
The SCRATCHPAD Language 

"By relieving the brain o f  all unnecessary 
work, a good notation sets it f ree  to con- 
centrate on more advanced problems... " 

-Al f red  North Whitehead 
ABSTRACT.  SCRATCHPAD is an interactive system for 
symbolic mathematical computation. Its user language, original- 
ly intended as a special-purpose non-procedural language, was 
designed to capture the style and succinctness of  common 
mathematical notations, and to serve as a useful, effective tool 
for on-line problem solving. This paper describes extensions to 
the language which enable it to serve also as a high-level pro- 
gramming language, both for the formal description of mathe- 
matical algorithms and their efficient implementation. 

1. INTRODUCTION 
S C R A T C H P A D  ([3],[8],[9],[10]) is an experimental  

interactive system for on-line symbolic mathematics under  
development at the IBM Thomas J. Watson Research Center, 
Yorktown Heights. This paper describes ongoing work on 
the design and implementation of the user language and inter- 
face to the SCRATCHPAD system. 

The SCRATCHPAD language has been described as a 
two-dimensional language designed for interactive symbolic 
computat ion,  and for eventual  use in on-l ine exploratory 
research with graphical i npu t /ou tpu t .  Work has recently 
begun on a compiler for the language and on new facilities for 
types and extensions. These new features have been added 
so that SCRATCHPAD may also be used as a language for 
the formal description of algorithms as well as a source lan- 
guage for their efficient implementation. The language de- 
sign presented here is an attempt to unify 5 language con- 
cepts within a single language. 

1. A declarative language suitable for  the interactive 
definition and manipulation o f  symbolic formulae  and 
expressions. A conversation with SCRATCHPAD consists 
of a sequence of commands issued by the user. Each com- 
mand is processed before the next is read. There are basically 
two uses of commands: (1) to create transformational rules 
(intuitively speaking, "definit ions"),  and (2) to manipulate 
expressions. Commands consist of a 'main'  statement option- 
ally followed by one or more 'qualifying'statements grouped 
to the right. Statements have the format: L r E, where L and 
E are expressions and r is a relational operator. The follow- 
ing 3 commands, for example, define a recurrence relation for 
the Legendre polynomials: 

p0 = 1 

pl--X 

p n = ( ( 2 n -  l)  xX×Pn_l - ( n -  1 ) × Pn_2)/n ( n > l )  

Here, definitions are stated in an incremental ("piecewise" or 
"recurrence relation") style frequently used in mathematics. 
This style puts the "main thought" first and trailing thoughts 
afterward. The "main thought" is the definition, the trailing 
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thoughts are qualifiers which restrict the range over which the 
definition is valid. 

As a language for manipu la t ion ,  the concept  of the 
workspace (abbreviated by "ws") is very useful. If the user 
wishes to display an expression, say E, he issues a command 
to load the workspace with that expression. This is written 
" w s = E " ,  or simply, "E" .  Once an expression is in the 
workspace, it may be operated on, e.g. 

.ftws (u=f(t)  ×cos(t), exp= 1) 

means: "integrate the current expression in the workspace 
with respect to t where u=f( t )×cos( t )  and e x p = l ;  then put 
the result back into the workspace and display". The state- 
ment "exp= 1" causes expressions to be expanded during 
evaluation. Here the "main" thought is the manipulation to 
be performed, and the trailing thoughts are local modifica- 
tions to the environment to be used in evaluation. 

Each new value of the workspace is assigned a consecu- 
tive integer and is stored into a history file from which it may 
be l a t e r  r e t r i e v e d .  T h i s  h i s t o r y  f i l e  p r o v i d e s  a 
"conversational backtracking" facility which, among other 
benefits,  enables a user to completely restore the environ- 
ment which existed prior to any previously issued command 
19]. 

2. A pattern matching language with evaluation de- 
scribed by a Markov algorithm. From the SCRATCHPAD 
user's viewpoint, symbolic computation simply involves the 
transformation of expressions from one form into another. 
Transformations are governed by a Markov algorithm operat- 
ing on a stack of "replacement rules" (see Figure 1). The 
stack has two parts: a system part and a user part (initially 
empty). The system stack consists of "built-in" transforma- 
tion rules which the user normally wants applied automatical- 
ly, e.g. x× 1 + x and 0+x + x. An expression is evaluated by 
scanning the stack from front to back in search for an appro- 
priate rule. If a rule causes a substi tution to be made, the 
transformed expression is then evaluated, etc. until no further 
changes are possible. The resulting expression is called the 
value of the original expression. For example, with the above 
two rules, the expression 0+ 1 xx has value x. 

All user commands with L r E statements add rules to the 
user part of the stack. The L part denotes a pattern, the E 
part, a replacement. For example, if the user issues the above 
recurrence relation, then the stack in Figure 1 (a) is augment- 
ed to that in Figure 1 (b). Commands consisting of simple 
one-line L r E statements as above are typical. On the other 
hand, the E part may consist of a multi-line procedure, or, the 
left part L may specify a pattern for an integration rule or 
combinatorial identity, e.g. 

Y~O<k<nCk.n×COS(k×x)=2nxcoS(nxX/2)×(COS(X/2)) n 
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By means of user commands, the interactive user is able 
to directly introduce into the system special purpose transfor- 
mation rules" necessary for the solution of his problem. New 
rules take priority over existing rules. Rules may also be 
selectively "cleared" (removed from the stack) or "frozen" 
(user rules become system rules). 

One principal value of this Markov algorithm approach is 
that it provides a simple model for symbolic mathematical  
computation. A second is that it results in a non-procedural 
style of programming: the order in which transformation rules 
with non-overlapping domains are created is irrelevant to 
subsequent  computa t ional  results. Another  virtue of this 
approach is that it unifies the notions of procedural exten- 
sions and pattern-match extensions. Indeed there is no se- 
m a n t i c  d i s t i n c t i o n  b e t w e e n  s t a t e m e n t s  of the fo rm 
cos(x) 2=-1-sin(x)2 and a procedure definition. Finally, the use 
of pat terns f requent ly  enables  one to explicitly describe a 
transformation or computation without stating how it is to be 
done, e.g. 

reverse([x I ..... Xn])=[x n ..... x 1] 

Pattern-matching may also be indicated by an is relator, e.g. u 
is x+y, used either explicitly at the top level or inside condi- 
tional expressions, or implicitly in cases expressions. Consid- 
er, for example, 

~t u~-- cases ' -  U 

x+y: i~tx+i~ty (x,y#0) 

On evaluation of an expression of the form Ot u, the pattern 
x+y is applied to u. If a match occurs, x and y are bound to 
the matched subexpressions and the right member of the pair 
is evaluated to become the value of the conditional expres- 
sion. 

3. An extensible language. The extensible approach to 
system design is essentially that of providing a "core" system 
which is relatively easy to learn together with a means of 
extending that core in a variety of ways. We believe the 
arguments for such an approach to be especially valid for a 
symbolic mathematical system expected to provide a natural 
on-l ine interface to people with widely varying interests,  
backgrounds, and problem requirements. 

Extensions to SCRATCHPAD are made in three ways: 
(1) through L r E statements described above which provide 
for both pattern-match and procedural extensions; (2) syntax 
extensions and generalized transformations which permit new 
notations to be both introduced into the language and trans- 
formed (Section 4); and, (3) "type" extensions which allow 
new data types to be added (Section 5). 

S C R A T C H P A D  is descr ibed here as two systems: a 
"basic" system and a "standard" system. The basic system 
contains only basic transformations (such as those for manip- 
ulat ing and simplifying polynomial  and ra t ional  func t ion  
expressions, but, e.g. no knowledge of trigonometric func- 
tions), a basic language (which enables the user to state com- 
mands, form expressions, but which has no specialized nota- 
tions such as ' I x I ') ,and primitive types (such as integer, real, 
and sequence, but not, e.g. sets, matrices, and complex num- 
bers). 

