
The SCRATCHPAD Language

"By relieving the brain o f all unnecessary
work, a good notation sets it f ree to con-
centrate on more advanced problems... "

-Al f red North Whitehead
ABSTRACT. SCRATCHPAD is an interactive system for
symbolic mathematical computation. Its user language, original-
ly intended as a special-purpose non-procedural language, was
designed to capture the style and succinctness of common
mathematical notations, and to serve as a useful, effective tool
for on-line problem solving. This paper describes extensions to
the language which enable it to serve also as a high-level pro-
gramming language, both for the formal description of mathe-
matical algorithms and their efficient implementation.

1. INTRODUCTION
S C R A T C H P A D ([3],[8],[9],[10]) is an experimental

interactive system for on-line symbolic mathematics under
development at the IBM Thomas J. Watson Research Center,
Yorktown Heights. This paper describes ongoing work on
the design and implementation of the user language and inter-
face to the SCRATCHPAD system.

The SCRATCHPAD language has been described as a
two-dimensional language designed for interactive symbolic
computat ion, and for eventual use in on-l ine exploratory
research with graphical i npu t /ou tpu t . Work has recently
begun on a compiler for the language and on new facilities for
types and extensions. These new features have been added
so that SCRATCHPAD may also be used as a language for
the formal description of algorithms as well as a source lan-
guage for their efficient implementation. The language de-
sign presented here is an attempt to unify 5 language con-
cepts within a single language.

1. A declarative language suitable for the interactive
definition and manipulation o f symbolic formulae and
expressions. A conversation with SCRATCHPAD consists
of a sequence of commands issued by the user. Each com-
mand is processed before the next is read. There are basically
two uses of commands: (1) to create transformational rules
(intuitively speaking, "definit ions"), and (2) to manipulate
expressions. Commands consist of a 'main' statement option-
ally followed by one or more 'qualifying'statements grouped
to the right. Statements have the format: L r E, where L and
E are expressions and r is a relational operator. The follow-
ing 3 commands, for example, define a recurrence relation for
the Legendre polynomials:

p0 = 1

pl--X

p n = ((2 n - l) xX×Pn_l - (n - 1) × Pn_2)/n (n > l)

Here, definitions are stated in an incremental ("piecewise" or
"recurrence relation") style frequently used in mathematics.
This style puts the "main thought" first and trailing thoughts
afterward. The "main thought" is the definition, the trailing

R. D. Jenks
Mathematical Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

thoughts are qualifiers which restrict the range over which the
definition is valid.

As a language for manipu la t ion , the concept of the
workspace (abbreviated by "ws") is very useful. If the user
wishes to display an expression, say E, he issues a command
to load the workspace with that expression. This is written
" w s = E " , or simply, "E" . Once an expression is in the
workspace, it may be operated on, e.g.

.ftws (u=f(t) ×cos(t), exp= 1)

means: "integrate the current expression in the workspace
with respect to t where u=f(t)×cos(t) and e x p = l ; then put
the result back into the workspace and display". The state-
ment "exp= 1" causes expressions to be expanded during
evaluation. Here the "main" thought is the manipulation to
be performed, and the trailing thoughts are local modifica-
tions to the environment to be used in evaluation.

Each new value of the workspace is assigned a consecu-
tive integer and is stored into a history file from which it may
be l a t e r r e t r i e v e d . T h i s h i s t o r y f i l e p r o v i d e s a
"conversational backtracking" facility which, among other
benefits, enables a user to completely restore the environ-
ment which existed prior to any previously issued command
19].

2. A pattern matching language with evaluation de-
scribed by a Markov algorithm. From the SCRATCHPAD
user's viewpoint, symbolic computation simply involves the
transformation of expressions from one form into another.
Transformations are governed by a Markov algorithm operat-
ing on a stack of "replacement rules" (see Figure 1). The
stack has two parts: a system part and a user part (initially
empty). The system stack consists of "built-in" transforma-
tion rules which the user normally wants applied automatical-
ly, e.g. x× 1 + x and 0+x + x. An expression is evaluated by
scanning the stack from front to back in search for an appro-
priate rule. If a rule causes a substi tution to be made, the
transformed expression is then evaluated, etc. until no further
changes are possible. The resulting expression is called the
value of the original expression. For example, with the above
two rules, the expression 0+ 1 xx has value x.

All user commands with L r E statements add rules to the
user part of the stack. The L part denotes a pattern, the E
part, a replacement. For example, if the user issues the above
recurrence relation, then the stack in Figure 1 (a) is augment-
ed to that in Figure 1 (b). Commands consisting of simple
one-line L r E statements as above are typical. On the other
hand, the E part may consist of a multi-line procedure, or, the
left part L may specify a pattern for an integration rule or
combinatorial identity, e.g.

