
STRUCTURED DATA STRUCTURES*

Ben Shnelderman
Computer Science Department

Indiana University

Peter Scheuermann
Department of Computer Science

State University of N.Y. at Stony Brook

Introduction

Much attention has been focused late-
ly on the notions of structured programm-
ing, a crucial factor when dealing with
the design of large programming Systems.
Rather than viewing programming as an art
and the programmer as the perpetual artist,
structured programming provides a more

.systematic (and in a way more restricted)
approach which facilitates debugging and
proving assertions about programs.

One of the ideas developed by advo-
cates of structured programming is the top-
down elaboration of program control struc-
tures by a recursive process of successive
refinements [i]. No such process has been
developed for dealing with data structures.
The main reason for this is the improper
intermixing of the semantic and implemen-
tation concepts [2] of a data structure.
The failure to distinguish between these
concepts is a result of the conflicting
factors involved in choosing a data
structure: simplicity of element access,
minimization of search time, dynamics of
growth or elimination of data, simplicity
of restructurlng and extension, efficiency
of storage utilization and others.

With these in mlnd we propose a
"structured" Data Structure facility,
which we call a Data Structure Descrip-
tion and Manipulation Language (DSDML)
to maintain a similar terminology to
other groups (see CODASYL Report ~]).
The DSDML provides data structure defini-
tions in addition to the data definitions
available in the host language (e.g. PL/1
or COBOL). It will include explicit de-
clarations of commonly used data struc-
tures and information about their
access and manipulation characteristics.
These characteristics include such fea-
tures as reset pointers or end pointers and
search rules.

The main advantages of such a facility
can be summarized as follows:

(i) It provides (some) control mecha-
nism over the behavior of data structures.
Just as the "go to" is considered harmful
to modular programs, in dealing with data
structures, we want to eliminate unre-
stricted branches or edges. The permlssl-

ble operations in the DSDML are more re-
stricted than those in the CODASYL Report,
but allow the creation of a wide variety
of commonly used structures. The DSDML
will be a useful tool in verifying that
our structures are indeed "well-formed"
(i.e. enabling us to prove assertions
about data structures). Declarations of
variables in a programming language pro-
vide the compiler with the information
necessary to prevent incorrect mixed mode
operations from occurring. In FORTRAN,
for an example, one can declare variables
to be REAL, INTEGER, LOGICAL, DOUBLE PRE-
CISION, or COMPLEX. In a similar way,
the DSDML will prevent the programmer from
mistakenly converting a binary tree into a
three-way tree or from inserting a queue
where a ring is expected or from obtaining
undesired cycles and so on. The semantics
will include provisions to prevent invalid
operations. For example, if a one-way
llst with a bottom pointer and with reset
pointers (pointing back to the first node
from each node) is defined, it is not
possible to make insertions along the
bottom pointer or reset pointers.

(il) Top-down programming can be
achieved in terms of data structures, too.
This follows from the fact that the DSDML
allows for definitions of multilevel data
structures, in which the nodes of a given
level structure serve as headers for the
structures at the next level.

(iii) It might be possible to obtain
a more optimal storage allocation. By
providing a data structure definition, the
compiler (or run-time package) may have
the ability to allocate storage in a more
efficient way than the usual "space avail-
able stack" technique employed for most
dynamic storage allocation schemes. For
example, by declaring a binary tree with
reset pointers, some information is pro-
vided about the amount of storage neces-
sary for the nodes of the structure.

Estlmation of the DSDML and Comparison
with Other Systems

Most commercial systems which provide
some kind of data structure description
and manipulation facility limit themselves

*This abstract was accepted on the basis of the f u l l paper which w i l l appear in Communications of the ACM.

71

to one or two structure types. For exam-
ple, the Integrated Data Store ~] system
mainly restricts the programmer to the use
of rings and although networks can be ob-
tained by interconnecting different rings,
storage is not efficiently used and the
underlying structure is hidden behind the
superimposed structure supplied by the
system. It appears that the problem is
created by the fact that their "world-
view" is essentially based on records
with fixed format, fixed fields (a spe-
cified number of fields have to be in
a record). This consideration limits the
access mechanisms to operate on specialized
structures.

The major design effort by the Codasyl
Data Base Task Group [3] to develop a Data
Description Language and a Data Manipula-
tion Language for a generalized Data Base
Management System was very much concerned
with selecting a useful set of data mani-
pulation primitives. They have solved
some of the problems posed by earlier sys-
tems, but the complexity of the system
makes it (sometimes) difficult to follow
the effect of the operations. The situa-
tion is that the same operations might
produce different effects depending on a
detailed set of declarations made in a
complicated Data Definition Language. For
example, the STORE operation creates a
node and possibly connects it to one or
more structures, depending on how the
structure has been defined. The complexi-
ty and danger in deleting nodes has led
the designers to define no less than four
DELETE operations each of whose functions
vary depending on which node Is referenced
and upon the structure definition. As a
result, the user who implements a com-
plicated structure in this system would
have to be extremely careful when invoking
the operations.

A different approach to describe the
various structures and operations may be
found in attempts to define a generalized
graph programming language. Each of these
systems give the necessary primitives to
manipulate a graph in an arbitrary manner.
Complex structures such as acyclic graphs
and networks can be created, but no
guarantee is given to prevent the user from
obtaining an illegal logical structure.
Note that the structures are built in
terms of primitives which resemble the
level of assembly language operations.

The attitude taken for designing the
DSDML was to choose and implement higher
level primitives with Just the right
amount of power. A host programming lan-
guage like PL/1 provides list processing
facilities, allowing the addition or dele-
tion of branches and the creation or
destruction of nodes by the use of pointer
variables and the ALLOCATE or FREE opera-
tions. However, these primitives are too
powerful since they permit programmers to
create structures which are not well-
formed. Unrestricted use of the built-in
ADDR primitive can be made by assigning the

returned value of ADDR to a pointer vari-
able. Since the argument of the ADDR
function can represent any physical
address, a pointer can be defined to point
to any object in the program.

In choosing the primitives for the
DSDML, we did not want restrictive opera-
tions which are meaningful in only a very
limited environment, nor did we desire a
set of primitives which are so powerful
that the user can unwittingly destroy a
structure. The development of the DSDML
depended very much on the restriction to
basically two types of structures: linear
and tree-llke, and combinations of these.
The explicit recognition of these distinct
classes of data structures enabled us
to assign a unique meaning to the opera-
tions, which depends only on the class of
the structure being operated on.

References

I.

2.

Mills, H. Top down programming in
large systems. From "Debugging tech-
niques in large systems." Gourant
Computer Science Symposium, pp. 41-53.

Earley, J. Toward an understanding of
Data Structures. Comm. ACM 14, i0
(October 1971), pp. 617-627.

.

4.

CODASYL - Data Base Task Group Report.
Available from ACM, 1133 Avenue of the
Americas, New York, New York 11306.
(April 1971).

~ntegrated Data Store. Honeywell In-
formation S~stem~, Inc. Wellesly,
Massachusetts (December 1971).

72