The s tandard system is the one generally available to 
users. It is derived from the basic system almost ent irely 
through compiled extensions of the above 3 types. Exten- 
sions are stored in files which may be modified to suit an 
individual user 's  needs or tastes. In addit ion,  a l ibrary of 
"pre-programmed" extension modules are available. These 
allow such special symbolic packages as matrix manipulation, 
t runcated power series, and gaussian integers to be loaded 
into the system on request. 

The extensible approach is a useful one for reasons of 
flexibility, simplicity, and convenience. It is also valuable as a 
pedagogic device. The new user first learns only the basic 
language, its relatively simple syntax and semantics. Once 
learned, the user is then taught a hierarchy of notations de- 
rived from basic notations. For example, although 'plus(x,y)' 
is the primitive form for addit ion,  extensions in s tandard 
SCRATCHPAD allow plus to be expressed in a variety of 
ways, e.g. ' x+y '  for ' p lus (x ,y) ' , '+ /u '  for the APL operation 
' reduct ion(u,plus) ' ,  'E u'  for ' + / u ' , ' Z . . . '  for ' + / [ u  for ...]', 

'3"ni=mU' and  ' ~ m < i < n  u '  for  '~i~[m ..... n]U', ' ~ m < i  u '  fol 
'~ie[m....]u', etc. 

4. A formal description language allowing data repre- 
sentation free programming. The SCRATCHPAD language 
is called formal in the sense that tran-sformations may be 
expressed by mathematical notations in machine independent 
form. Transformations can be described separately for each 
operator, argument type, and pattern. A significant feature is 
that t ransformat ions  may be given in data representation 
independent form. Like LISP,  da ta  and  p rog rams  in 
SCRATCHPAD have a similar syntax. Unlike LISP, howev- 
er, programs generally describe transformations on expres- 
sions independent of their internal representation. ,Declara- 
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tions of data type intended for compiler consumption may be 
placed outside of the program description itself. For exam- 
ple, in the above cases example, the program is given in the 
context where argument t is declared as an ' identifier '  and 
argument u, a rational function. These declarations are often 
irrelevant to the unders tanding of the program, and only 
serve to give efficient object  code on compilation.  When 
order is important, conditional expressions may be used. 

5. A high-level implementation language. The language 
is intended to serve both as a language for the formal descrip- 
tion of algorithms and as a language for interactive manipula- 
tion of mathematical expressions. It is also intended to be the 
source language for the implementation of most of the under- 
lying system. This combination of uses offers many advan- 
tages. For example, since program descriptions are formal, 
the source code itself would serve as a reference manual for 
the system. 

The problem of compiling efficient code involves obtain- 
ing an efficient implementation of the Markov model. A key 
point in its design is that no rules on the stack can control 
how the scanning is done. As a result, the Markov model can 
be implemented without the use of a stack at all. Rules are 
simply converted into conditional expressions which are hung 
on identif iers  represent ing  variable and operator  names.  
Successive rules for the same operator cause a conditional 
expression representing the set of transformations to incre- 
mentally grow. When a "compile" command is issued, user- 
defined rules are compiled and become part of the system 
stack. When new user-defined rules are created for operators 
for which there already exist system-defined rules (such as 
+,×, etc.), the compiled code representing the system-defined 
rules is embedded in new code to first check the new rules. 
On compilation, the source code for the system-defined rules 
is retrieved, combined with the code for the user-defined 
transformations, optimized, then recompiled. 

The compilation of the cases statement has an unusual 
requirement. Here the code used to do the pattern matching 
is clearly dependent on the type of the arguments, in particu- 
lar, a canonical form chosen for representation of the expres- 
sions. The choice of an appropriate canonical  form for a 
computat ion can dramatically effect the performance, and 
SCRATCHPAD has several. For each such canonical form, 
specially prepared text describes the meaning of each canoni- 
cal form in terms of LISP prefix form. The compiler then 
references this text to produce appropriate code for pattern 
matching. 

The SCRATCHPAD evaluation model while providing a 
simple explanation for evaluation, is nevertheless LISP-like 
e v a l u a t i o n  in d isguise .  If one regards  exp re s s ions  as 
operator-operand trees, operands are generally evaluated first 
then the operator is applied to the operands as in LISP. The 
significant difference here is that command-level evaluation is 
to be idempotent: evaluation involves continuous transforma- 
tion of an expression until no further t ransformat ions  are 
possible. Evaluation thus produces a constant relative to the 
environment of evaluation. 

2. LANGUAGE OVERVIEW 
The SCRATCHPAD language has four major parts of 

speech: Primitives, Expressions, Statements, and Commands. 
Primitives are Constants, Designators, and Sequences (note: 
throughout the remainder of the paper we will use capitalized 
nouns to denote parts of speech). 

Constants. Constants are Numbers and Strings. Numbers 
are of two types: Integer and Real. Integers consist of strings 
of digits of indefinite length. Symbolic calculations generally 
use unlimited precision rational arithmetic to ensure that 
numerical'coefficients remain fully accurate. Reals are writ- 
ten in a conventional way. Strings are strings of characters 
delimited by enclosing quotation marks: 'abc' .The symbol " 
denotes the empty string. 

Designators. Designators are used to "name" Expressions 
and serve as denotations for symbolic constants and indeter- 
minates in the program. Two types of Designators are: Iden- 
tifiers and Forms. Identifiers are strings of letters and digits 
beginning with a letter. Certain "special" Identifiers[9] have 
special meanings, e.g.: 

Special Identifier: Effect: 
exp if exp= 1, Expressions are fully 

expanded during evaluation 
gcd if gcd= 1, greatest common divisors 

of rational expressions are 
removed during evaluation 

factors if factors= [x I ..... Xn], 
products of powers of the xi's 
are factored out on output 

A Form may have subscripts, superscripts, pre-subscripts, 
pre-superscripts, and functional arguments, in any combina- 
tion and to any depth, e.g. 

xi xi,j x i. j,k Xi,jk(U'V) "'" 

Forms are used to represent parameterized objects(such as x i, 
x(i), log(x), etc.). Certain special Forms[9] denote system 
provided transformations, e.g.: 

Special Form: Use: 
factor(e) factors polynomial e over the integers 
solve(e,x) solves e=0  for x (e.g. e=[e I ..... en] 

linear in x=[x I ..... Xn]) 
coeff(x,n,e) returns coefficient of x n in e 

(when x,n, e are Sequences, the result 
is a higher-dimensional Sequence) 

A third type of designator, the Hyphenation, is discussed in 
Section 5. 

Sequences. A Sequence is an ordered list of heterogene- 
ous Exl~ressions, separated by commas and enclosed in square 
brackets, e.g. S=[e t ..... en]. The Expressions e i are called the 
"elements" of S. The symbol [] denotes the empty Sequence. 
Sequences are of four categories. (1) An Explicit-Sequence 
is a series of Expressions separated by commas, e.g. [1,2,3]. 
(2) An Implicit-Sequence is similar but is one which contains 
at least one ellipsis Expression (...), e.g. [ 1,2,...]. A Sequence 
of one of the a bove  two c a t e g o r i e s  is also ca l l ed  an 
Enumerated-Sequence. The remaining two categories are 
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those which conta in  a for or a s.t. (such-that)  clause: (3) 
Virtual-Sequences are those which contain an explicit itera- 
tion clause introduced by a for, e.g., [x(i) for i e S]. Finally, 
(4) Predicate-Sequences are those which contain no explicit 
i terat ion clause but  conta in  a predicate preceded by s.t. 
(written here " l  "), e.g. [xi I i>0]. 

Expressions. Expressions represent the objects manipu- 
lated by the user. An Expression is either a Primitive or a 
syntactically allowed combination of Primitives, operators, 
ellipses, and brackets. Ellipses are used in patterns to indi- 
cate missing parts. Within Sequences the Expressions border- 
ing the ellipsis are assumed to indicate an evident arithmetic 
p r o g r e s s i o n ,  e .g.  [ x ( l ) , x ( 3 )  . . . .  ], [ x i ( t ) , x i ( t 3 )  . . . .  ], 
[Xl,2(t2),x3,2(t 4) .... ]. Operators  are of three types: infix, 
prefix, and suffix. Some operators (e.g. + and ×) have asso- 
ciated n-ary prefix operators, (e.g., E and H) in which case 
they have a variety of acceptable formats, e.g. for Z: 

~n=l Zi ~ieS Zl_<i_<n Zl<i_<n 

Other prefix operators include ¥, :1, ~, .1", U, 13, and various 
operators for searching over aggregate objects. 