Y~O<k<nCk.n×COS(k×x)=2nxcoS(nxX/2)×(COS(X/2)) n

101

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942572.807051&domain=pdf&date_stamp=1974-03-28

Back

I xX "+.X

x+0 + x

I • Front

I n i t i a l l y

Empty

(al

Direction

Back

I x x ~ x

x+0 ÷ x

po ÷ I

pl -*- x

Pk ÷ -" WHEN k>2

(b I I~" Front

Figure I . Simplified Stack Model

System

Slack

I
- - h

J

User

Stack

By means of user commands, the interactive user is able
to directly introduce into the system special purpose transfor-
mation rules" necessary for the solution of his problem. New
rules take priority over existing rules. Rules may also be
selectively "cleared" (removed from the stack) or "frozen"
(user rules become system rules).

One principal value of this Markov algorithm approach is
that it provides a simple model for symbolic mathematical
computation. A second is that it results in a non-procedural
style of programming: the order in which transformation rules
with non-overlapping domains are created is irrelevant to
subsequent computa t ional results. Another virtue of this
approach is that it unifies the notions of procedural exten-
sions and pattern-match extensions. Indeed there is no se-
m a n t i c d i s t i n c t i o n b e t w e e n s t a t e m e n t s of the fo rm
cos(x) 2=-1-sin(x)2 and a procedure definition. Finally, the use
of pat terns f requent ly enables one to explicitly describe a
transformation or computation without stating how it is to be
done, e.g.

reverse([x I Xn])=[x n x 1]

Pattern-matching may also be indicated by an is relator, e.g. u
is x+y, used either explicitly at the top level or inside condi-
tional expressions, or implicitly in cases expressions. Consid-
er, for example,

~t u~-- cases ' - U

x+y: i~tx+i~ty (x,y#0)

On evaluation of an expression of the form Ot u, the pattern
x+y is applied to u. If a match occurs, x and y are bound to
the matched subexpressions and the right member of the pair
is evaluated to become the value of the conditional expres-
sion.

3. An extensible language. The extensible approach to
system design is essentially that of providing a "core" system
which is relatively easy to learn together with a means of
extending that core in a variety of ways. We believe the
arguments for such an approach to be especially valid for a
symbolic mathematical system expected to provide a natural
on-l ine interface to people with widely varying interests,
backgrounds, and problem requirements.

Extensions to SCRATCHPAD are made in three ways:
(1) through L r E statements described above which provide
for both pattern-match and procedural extensions; (2) syntax
extensions and generalized transformations which permit new
notations to be both introduced into the language and trans-
formed (Section 4); and, (3) "type" extensions which allow
new data types to be added (Section 5).

S C R A T C H P A D is descr ibed here as two systems: a
"basic" system and a "standard" system. The basic system
contains only basic transformations (such as those for manip-
ulat ing and simplifying polynomial and ra t ional func t ion
expressions, but, e.g. no knowledge of trigonometric func-
tions), a basic language (which enables the user to state com-
mands, form expressions, but which has no specialized nota-
tions such as ' I x I ') ,and primitive types (such as integer, real,
and sequence, but not, e.g. sets, matrices, and complex num-
bers).

The s tandard system is the one generally available to
users. It is derived from the basic system almost ent irely
through compiled extensions of the above 3 types. Exten-
sions are stored in files which may be modified to suit an
individual user 's needs or tastes. In addit ion, a l ibrary of
"pre-programmed" extension modules are available. These
allow such special symbolic packages as matrix manipulation,
t runcated power series, and gaussian integers to be loaded
into the system on request.

The extensible approach is a useful one for reasons of
flexibility, simplicity, and convenience. It is also valuable as a
pedagogic device. The new user first learns only the basic
language, its relatively simple syntax and semantics. Once
learned, the user is then taught a hierarchy of notations de-
rived from basic notations. For example, although 'plus(x,y)'
is the primitive form for addit ion, extensions in s tandard
SCRATCHPAD allow plus to be expressed in a variety of
ways, e.g. ' x+y ' for ' p lus (x ,y) ' , '+ /u ' for the APL operation
' reduct ion(u,plus) ' , 'E u' for ' + / u ' , ' Z . . . ' for ' + / [u for ...]',

'3"ni=mU' and ' ~ m < i < n u ' for '~i~[m n]U', ' ~ m < i u ' fol
'~ie[m....]u', etc.

