been
assigned to the Order. Note
that the discount can be
specified as a function of the

31

Line 12

Line 13

Line 14

Total even though the Total
f ield is specified later.
These data dependencies can be
sorted out by an intel l igent
translator.

The Total is computed from the
Line Items being INVOICEd.

The Total Taxable f ie ld is
computed from those line items
that are marked to be taxable.
This marking consists of an
'* ' in the Taxcode f ield.

The Total Due is computed from
the appropriate fields on the
INVOICE.

After the completion of the
definit ion of the Documents involved in
terms of some appropriate source and sink
devices, an executing program can be
generated that wil l accept f i l lab le
ORDERs and produce INVOICEs.

Vl Conclusions and Extensions

In this paper, we have presented an
overview of a formal specification level
programming language intended for
application designers who are not
professional programmers but are familiar
with the interactions of the application
and are capable of formally representing
these interactions. This language wil l
now be used as the basis for the design
of an advanced modelling and
customization system, satisfying the
needs of application development for
smaller or specialized businesses.

Acknowledgements

The authors wish to thank V.
Kruskal, B. Leavenworth, C. Lewis and D.
Lomet for their helpful suggestions in
preparing this paper and their continued
assistance in the research effort.

I.

2.

References

Present address: Project Mac, M.
I. T., Cambridge~ Mass.

Balzer, Robert, Automatic
Programming, Technical Memo,
Information Sciences Insti tute,
University of Southern California,
September, 1972.

Martin, William, et. al . , Automatic
Programming Internal Memos, 1972,
1973.

3. Automatic Programming Workshop,

4.

5.

6.

7.

8.

9.

lO.

I I .

12.

13.

14.

15.

M.I.T., January, 1973, P

Feigenbaum, E., Buchanan, B. and
Lederberg, J., "Generality and
Problem Solving! A Case Study
Using the DENDRAL Program" in
Machine Intelligence 6 (B. Meltzer

Michie, eds), American
Elsevier, 1971.

Winograd, T. Understanding Natural
Language, Academic Press, N ~
and London, 1972.

Ginsberg, A. S., Markowitz, H. M.,
and Oldfather, P. M., "Programming
by Questionnaire", The Rand
Corporation, RM-4460-PR, 1965.

Low, D. W., "Program/Text
Generation: A Decision Table
Approach", IBM Data Processing
Division, 320-2633, December, 1969.

Heidorn, G. E., "Natural Language
Inputs to a Simulation Programming
System", Doctoral Dissertation,
Naval Postgraduate School, Oct.
1972.

Oldfather, P. M., et. al.
"Programming by Questionnaire: The
Job Shop Simulation Program
Generator", The Rand Corporation,
RM-S162-PR, 1967.

Connors, M. M., et. al . , "The
Distribution System Simulator:
Overview", IBM Data Processing
Division, 320-2630, December, 1969.

IBM Application Customizer Service,
Sales and Distribution Accounting
Application Manual - Form No.
SH20-1004.

Application Customizer Service
Sales and Distribution
Questionnaire - Form No.
$320-I040-2.

Falkoff, A. D., Iverson, K. E.,
"APL/360 T e r m i n a l System",
Proceedings of the Sjnnposium on
interactive Systems for
Experimental Appl~Mathemat icT,
Academic Press, New York Clg68). -

Brown, S. A., Drayton, C. E.,
Mittman, B., "A Description of the
APT Language", Comm. ACM, Vol. 6,
No. I I , (Nov. 1963).

Efron, R., et al, "A General
Purpose Digital Simulator and
Examples of i ts Applications, pts.
I, I I , I l l , and IV", IBM Systems
Journal, Vol. 3, No. l , (1964~.

16. Teichroew, D., "A Survey of

32

17.

18.

Languages for Stating Requirements
for Computer-Based Information
Systems", Fall Joint Computer
Conference, 1972.

Couger, J. D., "Evolution of
Business System Analysis
TECHNIQUES", Computing Surveys,
Vol. 5, No~ 3, September~ 1973.

CODASYL Language Structure Group,
"An Information Algebra Phase I
Report", CACM Vol. 5, No. 4CApril,

19.

20.

1972~.

Hershey, E. A., et. al . ,
PSL/II Language Specifications,
Version l.O ISDOS Working Paper No.
68, University of Michigan, Dept.
of Industrial and Operations
Engineerin 9, Ann Arbor, Michigan
CFeb. 1973).

Teichroew, D., Sayani, H.,
"Automation of System Building",
Datamation, August, 1971.

33