The APL convention for reduction over a sequence may 
be used in standard SCRATCHPAD to convert an infix oper- 
ator to an n-ary prefix operator, e.g. if x=[x I ..... Xn] where 
each of the x i is scalar (not a Sequence, Set, etc.) then + / x  
will evaluate to x t + . . . + x  n. If at least one x i is not scalar, 
then + / x  transforms to [ + / x  I ..... +/Xn]. In addition, +[n] /x  
is used to force reduct ions over the n th d imension of the 
Sequence. 

Two other types of Expressions are Condi t ionals  and 
Blocks. A Conditional Expression is expressed using a) if as 
an infix operator(the basic form), e.g. 'e I if Pl else ' (b) by 
the conventional  'if Pl then e 1 else .. . ' ,  or, c) by a cases ex- 
pression, e.g. 'cases:(pl:el ; . . . ) ' .  In addition, the Expression 
'cases: u; ( a l : e l ; . . . ; an : en ) '  is an allowed abbrevia t ion  for 

'cases: (u is al: el; . . . ;u is an:en)'. 
A Block Expression consists of one or more Commands 

separated by semicolons and enclosed between begin and end, 
or between round parentheses  when no ambiguity arises. 
Commands are executed in sequence until a return expression 
is encoun te red  which causes an immediate  exit from the 
Block. Gotos are not allowed. 

Statements and Commands. An entire SCRATCHPAD 
interactive conversation, e.g., consists of a sequence of Com- 
mands, and thus might be regarded as a Block. A Command 
consists of one or more Statements separated by commas and 
optionally qualified or iterated as described below. State- 
ments within a Command are executed in parallel. 

The general form of a Statement is: L r E , where L and 
E are Expressions, and r is one of the ten relators: 

= #: < < > > e / is not 

More precisely, L may be an Expression containing operators 
outside parentheses with precedence exceeding that of the 
relators. Other operators may appear in L and E but must be 
enclosed in parentheses. 

In addition to the above Commands wh.ich are called 
"Rule~Commands",  are "Special-Commands" (e.g. special, 

type, syntax), and "System-Commands" ,  identified by the 
prefix ")". System-Commands are either utility commands 
(e.g.)edit) ,  commands to alter or clear the history file (e.g. 
)freeze and )clear), or commands to initiate backtracking(e.g. 
)revert).  System-Commands  are otherwise distinguished 
from the first two categories for two reasons. First, System- 
Commands may only be issued at the conversational  level 
whereas Rule- and Special-Commands may appear within 
Blocks in the E part of a Statement. Second, Commands in 
the first two categories may be backtracked;  incremental  
changes to the system which result from their execution are 
appropriately recorded on the history file so as to make their 
effect reversible. System-Commands are never recorded on 
the history file and are not reversible. 

We now describe two aggregates in standard SCRATCH- 
PAD which are derived from Sequences, and then "iteration" 
and "qualification". 

Sequences and Derived Aggegrates. In SCRATCHPAD,  
the Sequence is the fundamental aggegrate object. All other 
aggregate types required in the system must be derived from 
Sequences through type extensions. Two such types provided 
in the standard language are Sets and Maps. In both of these 
cases, the type further breaks down into four categories of 
Sequences. 

Sets. A Set S is a sequence of dist inct  heterogeneous 
Expressions separated by commas and enclosed in braces, e.g. 
S = {e 1 ..... en}. The Expressions e i are called the elements of 
S. The symbol [] denotes the empty Set. Explicit-Sets are 
treated as explicit-Sequences in which elements are canoni- 
cally ordered and where duplicate elements are removed. 
One useful category of Sets is the Predicate-Set which has the 
form [x [ p] where x is generally a Identifier and p is some 
predicate usually involving x. 

Maps. A Map M is a sequence of pairs si:e i separated by 
semi-colons and enclosed in angle brackets, e.g. 

M-- <s 1 :e 1 ;...;Sn:en > 

where the s i and e i are Expressions.  The Expressions s i, 
called the selectors of M, must be distinct. The Expressions 
ei, called the components of M, are distinct from special value 
NIL but otherwise arbitrary. The symbol < > denotes the 

empty Map. 
A Map denotes a mapping with domain(M) ={s I ..... Sn], 

and range(M)={e|  ..... en]. Infix operator (.) is used to apply 
Maps to domain Expressions, i . e . M . s  i evaluates to e i for all 
ie [1 ..... n]. The value of M.s where s / d o m a i n ( M )  is NIL. 
When M.s is given on the left hand side of a Statement,  an 
element will either be replaced by or inserted into M accord- 
ing as s e or fdomain (M) .  The Statement M.s=NIL is used 
to remove a pair from the Map. 

A few conventions are used in specifying Maps. When 
successive components are the same, only the last component 
need be written, e.g. if e l = e  2 . . . . .  e m then M may be ex- 
pressed as <Sl,S 2 ..... Sm:em...>. Omitted selectors take on 
assumed values. If s! is missing, it is defined as 1. A missing 
si, i > 1, is taken to be S i_ l+ l .  Thus, <el;...;en > is short for 
< l : e l ; . . . ; n : e n  > ,  a n d  < m : e l ; . . . ; e n  > m e a n s  
< m:e i ,m+ 1 :e2 ; . . . ;m+n-  1 :en > , etc. 
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Maps are extremely useful data structures in symbolic 
manipula t ion .  One relevant  special Form is comap(x,e)  
which on evaluation "decomposes" a polynomical e in x to a 
Map (Examples 3c) and 3d) in Figure 2). 

1. Examples of Sequences 

a) [a,b,u/v,[u,v]] 

b) [xl,x 2 ..... Xn] 
c) [x i for i e S] 
d) [xi] (i e S) 

2. Examples of Sets 
a) { 1,2,4,5} 

b) {x I ..... Xj_l,Xi+ I ..... Xn} 
c) {x i for itS l i#j} 
d) Ix I f(x)=O} 

seq. of 4 elements 
seq. of n elements (n symbolic) 
=b)  with S=[1,2 ..... n] 
=c) (using range convention) 

set of 4 elements 

=a) with x i=i ,n=5, j=3  
=b)  with S={1,2 ..... n} 
a predicate-set 

3. Map representation of polynomial u=(xS-5x3y3+2y 3) 
a) <0:2y3;3:-Sy3;5:1 > with lead variable x 
b) <0:<5:1 > ; 3 : < 0 : 2 ; 3 : - 5 >  > with lead var. y then x 
c) <xS:l ;x3:-5y3; l :2y3> result of comap(x;u) 
d) <xS:l ;x3y:-5;y3:2> result of comap([x,y],u) 

4. Maps as structures 
a) <real:5; complex: 1 > complex integer 
b) < comp:Bach;opus: 32;title: 'Tocatta in G';inst:organ > 

Figure 2. Examples of Sequences, Sets, and Maps 

Iteration. A sequence of Expressions or Sta tements  
separated by commas is optionally followed by an "iterator" 
construction introduced by the infix operator for. Two mean- 
ingful forms of the iterator are: ' for ieS', to iterate over a 
single sequence,  and 'for (lieS I ..... ineSn)' ,  to iterate over 
several in parallel. In addition, an i terator may conta in  a 
selection predicate introduced by a such-that clause, e.g. 'for 
ieS I p(i)'. 