4. A formal description language allowing data repre-
sentation free programming. The SCRATCHPAD language
is called formal in the sense that tran-sformations may be
expressed by mathematical notations in machine independent
form. Transformations can be described separately for each
operator, argument type, and pattern. A significant feature is
that t ransformat ions may be given in data representation
independent form. Like LISP, da ta and p rog rams in
SCRATCHPAD have a similar syntax. Unlike LISP, howev-
er, programs generally describe transformations on expres-
sions independent of their internal representation. ,Declara-

102

tions of data type intended for compiler consumption may be
placed outside of the program description itself. For exam-
ple, in the above cases example, the program is given in the
context where argument t is declared as an ' identifier ' and
argument u, a rational function. These declarations are often
irrelevant to the unders tanding of the program, and only
serve to give efficient object code on compilation. When
order is important, conditional expressions may be used.

5. A high-level implementation language. The language
is intended to serve both as a language for the formal descrip-
tion of algorithms and as a language for interactive manipula-
tion of mathematical expressions. It is also intended to be the
source language for the implementation of most of the under-
lying system. This combination of uses offers many advan-
tages. For example, since program descriptions are formal,
the source code itself would serve as a reference manual for
the system.

The problem of compiling efficient code involves obtain-
ing an efficient implementation of the Markov model. A key
point in its design is that no rules on the stack can control
how the scanning is done. As a result, the Markov model can
be implemented without the use of a stack at all. Rules are
simply converted into conditional expressions which are hung
on identif iers represent ing variable and operator names.
Successive rules for the same operator cause a conditional
expression representing the set of transformations to incre-
mentally grow. When a "compile" command is issued, user-
defined rules are compiled and become part of the system
stack. When new user-defined rules are created for operators
for which there already exist system-defined rules (such as
+,×, etc.), the compiled code representing the system-defined
rules is embedded in new code to first check the new rules.
On compilation, the source code for the system-defined rules
is retrieved, combined with the code for the user-defined
transformations, optimized, then recompiled.

The compilation of the cases statement has an unusual
requirement. Here the code used to do the pattern matching
is clearly dependent on the type of the arguments, in particu-
lar, a canonical form chosen for representation of the expres-
sions. The choice of an appropriate canonical form for a
computat ion can dramatically effect the performance, and
SCRATCHPAD has several. For each such canonical form,
specially prepared text describes the meaning of each canoni-
cal form in terms of LISP prefix form. The compiler then
references this text to produce appropriate code for pattern
matching.

The SCRATCHPAD evaluation model while providing a
simple explanation for evaluation, is nevertheless LISP-like
e v a l u a t i o n in d isguise . If one regards exp re s s ions as
operator-operand trees, operands are generally evaluated first
then the operator is applied to the operands as in LISP. The
significant difference here is that command-level evaluation is
to be idempotent: evaluation involves continuous transforma-
tion of an expression until no further t ransformat ions are
possible. Evaluation thus produces a constant relative to the
environment of evaluation.

2. LANGUAGE OVERVIEW
The SCRATCHPAD language has four major parts of

speech: Primitives, Expressions, Statements, and Commands.
Primitives are Constants, Designators, and Sequences (note:
throughout the remainder of the paper we will use capitalized
nouns to denote parts of speech).

Constants. Constants are Numbers and Strings. Numbers
are of two types: Integer and Real. Integers consist of strings
of digits of indefinite length. Symbolic calculations generally
use unlimited precision rational arithmetic to ensure that
numerical'coefficients remain fully accurate. Reals are writ-
ten in a conventional way. Strings are strings of characters
delimited by enclosing quotation marks: 'abc' .The symbol "
denotes the empty string.

Designators. Designators are used to "name" Expressions
and serve as denotations for symbolic constants and indeter-
minates in the program. Two types of Designators are: Iden-
tifiers and Forms. Identifiers are strings of letters and digits
beginning with a letter. Certain "special" Identifiers[9] have
special meanings, e.g.:

Special Identifier: Effect:
exp if exp= 1, Expressions are fully

expanded during evaluation
gcd if gcd= 1, greatest common divisors

of rational expressions are
removed during evaluation

factors if factors= [x I Xn],
products of powers of the xi's
are factored out on output

A Form may have subscripts, superscripts, pre-subscripts,
pre-superscripts, and functional arguments, in any combina-
tion and to any depth, e.g.

xi xi,j x i. j,k Xi,jk(U'V) "'"

Forms are used to represent parameterized objects(such as x i,
x(i), log(x), etc.). Certain special Forms[9] denote system
provided transformations, e.g.:

Special Form: Use:
factor(e) factors polynomial e over the integers
solve(e,x) solves e=0 for x (e.g. e=[e I en]

linear in x=[x I Xn])
coeff(x,n,e) returns coefficient of x n in e

(when x,n, e are Sequences, the result
is a higher-dimensional Sequence)

A third type of designator, the Hyphenation, is discussed in
Section 5.