If S denotes an Explicit-Sequence, then the evaluation of 
'e for i e S' causes e is to be repeatedly evaluated as i runs 
over the successively generated e lements  of Sequence S. 
When the iterator has a selection predicate, e.g. 'i e S I p(i) '  
then p(i) is a predicate local to the iterator and acts as a filter. 
The predicate is evaluated for each value of the index i. If 
p(i) is FALSE for some value of i, that value of i is not gener- 
ated. When S is not an Enumera ted -Sequence ,  then the 
iteration is not carried out and the sequence remains in virtual 
or predicate form. In the standard language, other forms of 
iteration (using while, until, unless, repeat, and do constructs) 
are provided. Typically these are displayed after the body of 
the iteration, and result in a format similar to that suggested 
by Anderson in [1 ]. 

C o n v e n t i o n .  W i t h  s p e c i a l  I d e n t i f i e r ,  r a n g e -  
convent ion= 1, Expressions enclosed in brackets which con- 
tain free Identifiers ranging over a Sequence are agreed to 
have implicit iterators, e.g. using this convent ion with ieS, 
{x i} and [xil j# i ]  expand to {x i for ieS} and [x i for ieS I j# i ]  
respectively. This convent ion  is assumed throughout  this 
paper. 

Qualifiers. A sequence of Expressions or Statements  

separa ted  by commas can be opt ional ly  ' qua l i f i ed '  by a 
where-clause consisting of the infix operator where followed 
by an Expression, normally a Block, as its right argument, e.g. 

u=ws-be ta×f (y )  where (Sk=k×c, exp= 1) 

The where-clause causes the left argument of the where to be 
evaluated in a local environment  created by executing the 
r ight  a r g u m e n t  of the where. O p e r a t o r  where is le f t -  
associative so that multiple qualifiers are executed from right 
to left. The where operator may replaced by two or more 
blanks when no ambiguities arise; this convention gives rise 
to the format used in the examples in section 1. An Identifier 
may be used as the right argument  of the where-clause in 
which ease it is assumed to have a Block as its transform; in 
this way, a set of t ransformation rules may be "stored" as 
well as invoked by use of a single name,  e.g. 'ws where 
trigtoexponential'. 

If b is the Block (Sl;,..;S n) and s is a Statement, then 'b 
where s' may be written as 'let s; Sl;...;Sn'. The effect of the 
let statemimt, e.g. 'let x=y; b' is to make x a local variable of 
Block b. 

3. SEMANTICS 
Environment. The effect of evaluating a Statement of the 

form: L r E is to create a replacement rule having the form 
of a sequence of four elements: 

[L(pattern) , O{condition) , r(relator) , F~replacement) ] 

where L and E are expressions corresponding to the L and E 
parts of the Statement; and, C is a predicate describing condi- 
tions on the pattern and envi ronment  under which the re- 
placement rule is applicable. 

The ordered set of replacement rules on the stack at any 
one instant in time is called the "environment of evaluation". 
At the beginning of a user's session, only certain special Iden- 
tifiers and Forms which denote special system names, opera- 
tors, and functions have associated replacement rules; these 
make up the frozen portion of the stack called the "system 
stack". As the user session progresses, the user builds an 
environment through the use of Commands containing State- 
ments. Every such Command creates one replacement rule 
which is added to the front of the stack. 

Evaluation. Evaluation means the transformation of one 
Expression into another through the continuous application 
of rules in the current environment until no further transfor- 
mations can be made. The resulting Expression is called the 
value of the original Expression. Ordinarily, the issuance of 
a command L r E does not cause the evaluation of L or E or 
any of their const i tuent  subexpressions. In order to cause 
evaluation of an expression, the expression must be prefixed 
by the meta operator ~t. 

The process of evaluation involves the use of a "scanning 
function" for scanning the stack from front to back in search 
of appropriate replacement rules. This function takes two 
arguments: first an expression to be transformed (the subject ) 
and secondly, a set of permissible relators (the re la torse t ) .  
As each rule is encountered during the scan, the funct ion 
determines whether or not the relator part of the rule is a 
member of relatorset .  If it is not, the rule is bypassed and 
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scanning continues to the next rule up the stack. Otherwise, 
the pattern part of the rule is compared to the subject. If the 
pattern has the same syntax as the subject except at formal 
parameter positions, a match is said to occur. A match hav- 
ing occurred, the condition expression is then evaluated with 
formal parameters bound to corresponding argument expres- 
sions in the subject.. Three outcomes are then possible: (a) 
the resul t ing value is TRUE,  and the rule is then said to 
"apply";  (b) the resulting value is FALSE, the rule is then 
said "not  to apply", and scanning continues up the stack at 
the next rule; (c) the value is neither TRUE nor FALSE, the 
applicability of rule is then said to be "uncertain", and scan- 
ning is terminated. If a rule R is found to "apply", the scan- 
ning function returns both R and a form which may be evalu- 
ated to scan the stack upwards from R. The "transform" of 
the subject is then obtained by substituting actual parameters 
f o r  f o r m a l  p a r a m e t e r s  i n t o  t he  E p a r t  of  R a n d  
"simplifying"(see below). If no rule is found to "apply" or if 
scanning was terminated, the scanning function returns NIL 
(indicating "no transform"). 

Evaluat ion of Primitives and Expressions may then be 
described as follows. The value ~tc of a Constant c is c itself. 
The value ttx of a Identifier x is obtained by first scanning the 
stack with subject x and relatorset { '= ' ] . I f  x has transform E, 
/~x is/~E; otherwise, #x is x itself. The value ttf(a,b ..... c) of 
almost all Forms f(a,b ..... e) is described as above except with 
x replaced by f(/~a,~b ..... /~c). Infix and prefix expressions are 
eva lua ted  as if r ep r e sen t ed  by equ iva l en t  Forms ,  e.g. 
/~(x+y) =/~plus(x,y). 

Consider the following example set of Commands: 

command: rule no: replacement rule created: 
i > 0 1 [i,TRUE, ' > ' ,  0] 

f0=l  2 [fa, a=0,  ' = ' ,  1] 
fi = 2fi-  I + 1 3 [fa,a>0, ' = ', 2fa-  I + 1 ] 
i= 1 4 [i, TRUE, ' = ' ,  1 ] 

These 4 rules leave the user stack (read "bottom up") in the 
configuration shown on the right. Consider now the evalua- 
tion of fi with relatorset ={ '= ' ] ( t he  usual case). As described 
below, first the parameter i is evaluated. The stack is scanned 
for a transform for i. Rule 4 is first encountered; the pattern 
matches, the condition expression is TRUE and the relator 
belongs to relatorset; therefore the transform of i is 1. Thus 
~ti is 1. Next,/~l(a Constant) is 1. The stack next is scanned 
for fl" Rule 3 applies and delivers the t ransform 2f0+ 1, 
which is then further evaluated. First, 2f 0 is evaluated. #2 is 
2. it0 is 0. Next, the stack is scanned for f0" This time a 
match occurs at rule 3, but tL of the condition part is FALSE. 
Scanning therefore continues to rule 2 where a match again 
occurs but this time with the condition part evaluat ing to 
TRUE. Since ' = '  e relatorset, the transform of f0 is 1. The 
stack is then scanned for a transform for 2× 1. A match oc- 
curs  in the sys t em par t  of the s tack  and  de l ive r s  the 
(simplified) transform 2. Similarly, #1 is 1 and then ~(2+1)  
is 3. Thus ~tf i is 3. 

When the applicability of a rule is uncertain,  no trans- 
form is given. For example, if rule 4 were replaced by i>0, 
/~fi would be fi. This is explained as follows.. (a) #i is i. (A 

match for i occurs at stack rule 4 but the relator ' > '  is not a 
member of relatorset ={ '= '}  and so the scanner returns NIL). 
(b) the stack is scanned for fi" A match occurs at rule 3. The 
rule associated with ' > '  in the user stack then attempts to 
show i>0 is TRUE or FALSE by scanning the stack for rules 
on i with relatorset ={'> ",'>'}. Rule 4 applies. But since i>0 
does not imply i>0, the condition part of rule 3 evaluates to 
neither TRUE nor FALSE; scanning therefore terminates 
and NIL becomes the transform of fi- 

The evaluat ion of other syntact ic  forms is as follows. 
The value #C of Conditional C--(e I if p! else ... else e n if Pn) 
is #e k if there exists a k (1 _<k_<n) such that #Pl . . . . .  PPk-I 
= FALSE and PPk = TRUE. #C is NIL in all other cases. 
Value NIL may mean that some #Pi was neither TRUE nor 
FALSE and that the correct choice of e k is regarded as uncer- 
tain. The value of a Statement L r E is ttL in the environment 
which exists after its rule has been created. The value of a 
Block b=(Sl; . . . ;Sn) is obtained by computing/~s I then Ps2, 
etc. until a return e is encountered; the value/~b is then #e. If 
no return Expression is found, #b is #s n. The value #b where 
b is (s 1 ..... Sn), n > l ,  is undefined. The value of P(Sn+ I where 
(s I;...;sn)) is equivalent to tt(s!;...;Sn; Sn+ I) except that rules 
created by the first n Statements are removed from the stack 
following the evaluation of Sn+ 1. 