Sequences. A Sequence is an ordered list of heterogene-
ous Exl~ressions, separated by commas and enclosed in square
brackets, e.g. S=[e t en]. The Expressions e i are called the
"elements" of S. The symbol [] denotes the empty Sequence.
Sequences are of four categories. (1) An Explicit-Sequence
is a series of Expressions separated by commas, e.g. [1,2,3].
(2) An Implicit-Sequence is similar but is one which contains
at least one ellipsis Expression (...), e.g. [1,2,...]. A Sequence
of one of the a bove two c a t e g o r i e s is also ca l l ed an
Enumerated-Sequence. The remaining two categories are

103

those which conta in a for or a s.t. (such-that) clause: (3)
Virtual-Sequences are those which contain an explicit itera-
tion clause introduced by a for, e.g., [x(i) for i e S]. Finally,
(4) Predicate-Sequences are those which contain no explicit
i terat ion clause but conta in a predicate preceded by s.t.
(written here " l "), e.g. [xi I i>0].

Expressions. Expressions represent the objects manipu-
lated by the user. An Expression is either a Primitive or a
syntactically allowed combination of Primitives, operators,
ellipses, and brackets. Ellipses are used in patterns to indi-
cate missing parts. Within Sequences the Expressions border-
ing the ellipsis are assumed to indicate an evident arithmetic
p r o g r e s s i o n , e .g. [x (l) , x (3) ], [x i (t) , x i (t 3) ],
[Xl,2(t2),x3,2(t 4)]. Operators are of three types: infix,
prefix, and suffix. Some operators (e.g. + and ×) have asso-
ciated n-ary prefix operators, (e.g., E and H) in which case
they have a variety of acceptable formats, e.g. for Z:

~n=l Zi ~ieS Zl_<i_<n Zl<i_<n

Other prefix operators include ¥, :1, ~, .1", U, 13, and various
operators for searching over aggregate objects.

The APL convention for reduction over a sequence may
be used in standard SCRATCHPAD to convert an infix oper-
ator to an n-ary prefix operator, e.g. if x=[x I Xn] where
each of the x i is scalar (not a Sequence, Set, etc.) then + / x
will evaluate to x t + . . . + x n. If at least one x i is not scalar,
then + / x transforms to [+ / x I +/Xn]. In addition, +[n] /x
is used to force reduct ions over the n th d imension of the
Sequence.

Two other types of Expressions are Condi t ionals and
Blocks. A Conditional Expression is expressed using a) if as
an infix operator(the basic form), e.g. 'e I if Pl else ' (b) by
the conventional 'if Pl then e 1 else .. . ' , or, c) by a cases ex-
pression, e.g. 'cases:(pl:el ; . . .) ' . In addition, the Expression
'cases: u; (a l : e l ; . . . ; an : en) ' is an allowed abbrevia t ion for

'cases: (u is al: el; . . . ;u is an:en)'.
A Block Expression consists of one or more Commands

separated by semicolons and enclosed between begin and end,
or between round parentheses when no ambiguity arises.
Commands are executed in sequence until a return expression
is encoun te red which causes an immediate exit from the
Block. Gotos are not allowed.

Statements and Commands. An entire SCRATCHPAD
interactive conversation, e.g., consists of a sequence of Com-
mands, and thus might be regarded as a Block. A Command
consists of one or more Statements separated by commas and
optionally qualified or iterated as described below. State-
ments within a Command are executed in parallel.

The general form of a Statement is: L r E , where L and
E are Expressions, and r is one of the ten relators:

= #: < < > > e / is not

More precisely, L may be an Expression containing operators
outside parentheses with precedence exceeding that of the
relators. Other operators may appear in L and E but must be
enclosed in parentheses.

In addition to the above Commands wh.ich are called
"Rule~Commands", are "Special-Commands" (e.g. special,

type, syntax), and "System-Commands" , identified by the
prefix ")". System-Commands are either utility commands
(e.g.)edit) , commands to alter or clear the history file (e.g.
)freeze and)clear), or commands to initiate backtracking(e.g.
)revert). System-Commands are otherwise distinguished
from the first two categories for two reasons. First, System-
Commands may only be issued at the conversational level
whereas Rule- and Special-Commands may appear within
Blocks in the E part of a Statement. Second, Commands in
the first two categories may be backtracked; incremental
changes to the system which result from their execution are
appropriately recorded on the history file so as to make their
effect reversible. System-Commands are never recorded on
the history file and are not reversible.

We now describe two aggregates in standard SCRATCH-
PAD which are derived from Sequences, and then "iteration"
and "qualification".

Sequences and Derived Aggegrates. In SCRATCHPAD,
the Sequence is the fundamental aggegrate object. All other
aggregate types required in the system must be derived from
Sequences through type extensions. Two such types provided
in the standard language are Sets and Maps. In both of these
cases, the type further breaks down into four categories of
Sequences.