The evaluation of iterated forms is handled uniformly by 
the mechanism of generators(following "streams" in [5]). 
Generators  are functional  representat ions of Enumerated-  
Sequences and may be "passed" as arguments in Forms. If g! 
is a generator  for an Explicit-Sequence [al ,a 2 ..... an], then 
there exists generators g2 ..... gn,gn+l, such that Pgl is [al,g2], 
Pg2 is [a2,g 3] .... , #gn is [an,gn+l] ,  and f ina l ly /~gn+l=NIL  
signifying that all elements have been exhausted. If g! repre- 
sents an Implicit-Sequence then #gk, k> 1, is similar except 
that a designation for "..." may be returned as the a k part of 
its value. 

Ordering. All Expressions are canonically ordered on 
evaluation. Ordering is handled by procedures stored as the 
replacement parts of the replacement rules associated with 
each primitive operator. Sums, for example, are ordered so 
that, e.g. ( x + l )  2 displays as: x 2 + 2 x + l .  This ordering on 
evaluation allows one to regard two scalar Expressions as 
equal if they have the same syntax. Canonical  ordering is 
generally unspecified except with respect to integers where it 
has the usual meaning. The relative ordering of specific iden- 
t ifiers however  may be prescr ibed  using a special order 
command[9]. 

Construction of Replacement Rules. The interpretation of 
a Statement at the top level has the side effect of adding one 
replacement rule to the front of the stack. The first step in.its 
interpretat ion is to evaluate all subexpressions in L and E 
preceded by at t  operator; the resulting expressions for L and 
E are then free of #. The second part of its interpretat ion 
creates the replacement rule to be added to the stack. If L is 
a I d e n t i f i e r  x, t h e n  the  r u l e  c r e a t e d  is g e n e r a l l y  
[x,TRUE,r,E,].  On the other hand, if L is not a Identifier,  
then it is regarded as having the form f(u,v ..... w) where the 
I d e n t i f i e r s  p l aced  in e x p r e s s i o n s  u,v . . . . .  w are ca l l ed  
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"statement parameters" and, by agreement[lO], indicate the 
range over  which the replacement rule is to be applicable. 
The determination of the rule to be added to the stack in this 
case involves five steps: 

1. Determination o f  statement parameters. The left 
hand side of the rule is scanned for determining a set S of 
statement parameters and a preliminary form of the condition 
part C of the rule to be created. The scanning of L begins 
with S = [ } ,  and C = T R U E .  As each Identifier x in L is en- 
countered,  the stack is searched to obtain all replacement  
rules for x(one for each relator r) .  If the set is non-empty, 
then x is added to S. Each rule found is converted to a predi- 
cate x r '  e '  and added to C (i.e. ancl-ed into C). Scanning 
then cont inues into e '  for new s ta tement  parameters  and 
conditions. Variables such as gcd, exp . . . .  which have been 
declared special are exceptions to the above and never con- 
sidered as statement parameters. 

2. Definition o f  statement parameters. The L part of 
the rule is expressed in the form f(a,b ..... c) where a,b ..... c are 
unique formal parameters used in place of u,v ..... w. A subset 
S' of statement parameters may be expressed as linear com- 
binat ions  of formal  parameters ,  by first  (a) equat ing  the 
formal parameters  a,b ..... c to u,v ..... w, then (b) solving a 
linear subsystem system of equations for statement parame- 
ters in terms of formal parameters. This system of  equations 
may be overdetermined or underdetermined. When overdet- 
ermined (Figures 3b,d), certain extra equations expressed 
entirely in terms of formal parameters are selected as condi- 
tions to be added to C. When underde termined  (Figures 
3c,d) an is predicate is formed to define members of S - S' 

and is added to C. 
3. Qualification by statement parameters. If S t is 

non-empty,  the the E part is augmented by a where-clause 
defining parameters x'  for each x'  e S' (Figure 3b). 

4. Substitution and Simplification. Next, a new set of 
unique formal parameters is substituted into [L, C, r, E] for 
the distinct members of S .  The final new rule [L '  , C '  , r, 
E '  ] is obtained by simplifying the resulting C and E parts of 

the rule. 
5. Inconsistency Check. Finally, the stack is scanned 

with subject = L '  and relatorset = J r '  } for each r '  #r .  Each 

applicable rule found is compared with the new rule to deter- 

mine if the two rules are inconsistent. If so, an error is sig- 

nalled and the new rule is discarded. 

Statement: Replacement Rule: 

(a) f (x ,x+y,x)=y [f(a,b,c), a=c,  ' = ' ,  b - a ]  

(b)f(x+ y ,x-y ,2x)  =g(x,y) [f(a,b,c),c=a + b, '= ' , (g(d,e)  

where  ( d = c / 2 , e = ( b - a ) / 2 ) ) ]  

( c ) f (x+y)=f (x )+ f (y )  [f(a), a is b+c,  ' = ' ,  f (b)+f(c)]  

(d)f(x,x,y+z)=g(x,y,z)  [f(a,b,c), a=b  ^ c is d+e,  

' = ' ,  g(a,d,e)] 

Figure 3. Examples of rules created by Statements 

(assume 'x,y,z arbitrary') 

4. SYNTAX EXTENSIONS. 
Syntax extensions are used to introduce new notations 

into the language. These are special Commands of the form 
"syntax p:s" where p is an Identifier denoting a new or an 
existing part-of-speech (non-terminal of the grammar), and s 
is a string expressing a syntactic construct.  The simplest 
example of its use is that of adding a new opera tor  to the 

language: 

syntax infix-op: ' + '  700 701 

Here the left and right precedences of the operator are writ- 
ten following the string to describe how argument Expres- 
sions are implicitly grouped and whether the operator is left-, 
right-, or non-associative. 

Syntax extensions may also be used to introduce entirely 

new constructs into the language, e.g. 

syntax expression: ' I e I '  (e expression) 

Once introduced into the language, the new construct may be 
used in ordinary Statements, e.g. 

I s I = length(s) (S sequence) 
[ x I = absval(x) (x scalar) 

The effect of syntax extensions is to add a production to the 
grammar. Like rules, extensions are "s tacked"  with more 
recent extensions taking precedence over previous ones. Also 
like rules, extensions may be selectively cleared or frozen. 

Syntax extensions allow new constructs to be introduced 
into the language which in general cannot be transformed 
using Statements of the customary form L = E ,  e.g. 

syntax command: '... for m_<i_<n ...' 