Sets. A Set S is a sequence of dist inct heterogeneous
Expressions separated by commas and enclosed in braces, e.g.
S = {e 1 en}. The Expressions e i are called the elements of
S. The symbol [] denotes the empty Set. Explicit-Sets are
treated as explicit-Sequences in which elements are canoni-
cally ordered and where duplicate elements are removed.
One useful category of Sets is the Predicate-Set which has the
form [x [p] where x is generally a Identifier and p is some
predicate usually involving x.

Maps. A Map M is a sequence of pairs si:e i separated by
semi-colons and enclosed in angle brackets, e.g.

M-- <s 1 :e 1 ;...;Sn:en >

where the s i and e i are Expressions. The Expressions s i,
called the selectors of M, must be distinct. The Expressions
ei, called the components of M, are distinct from special value
NIL but otherwise arbitrary. The symbol < > denotes the

empty Map.
A Map denotes a mapping with domain(M) ={s I Sn],

and range(M)={e| en]. Infix operator (.) is used to apply
Maps to domain Expressions, i . e . M . s i evaluates to e i for all
ie [1 n]. The value of M.s where s / d o m a i n (M) is NIL.
When M.s is given on the left hand side of a Statement, an
element will either be replaced by or inserted into M accord-
ing as s e or fdomain (M) . The Statement M.s=NIL is used
to remove a pair from the Map.

A few conventions are used in specifying Maps. When
successive components are the same, only the last component
need be written, e.g. if e l = e 2 e m then M may be ex-
pressed as <Sl,S 2 Sm:em...>. Omitted selectors take on
assumed values. If s! is missing, it is defined as 1. A missing
si, i > 1, is taken to be S i_ l+ l . Thus, <el;...;en > is short for
< l : e l ; . . . ; n : e n > , a n d < m : e l ; . . . ; e n > m e a n s
< m:e i ,m+ 1 :e2 ; . . . ;m+n- 1 :en > , etc.

104

Maps are extremely useful data structures in symbolic
manipula t ion . One relevant special Form is comap(x,e)
which on evaluation "decomposes" a polynomical e in x to a
Map (Examples 3c) and 3d) in Figure 2).

1. Examples of Sequences

a) [a,b,u/v,[u,v]]

b) [xl,x 2 Xn]
c) [x i for i e S]
d) [xi] (i e S)

2. Examples of Sets
a) { 1,2,4,5}

b) {x I Xj_l,Xi+ I Xn}
c) {x i for itS l i#j}
d) Ix I f(x)=O}

seq. of 4 elements
seq. of n elements (n symbolic)
=b) with S=[1,2 n]
=c) (using range convention)

set of 4 elements

=a) with x i=i ,n=5, j=3
=b) with S={1,2 n}
a predicate-set

3. Map representation of polynomial u=(xS-5x3y3+2y 3)
a) <0:2y3;3:-Sy3;5:1 > with lead variable x
b) <0:<5:1 > ; 3 : < 0 : 2 ; 3 : - 5 > > with lead var. y then x
c) <xS:l ;x3:-5y3; l :2y3> result of comap(x;u)
d) <xS:l ;x3y:-5;y3:2> result of comap([x,y],u)

4. Maps as structures
a) <real:5; complex: 1 > complex integer
b) < comp:Bach;opus: 32;title: 'Tocatta in G';inst:organ >

Figure 2. Examples of Sequences, Sets, and Maps

Iteration. A sequence of Expressions or Sta tements
separated by commas is optionally followed by an "iterator"
construction introduced by the infix operator for. Two mean-
ingful forms of the iterator are: ' for ieS', to iterate over a
single sequence, and 'for (lieS I ineSn)' , to iterate over
several in parallel. In addition, an i terator may conta in a
selection predicate introduced by a such-that clause, e.g. 'for
ieS I p(i)'.

If S denotes an Explicit-Sequence, then the evaluation of
'e for i e S' causes e is to be repeatedly evaluated as i runs
over the successively generated e lements of Sequence S.
When the iterator has a selection predicate, e.g. 'i e S I p(i) '
then p(i) is a predicate local to the iterator and acts as a filter.
The predicate is evaluated for each value of the index i. If
p(i) is FALSE for some value of i, that value of i is not gener-
ated. When S is not an Enumera ted -Sequence , then the
iteration is not carried out and the sequence remains in virtual
or predicate form. In the standard language, other forms of
iteration (using while, until, unless, repeat, and do constructs)
are provided. Typically these are displayed after the body of
the iteration, and result in a format similar to that suggested
by Anderson in [1].

C o n v e n t i o n . W i t h s p e c i a l I d e n t i f i e r , r a n g e -
convent ion= 1, Expressions enclosed in brackets which con-
tain free Identifiers ranging over a Sequence are agreed to
have implicit iterators, e.g. using this convent ion with ieS,
{x i} and [xil j# i] expand to {x i for ieS} and [x i for ieS I j# i]
respectively. This convent ion is assumed throughout this
paper.

Qualifiers. A sequence of Expressions or Statements

separa ted by commas can be opt ional ly ' qua l i f i ed ' by a
where-clause consisting of the infix operator where followed
by an Expression, normally a Block, as its right argument, e.g.

u=ws-be ta×f (y) where (Sk=k×c, exp= 1)

The where-clause causes the left argument of the where to be
evaluated in a local environment created by executing the
r ight a r g u m e n t of the where. O p e r a t o r where is le f t -
associative so that multiple qualifiers are executed from right
to left. The where operator may replaced by two or more
blanks when no ambiguities arise; this convention gives rise
to the format used in the examples in section 1. An Identifier
may be used as the right argument of the where-clause in
which ease it is assumed to have a Block as its transform; in
this way, a set of t ransformation rules may be "stored" as
well as invoked by use of a single name, e.g. 'ws where
trigtoexponential'.

If b is the Block (Sl;,..;S n) and s is a Statement, then 'b
where s' may be written as 'let s; Sl;...;Sn'. The effect of the
let statemimt, e.g. 'let x=y; b' is to make x a local variable of
Block b.

3. SEMANTICS
Environment. The effect of evaluating a Statement of the

form: L r E is to create a replacement rule having the form
of a sequence of four elements:

[L(pattern) , O{condition) , r(relator) , F~replacement)]

where L and E are expressions corresponding to the L and E
parts of the Statement; and, C is a predicate describing condi-
tions on the pattern and envi ronment under which the re-
placement rule is applicable.

The ordered set of replacement rules on the stack at any
one instant in time is called the "environment of evaluation".
At the beginning of a user's session, only certain special Iden-
tifiers and Forms which denote special system names, opera-
tors, and functions have associated replacement rules; these
make up the frozen portion of the stack called the "system
stack". As the user session progresses, the user builds an
environment through the use of Commands containing State-
ments. Every such Command creates one replacement rule
which is added to the front of the stack.

Evaluation. Evaluation means the transformation of one
Expression into another through the continuous application
of rules in the current environment until no further transfor-
mations can be made. The resulting Expression is called the
value of the original Expression. Ordinarily, the issuance of
a command L r E does not cause the evaluation of L or E or
any of their const i tuent subexpressions. In order to cause
evaluation of an expression, the expression must be prefixed
by the meta operator ~t.

The process of evaluation involves the use of a "scanning
function" for scanning the stack from front to back in search
of appropriate replacement rules. This function takes two
arguments: first an expression to be transformed (the subject)
and secondly, a set of permissible relators (the re la torse t) .
As each rule is encountered during the scan, the funct ion
determines whether or not the relator part of the rule is a
member of relatorset . If it is not, the rule is bypassed and

105

scanning continues to the next rule up the stack. Otherwise,
the pattern part of the rule is compared to the subject. If the
pattern has the same syntax as the subject except at formal
parameter positions, a match is said to occur. A match hav-
ing occurred, the condition expression is then evaluated with
formal parameters bound to corresponding argument expres-
sions in the subject.. Three outcomes are then possible: (a)
the resul t ing value is TRUE, and the rule is then said to
"apply"; (b) the resulting value is FALSE, the rule is then
said "not to apply", and scanning continues up the stack at
the next rule; (c) the value is neither TRUE nor FALSE, the
applicability of rule is then said to be "uncertain", and scan-
ning is terminated. If a rule R is found to "apply", the scan-
ning function returns both R and a form which may be evalu-
ated to scan the stack upwards from R. The "transform" of
the subject is then obtained by substituting actual parameters
f o r f o r m a l p a r a m e t e r s i n t o t he E p a r t of R a n d
"simplifying"(see below). If no rule is found to "apply" or if
scanning was terminated, the scanning function returns NIL
(indicating "no transform").

Evaluat ion of Primitives and Expressions may then be
described as follows. The value ~tc of a Constant c is c itself.
The value ttx of a Identifier x is obtained by first scanning the
stack with subject x and relatorset { '= '] . I f x has transform E,
/~x is/~E; otherwise, #x is x itself. The value ttf(a,b c) of
almost all Forms f(a,b e) is described as above except with
x replaced by f(/~a,~b /~c). Infix and prefix expressions are
eva lua ted as if r ep r e sen t ed by equ iva l en t Forms , e.g.
/~(x+y) =/~plus(x,y).