In order that these new constructs may be transformed on 
evaluation as well, a generalized form of Statement is intro- 

duced. 
Genera l i zed  Statements. Generalized Statements have the 

form L ÷ R  and are used to describe transformations on more 
general syntactic constructs, such as those introduced through 
syntax Commands. Generalized Statements L+R are equiva- 
lent to ordinary Statements when both L and R are Expres- 

sions. 
Several additional notations are provided for conven-  

ience. The Statement L÷R adds the reverse transformation 

R+L to a special list of transformations performed to Expres- 
sions prior to their display. In addition, the Statement L ÷ ÷ R  
combines two Statements into one; its net effect is to create a 
new "external"  notation for an equivalent " internal"  nota- 

tion, e.g.  ~ 
x+y ÷ ÷  plus(x+y) 

Finally, syntax commands may be combined with user com- 
mands'as illustrated by: 

syntax expression: 

' let s;s I ;...;s n' ÷ '(s  I ;...;s n) where  s' 
(s,s i statement ( I _< i _< n, n integer) )  

* The requirements of x and y which match x+y when '+'  has left 
precedence(Ip) 700 and right precedence(rp) 701 is as follows. If L, p, 
and o denote infix, prefix, and suffix operators respectively, and a and b 
are expressions, then x is a~b implies rp(L)>700: x is pa implies 
rp(p)>700; similarly, y is aLb implies Ip(t)>701, y is ao implies 
Ip(o)>701. 
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5. TYPES. 
Every Expression has an associated attribute called its 

type. P r i m i t i v e  t y p e s  i n c l u d e  the  p a r t s  of s p e e c h  
(uncapitalized) of the language (e.g. integer, real, constant, 
identifier), denotations for various canonical forms used for 
r ep re sen t ing  express ions  (e.g. ran ( ra t iona l  n u m b e r ) ,  
poly(polynomial), raf (rational canonical form)), and special 
classes such as literal (meaning  "se l f -deno t ing" ) ,  scalar 
(meaning "not an aggregate"),  and arbitrary (union of all 
types).  Buil t - in non-pr imi t ive  types correspond to non-  
primitive parts of speech such as expression,  s ta tement ,  
block, etc. A type consists of an Identifier called its "name", 
an expression called its "syntax", a set of Expressions called 
"selectors",  a set of "coercion rules" which describe how 
expressions of other types are to be converted to the given 
type, and an "automatic coercion list" (see below). 

A new type is introduced by a special type command 
which identifies the type name, syntax, and the set of selec- 
tors. For example, the statement 

type complex is <re:raf, im:raf> (re,im literal) 

defines a new type complex as a Map conta in ing two ele- 
ments with selectors re and im. The syntax derived from the 
Expression on the right serves as a predicate for screening 
candidates to receive type complex on coercion. 

Expressions of a given type can be created only through 
application of coercion rules. Coercion rules for a new type 
are introduced through Statements using the one-argument 
form of the type on the left-hand side, e.g. 

complex([a,b]) = < re:a,im:b > (a,b raf) 

In general, if foo is a type, then foo 0 denotes its coercion 
function. The evaluation of the form foo (x) where foo is a 
type is handled in a special way. If foo (x) has transform e 
then e is checked for having the requisite syntax for type foo 
objects. If it does, e is returned with its type changed to foo. 
For example, having issued the above coercion rule, the ex- 

pression complex(In,b]) will then produce an expression of 
type  complex  on e v a l u a t i o n .  By a g r e e m e n t ,  the rule  
~foo (x) fix' if x is already of type foo is always assumed. 

If x is an Identifier or a Form, then the type of x unevalu- 
ated is always 'identifier' or 'form' respectively. Declarations 
may be given however to force replacement values associated 
with x to be of a given type. This is done by issuing the state- 
ment: 'x is foo ', or 'x foo ', for short, at the top level. Such 
declaration causes the coercion function for foo to be applied 
to all non-NIL transforms of x with an error signaled should 
coercion be unsuccessful. 

When a funct ion  expect ing an a rgument  of type foo 
receives an argument of type rum #foo, then the coercion 
function for foo may be applied to the argument in an at- 
tempt to coerce it to type.foo. This so-called "automat ic  
coercion" from rum to foo will occur only if foo is a mem- 
ber of the "automatic coercion list" associated with fum. 

The "automatic coercion list" is a Sequence of types to 
which a given type may be automatically coerced. This list is 
init ial ly empty for new types and is created or modified 
through statements of the form "coerce(foo )=E ' ,  where E is a 

Sequence of known types, e.g. 

coerce(complex) = [scalar, sequence] 

indicates that only scalar Expressions and Sequences are to 
be automatically coerced to type complex (but not, e.g. Maps, 
Sets, matrices, etc).  When the automat ic  coercion list is 
empty for a given type (as is the case for the examples be- 
low), coercion can take place only through explicit use of the 
coercion function in rules, e.g. 'g(x)=g(complex(x)) ,  x n o t  

complex'. 
The coercion list also affects the evaluation of 'x foo '  at 

the inner  level where it is interpreted as a predicate with 
side-effect. This predicate evaluates to TRUE if x evaluates 
to an expression e which can be coerced to type foo, and 
FALSE otherwise. More specifically, the evaluation of predi- 
cate 'x foo' involves the following cases: ( l )  if e is of type 
foo, then the value is TRUE with no side effect; (2) if (a)e is 
of type fum#foo, (b)foo is a member of the automatic coer- 
cion list for rum, and (c)a coercion rule for foo successfully 
coerces e into expression e w , then the value is TRUE with the 
s ide-effect  that x is locally bound  to e t . (3) in all other  
cases, the value of the predicate 'x foo' is FALSE with no 
side effect. 

A Hyphena t ion  (a hyphenated  word) may be used to 
indicate categories of given types, e.g. enumerated-sequence, 
predicate-set, as introduced earlier. In addition, the Hyphen- 
at ion may be used to introduce parameterized types, e.g. 
mat r ices-over- t  where t s tands  for some arb i t ra ry  type 
(Figure 5). The kludge "x is type-t" is used to declare x to be 
of type t (for some t )  for the purpose of creating replace- 
ment rules. 

type set is sequence 
syntax expression: '{...}' ÷ +  set([...]) 

'coercion rules for sets' 
sequence(S)=S (S set) 
set(S) -- if S is explicit-sequence 

then remove-duplicates(order(S)) 
else S (S sequence) 

'evaluation of sets' 
eval(S) = set(eval(sequence(S))) (S set) 

'operations on sets' 
(A,B) explicit-set 
AUB={(x I xeA),(x [ xeB)} 'union '  

AfIB= {xeA I xeB} 'intersection' 

A - B =  {xeAI xlB} 'set difference' 

A x B= { Ix,y] for xeAfor xeB} 'cartesian product' 

#A=2×eAl 'count '  

Figure 4. Set as an Extension to SCRATCHPAD 

(assume extension: '[xeS I ...]' -* [x for  x~S I ...1) 
(note: 'for xeS ...' causes iteration over 'sequence(/~S)') 

108 



6. AN EXAMPLE. 
The following example illustrates how a user might add a 

new special  purpose  package  to S C R A T C H P A D  for the 
formal manipulation of power series (this facility is available 
in ALTRAN; see [4]). The need for this can be amply illus- 
trated in applications, e.g. in perturbation theory where one 
seeks an approx imate  solut ion to an equat ion as a power  
series expansion in one or more small parameters [11]. Anoth-  
er applicat ion is in obtaining a power series expansion of a 
function around a p o i n t  to a finite number of terms• Here,  
the approach of repeated differentiation is usually hopeless. 
Fo r  example ,  if one wants  the power  ser ies  expans ion  of 
e X/(sin(x)3+cos(x)3) by repeated dif ferent ia t ion,  one finds, 
e.g. the third derivative a l ready to contain  23 terms each a 
r a t i o n a l  f u n c t i o n  i n v o l v i n g  up to  t he  4 th  p o w e r  o f  
sin(x) 3+cos(x) 3 in the denominator! Yet this example is strict- 
ly a numerical problem• One can represent the power series 
of e x, sin(x), and cos(x) by arrays of rational numbers and do 
formal power series operations with these arrays to produce 
the desired expansions• This approach results in considerable 
savings in comput ing  time and space required for solving 
many problems• 

We represent  t runcated  power series by expl ic i t -Maps 
with domain {0 ..... n} for some positive integer n, and whose 
components are rational functions. First, a new type tps will 
be introduced to represent truncated power series: 

type tps is <i:raf for i e [0 ..... n] > (n e [0,...]) 

Secondly, we introduce two special variables: tpsvar, to iden- 
tify the power  series var iable ;  and,  tpsord, to denote  the 
order of the series approximation. 

special tpsvar, tpsord 
tpsvar identifier 
tpsord e [1,2,...] 