Consider the following example set of Commands:

command: rule no: replacement rule created:
i > 0 1 [i,TRUE, ' > ' , 0]

f0=l 2 [fa, a=0, ' = ' , 1]
fi = 2fi- I + 1 3 [fa,a>0, ' = ', 2fa- I + 1]
i= 1 4 [i, TRUE, ' = ' , 1]

These 4 rules leave the user stack (read "bottom up") in the
configuration shown on the right. Consider now the evalua-
tion of fi with relatorset ={ '= '] (t he usual case). As described
below, first the parameter i is evaluated. The stack is scanned
for a transform for i. Rule 4 is first encountered; the pattern
matches, the condition expression is TRUE and the relator
belongs to relatorset; therefore the transform of i is 1. Thus
~ti is 1. Next,/~l(a Constant) is 1. The stack next is scanned
for fl" Rule 3 applies and delivers the t ransform 2f0+ 1,
which is then further evaluated. First, 2f 0 is evaluated. #2 is
2. it0 is 0. Next, the stack is scanned for f0" This time a
match occurs at rule 3, but tL of the condition part is FALSE.
Scanning therefore continues to rule 2 where a match again
occurs but this time with the condition part evaluat ing to
TRUE. Since ' = ' e relatorset, the transform of f0 is 1. The
stack is then scanned for a transform for 2× 1. A match oc-
curs in the sys t em par t of the s tack and de l ive r s the
(simplified) transform 2. Similarly, #1 is 1 and then ~(2+1)
is 3. Thus ~tf i is 3.

When the applicability of a rule is uncertain, no trans-
form is given. For example, if rule 4 were replaced by i>0,
/~fi would be fi. This is explained as follows.. (a) #i is i. (A

match for i occurs at stack rule 4 but the relator ' > ' is not a
member of relatorset ={ '= '} and so the scanner returns NIL).
(b) the stack is scanned for fi" A match occurs at rule 3. The
rule associated with ' > ' in the user stack then attempts to
show i>0 is TRUE or FALSE by scanning the stack for rules
on i with relatorset ={'> ",'>'}. Rule 4 applies. But since i>0
does not imply i>0, the condition part of rule 3 evaluates to
neither TRUE nor FALSE; scanning therefore terminates
and NIL becomes the transform of fi-

The evaluat ion of other syntact ic forms is as follows.
The value #C of Conditional C--(e I if p! else ... else e n if Pn)
is #e k if there exists a k (1 _<k_<n) such that #Pl PPk-I
= FALSE and PPk = TRUE. #C is NIL in all other cases.
Value NIL may mean that some #Pi was neither TRUE nor
FALSE and that the correct choice of e k is regarded as uncer-
tain. The value of a Statement L r E is ttL in the environment
which exists after its rule has been created. The value of a
Block b=(Sl; . . . ;Sn) is obtained by computing/~s I then Ps2,
etc. until a return e is encountered; the value/~b is then #e. If
no return Expression is found, #b is #s n. The value #b where
b is (s 1 Sn), n > l , is undefined. The value of P(Sn+ I where
(s I;...;sn)) is equivalent to tt(s!;...;Sn; Sn+ I) except that rules
created by the first n Statements are removed from the stack
following the evaluation of Sn+ 1.

The evaluation of iterated forms is handled uniformly by
the mechanism of generators(following "streams" in [5]).
Generators are functional representat ions of Enumerated-
Sequences and may be "passed" as arguments in Forms. If g!
is a generator for an Explicit-Sequence [al ,a 2 an], then
there exists generators g2 gn,gn+l, such that Pgl is [al,g2],
Pg2 is [a2,g 3] , #gn is [an,gn+l] , and f ina l ly /~gn+l=NIL
signifying that all elements have been exhausted. If g! repre-
sents an Implicit-Sequence then #gk, k> 1, is similar except
that a designation for "..." may be returned as the a k part of
its value.

Ordering. All Expressions are canonically ordered on
evaluation. Ordering is handled by procedures stored as the
replacement parts of the replacement rules associated with
each primitive operator. Sums, for example, are ordered so
that, e.g. (x + l) 2 displays as: x 2 + 2 x + l . This ordering on
evaluation allows one to regard two scalar Expressions as
equal if they have the same syntax. Canonical ordering is
generally unspecified except with respect to integers where it
has the usual meaning. The relative ordering of specific iden-
t ifiers however may be prescr ibed using a special order
command[9].