Next,  we give declarat ions to be used in forthcoming state-  
ments: 

a,b,c tps; p,q,n e [0,...] 
i e [ 0  ..... p]; a i raf ;  a i s < i : a i >  
j r [ 0  ..... q]; b j ra f ;  b i s  <j:bj> 
k e [ 0  ..... n ] ;c  kraf ;  c i s<k:Ck> 

Here and below, we assume the range convention so that, e.g. 
<i:ai> is an abbreviation for <i:a i for i e [0 ..... p]>. 

The only way to create an object of type tps is through 
the use of the coercion function tpsO. Initially, we will de-  
scribe the coercion function only on Identifiers, Integers, and 
Maps having the requisite syntax. The truncated power series 
will be "normalized" on coercion so that trailing O's are drop- 
ped from the representat ion and so that the approximat ion 
has at most tpsord terms. 

tps(x)--<0:0,1 > if x=tpsvar  else <0:x> (x identifier) 
tps(n)= <0:n> (n integer) 
tps (a )=  <i:a i for 0<i<_m> 

(m=min[tpsord,max[(i  [ ai¢:0),0]] ) 

We now describe evaluation for truncated power series, first 
for the algebraic operators + . - . × .  and / (we take the liberty 

where 

a i ' = a  i if 0 < i < p  e l s e  0 

b j '  =bj  if 0 < j < q  e l se  0 

low(a) =min[(0< i< p I a ig0) ,  1 +tpsord] 

and then exponentiation: 

of using some o! tlae various syntax extensions al lowed in 
standard SCRATCHPAD):  

- a - - c  (Ck=--a k, n=p)  

a + b = c  (ck=a k' + b  k' , n=min[tpsord,max[p,q]]) 

a - b = a + ( - b )  

a x b = c  (Ck=~-0_<i_<ka i' xbk_ i' ,n=min[tpsord,p+q]) 
a / b =  cases:  

a=tps(0) :  tps(0) 
b=tps(0)  error( 0 DENOMINATOR ) 
T: let  k=low(b)  

c a s e s :  

k=0:  l / b 0 x a  xc 

(Co= 1 ; 

cj------~0_<k_<j_lCkXbj_k if 0<j_<n) 

(n=q;  c k tps) 

k>low(a) :  error("TPS DIVIDE ERROR")  

T : a / b  where (a= <0:a k ..... ap>,b= <0:b k ..... bq > ) 

a0--tps(1) ( a# tps (0 ) )  
al_-a 

an--an/2×an/2 (n=2,4,. . .)  

a n f a × a  n - l  (n=3,5,. . .)  

an= 1 /a  -n  ( n  integer, n<0)  

aY-- cases :  

a o # O  • 1 / a o x Z o < . < n C -  w h e r e  ( co - -  1 • 
• _ j _  J 
c j - - ( y - j +  1 ) / ixc j_  I ×b if 0 < j < n )  

w h e r e  (b-- < 0:0,a I ,a 2 ..... ap> ; c k tps) 

T:xYxbY (k--low(a);  b = < 0 : a  k ..... ap>) 

(x=tpsvar ,n=tpsord)  

(ag tps(0) ,  y not integer) 

with special cases: 

tps(0)Yffi0 

tps( 1 )Y-- 1 
(y¢O) 

(y arbitrary) , 

and, finally, differentiation and integration: 

~×a--c ( C k = ( k + l ) x a k + l , n - - p - - 1 )  

(n=max[O,p-- 1], x=tpsord)  

.t'~a=c (c0=0; c k f a k _ l / k  if k>0)  

(n=min[ tpsord ,p+ 1], x=tpsord)  

The semantics of all of the above commands is exemplified by 
that for a+b:  "an expression of the form a+b ,  where a and b 
are of type tps and have the respective formats <0:a 0 ..... ap> 
and  < 0 : b  0 . . . . .  bq> for  some p and q, t r a n s f o r m s  to c =  
<0:c 0 ..... Cn> where n is defined to be the minimum of tpsord 
and the maximum of p and q and where c k is the sum of a k 
and bk; the final result is then obtained by coercing c to c t of 
type tps which has trailing O's deleted•" 
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Next, we coerce algebraic expressions by breaking them 
down recursively until special cases result: 

(u,v) not tps 
t p s (u+ v )= tp s (u )+ tp s (v )  (u ,v#0)  
t p s ( u - v )  = t p s ( u ) - t p s ( v )  (u ,v#0)  
tps (u×v)=tps(u)  ×tps(v) (u,v~|0,1 }) 
tps(u/v)=tps(u)/tps(v) ( v # l )  
tps(um)=tps(u)  m (m > 0, m integer) 

We now add coercion functions for common functions: 
x=tpsvar ;  i e [0,1 ..... tpsord] 
tps(e x)= < i: 1/i! > (e literal) 
tps(cos(x)) = <i: 1/i! × ( -  l )i//2 × 8(i even) > 
tps(sin(x))-- <i: 1 / i ! x ( -  I )i//2xS(i odd)> 

. , o  

Here 8 h is similar to Kronecker delta and defined as follows: 

8TRUE = 1 ; 8FALSE----0 

The suffix operators even and odd may be introduced by: 
syntax suffix-op: ( ' even ' , 'odd ' )  900 
i even=i f  i is 2n then T R U E  else F A L S E  (i,n integer) 
i odd=-~ (i even) (i integer) 

Finally, we create a function which will compute  the Taylor  
series expansion of e around the point x--0 tO n terms: 

taylor(e,x,n)=(Y-0<i_<m(a.i)×xi where (tpsvar--x, 
t p s o r d = n ; a = t p s ( e ) ;  m=length(a) )  

(e expression,x identifier, n e [ 1,2,...]) 

m,n e [1,2,...]; ie  [1 ..... m];  j e [1 ..... n] 

aid is type-f  
type f -ma t r ix  is <[i,j]: ai.j> 
f - m a t r i x ( x ) = x  (xis  <[i,j]: a id>) 

'declarations'  
p,q e [1,2,...1; k e [1 ..... p], i e [I ..... q] 
(A,B,C) f -ma t r ix  

A--<[i , j] :ai , j> (aid type:f)  
B--<[k,l]:bk,i > (bk, I type:f)  
C=<[i,I]:ci; i  > (ci, I type-f)  

'operat ions with matrices'  

A + B - - C  (ci,i----ai,l+bi.i) ( re=p,  n = q )  
A - B = A + ( - B )  

AxB=C (Ci,l=Y.kai,k xbk,l) (n=p) 
A / B = A x ( I / B )  

'operat ions with scalars' 
x scalar 
x + A = A +  x--matrix( < [i,j]:ai,j+ x × 8i= j > ) 
x - A - - x + ( - A )  
xx A = A ×  x=matr ix(< [i,j]:xx ai,j >) 

'matrix functions'  
t ranspose(A) =matrix(  < [j,i] :aid > ) 
trace(A)--Y.lai, i ( re=n)  
I n = A  (a i j=gi=.j ,m=n) 
de t (A)=  Y.I(- 1 )-iJ+i x a i .i x minor(A, 1 ,i) ( m = n )  
minor(A,p,q) =det(matr ix(  < [i,j]:ai, j I i # p ^  j # q  > )) 

(p,q e [1,2 ..... n]; n = m )  
x ( A ) = d e t ( A - X x l  n) ( m = n )  
submatr ix(A,u,v)=matr ix(< [ij]:ai.  j for i eufor jev>) 

if uc[1  ..... m] A v e i l  ..... n] 
. . o  

Figure 5. 
Matrices over f as a Type Extension 

(f  denotes a ground field, e.g. 
integer, poly, raf, complex, etc.) 

a) Initialization: 

n,k integer; n > k ;  k>  1 

a is [a I ..... an]; a i # a  j ( i# j )  

b) Sk(a)----totality of distinct sequences of k distinct elements 

chosen from [a I ..... an]: 

S0(a)= {[1} 

Sk(a)--Ui<i<n{[ai] join Sk.l([a j for 1 < j < n l  j~i])} 

c} Sk, n -- totality of sequences of k distinct integers chosen 

from 1 to n: 

Sk,n = Sk([1,2 ..... n]) 

d) perm(a) ---- set of all permutations of [a I ..... an] 

penn(a)  = Sn(a) 

e) Qk(a) ----- totality of sequences of k distinct elements chosen 

from [a I,...,an] with strictly increasing subscripts: 

Qk(a)--{x e Sk(a) I ¥1<i<k(x . i<x-( i+l ) )}  

f) A more efficient definition of Qk(a),  using Qik(a)=  

subset of sequences in Qk(a) having a i as first element: 

Qk (a) ---- UI <i<n-k+l Qik(a) 

Qil(a)  -- [ai] (1 < i < n )  

Qik(a) -- [ai] join {QJk_l(a) for i < j < n - k + 2 }  

(1 < i < n - k + l , k > 2 )  

g) Qk,n = totality of strictly increasing sequences of k 

integers chosen from 1 to n: 

Qk.n = Qk ([1 '2 ..... hi) 

h) Ek(a ) = k th elementary function of [a I ..... an]: 

Ek(a) = ~S e Qk(a) l-I S 

or, Ek(a) --- ~S e Qk,n l-li e S ai 

Figure 6. Combinatorial  Examples 
(key: [a] join [b,c] ÷ [a,b,c]; 

[a] join {b,c} -+ {[a] join b, [a] join el)  
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7. CURRENT IMPLEMENTATION 
The present SCRATCHPAD system has evolved from 

earlier versions [3] and [8] and has been implemented in LISP 
primarily by J.H. Griesmer and the author. The system runs 
on the VM/370 and TSS time-sharing systems at the IBM 
Research Center, Yorktown Heights, New York. 

SCRATCHPAD includes significant portions of other 
systems such as REDUCE2[12], MATHLAB[7], and SIN[17] 
which have been adapted for use in SCRATCHPAD by J.H. 
Griesmer and the author. Among the symbolic facilities 
currently available to the user are: manipulation of rational 
functions,  polynomial greatest common divisor, user- 
controlled simplification, differentiation (all originally from 
REDUCE); polynomial factorization (from MATHLAB); 
symbolic integration (from SIN); and new facilities for manip- 
ulation of sequences(Maps) and sets, solution of equations, 
unlimited precision rational arithmetic (up to 9000 decimal 
digits), access to the FORTRAN subroutine library (due to 
H.F. Trotter), truncated power series, and symbolic matrix 
and APL array operations. Two dimensional output of ex- 
p r e s s i o n s  is p r o v i d e d  by a m o d i f i e d  v e r s i o n  of  
CHARYBDIS[15] (due to F.W. Blair). 

The following components of the SCRATCHPAD lan- 
guage have been implemented much as described here since 
early -1971: interpreter and evaluator with Markov model and 
L r E statement format; explicit, implicit and virtual Maps; 
predicate sets; iterators; and syntax extensions (implemented 
using M E T A / L I S P  [13] and META/PLUS[14 ] ) .  The 
"history file" concept allowing conversational backtracking 
was implemented in early 1972. The following represent 
some of the more recent ideas and/or work in progress on the 
user language: types and type extensions; handling of implicit 
and virtual sequences in patterns; implementation of Se- 
quences using generators; modifications to existing input and 
output translators to handle more general forms of syntax 
extensions; generalized Statements: compiler design and 
implementation. 

Communication to SCRATCHPAD is currently via 2741 
or 3277 terminals with either the EBCDIC or APL character 
set. Algebraic expressions are expressed on input as in FOR- 
TRAN. Subscripts, superscripts, etc. are linearized according 
to a few simply stated rules. Various character substitutions 
are used, e.g. SUM for Y-, PROD for H, .(). for {}, etc. Out- 
put is in 2-dimensional form(except when intended for subse- 
quent input to the FORTRAN compiler). 

8. ACKNOWLEDGEMENTS 
The author would like to thank S. Bourne (Cambridge 

University), R. Loos (University of Utah), A.C. Norman 
(Cambridge University and IBM Research), P.C. Gilmore, 
J.H. Griesmer, D.Y.Y. Yun, and others at IBM Research, for 
many useful discussions and suggestions with regard to this 
paper. The choice of Sequence as the basic aggregate object 
was inspired by conversations with P.C. Gilmore. Section 5 
and parts of Section 4 were done with the help of A.C. Nor- 
man. The provision for parameterized types was suggested 
by R. Loos.  The procedural  language programming 
style(with let and cases) was motivated by [2]. The design of 
set theoretic notations was influenced by the work of Earley 
[61 and others. 

I11 

REFERENCES. 
[1] Anderson, R.H., "Programming on a Tablet: A Proposal 

for a New Notation", in [16] 
[2] Allen, C.D., Chapman, D.N., and Jones, C.B., "A For- 

mal Definition of Algol 60", Technical Report 12-105, 
IBM United Kingdom Laboratories Limited, Hursley 
Park, Winchester Hampshire, August 1972 

[3] Blair, F.W., Griesmer, J.H., and Jenks, R.D., "An Inter- 
active Facility for Symbolic Mathematics", Proceedings 
of the International Computing Symposium, Bonn, 
Germany, 1970, pp. 394-419 

[4] Brown, W.S., ALTRAN User's Manual, Bell Telephone 
Laboratories, Murray Hill, New Jersey, 1971, Third 
Edition, November 1973 

[5] Burge, W.H., "Even More Structured Programming", 
IBM Research Report RC 4604, October 31, 1973 

[6] Earley, J., "Relational Level Data Structures in Program- 
ming Languages", University of California, Berkelely, 
California, 1973 

[7] Engelman, C., "The Legacy of MATHLAB 68", in [ 18] 
[8] Griesmer, J.H., and Jenks, R.D., "SCRATCHPAD/I  - 

An Interactive Facility for Symbolic Mathematics", in 
[18]. (Also available as IBM Research Report RC 
3260) 

[9] Griesmer, J.H., and Jenks, R. D., "The SCRATCHPAD 
System", IBM Research Report RC 3925, July 1972 

[10] Griesmer, J.H., and Jenks, R.D., "SCRATCHPAD: A 
Capsule View", in [16]. (Also available as IBM Re- 
search Report RC 3972, August 1972) 

[11] Hall, A.D., Solving a Problem in Eigenvalue Approxi- 
mation with a Symbolic Algebra System, SIGSAM 
Bulletin No. 26, June 1973 

[12] Hearn, A.C., "REDUCE2: A System and Language for 
Algebraic Manipulation", in [18] 

[13] Jenks, R.D., "META/LISP: An Interactive Translator 
Writing System", IBM Research Report RC 2968, July 
1970 

[14] Jenks, R.D., "META/PLUS:  The Syntax Extension 
Facility for SCRATCHPAD", Proceedings of the IFIP 
Congress 71, C.V. Freiman (Ed.), North-Holland, 
Amsterdam, 1972, pp. 382-384. (Also available as 
IBM Research Report RC 3529) 

[15] Millen, J.K., "CHARYBDIS: A LISP Program to Dis- 
play Mathematical Expressions on Typewriter-like 
Devices", in Interactive Systems for Experimental Ap- 
plied Mathematics, M. Klerer and J. Reinfelds, eds., 
Academic Press, New York, 1968, pp. 79-90 

[16] Morris, J.B. and Wells, M.B., ed., Proceedings of a 
Symposium on Two-Dimensional Man-Machine Com- 
munication, SIGPLAN Notices, Volume 7, Number 10, 
Association for Computing Machinery, New York, 
October, 1972 

[17] Moses, J., "Symbolic Integration", Project MAC Report 
MAC-TR-47(Thesis), Massachusetts Institute of Tech- 
nology, Cambridge, Mass., December 1967 

[18] Petrick, S.R., ed., Proceedings of the Second Symposi- 
um and Algebraic Manipulation, Association for Com- 
puting Machinery, New York, March 23-25, 1971 