Construction of Replacement Rules. The interpretation of
a Statement at the top level has the side effect of adding one
replacement rule to the front of the stack. The first step in.its
interpretat ion is to evaluate all subexpressions in L and E
preceded by at t operator; the resulting expressions for L and
E are then free of #. The second part of its interpretat ion
creates the replacement rule to be added to the stack. If L is
a I d e n t i f i e r x, t h e n the r u l e c r e a t e d is g e n e r a l l y
[x,TRUE,r,E,]. On the other hand, if L is not a Identifier,
then it is regarded as having the form f(u,v w) where the
I d e n t i f i e r s p l aced in e x p r e s s i o n s u,v w are ca l l ed

106

"statement parameters" and, by agreement[lO], indicate the
range over which the replacement rule is to be applicable.
The determination of the rule to be added to the stack in this
case involves five steps:

1. Determination o f statement parameters. The left
hand side of the rule is scanned for determining a set S of
statement parameters and a preliminary form of the condition
part C of the rule to be created. The scanning of L begins
with S = [} , and C = T R U E . As each Identifier x in L is en-
countered, the stack is searched to obtain all replacement
rules for x(one for each relator r) . If the set is non-empty,
then x is added to S. Each rule found is converted to a predi-
cate x r ' e ' and added to C (i.e. ancl-ed into C). Scanning
then cont inues into e ' for new s ta tement parameters and
conditions. Variables such as gcd, exp which have been
declared special are exceptions to the above and never con-
sidered as statement parameters.

2. Definition o f statement parameters. The L part of
the rule is expressed in the form f(a,b c) where a,b c are
unique formal parameters used in place of u,v w. A subset
S' of statement parameters may be expressed as linear com-
binat ions of formal parameters , by first (a) equat ing the
formal parameters a,b c to u,v w, then (b) solving a
linear subsystem system of equations for statement parame-
ters in terms of formal parameters. This system of equations
may be overdetermined or underdetermined. When overdet-
ermined (Figures 3b,d), certain extra equations expressed
entirely in terms of formal parameters are selected as condi-
tions to be added to C. When underde termined (Figures
3c,d) an is predicate is formed to define members of S - S'

and is added to C.
3. Qualification by statement parameters. If S t is

non-empty, the the E part is augmented by a where-clause
defining parameters x' for each x' e S' (Figure 3b).

4. Substitution and Simplification. Next, a new set of
unique formal parameters is substituted into [L, C, r, E] for
the distinct members of S . The final new rule [L ' , C ' , r,
E '] is obtained by simplifying the resulting C and E parts of

the rule.
5. Inconsistency Check. Finally, the stack is scanned

with subject = L ' and relatorset = J r ' } for each r ' #r . Each

applicable rule found is compared with the new rule to deter-

mine if the two rules are inconsistent. If so, an error is sig-

nalled and the new rule is discarded.

Statement: Replacement Rule:

(a) f (x ,x+y,x)=y [f(a,b,c), a=c, ' = ' , b - a]

(b)f(x+ y ,x-y ,2x) =g(x,y) [f(a,b,c),c=a + b, '= ' , (g(d,e)

where (d = c / 2 , e = (b - a) / 2))]

(c) f (x+y)=f (x)+ f (y) [f(a), a is b+c, ' = ' , f (b)+f(c)]

(d)f(x,x,y+z)=g(x,y,z) [f(a,b,c), a=b ^ c is d+e,

' = ' , g(a,d,e)]

Figure 3. Examples of rules created by Statements

(assume 'x,y,z arbitrary')

4. SYNTAX EXTENSIONS.
Syntax extensions are used to introduce new notations

into the language. These are special Commands of the form
"syntax p:s" where p is an Identifier denoting a new or an
existing part-of-speech (non-terminal of the grammar), and s
is a string expressing a syntactic construct. The simplest
example of its use is that of adding a new opera tor to the

language:

syntax infix-op: ' + ' 700 701

Here the left and right precedences of the operator are writ-
ten following the string to describe how argument Expres-
sions are implicitly grouped and whether the operator is left-,
right-, or non-associative.

Syntax extensions may also be used to introduce entirely

new constructs into the language, e.g.

syntax expression: ' I e I ' (e expression)

Once introduced into the language, the new construct may be
used in ordinary Statements, e.g.

I s I = length(s) (S sequence)
[x I = absval(x) (x scalar)

The effect of syntax extensions is to add a production to the
grammar. Like rules, extensions are "s tacked" with more
recent extensions taking precedence over previous ones. Also
like rules, extensions may be selectively cleared or frozen.

Syntax extensions allow new constructs to be introduced
into the language which in general cannot be transformed
using Statements of the customary form L = E , e.g.

syntax command: '... for m_<i_<n ...'

In order that these new constructs may be transformed on
evaluation as well, a generalized form of Statement is intro-

duced.
Genera l i zed Statements. Generalized Statements have the

form L ÷ R and are used to describe transformations on more
general syntactic constructs, such as those introduced through
syntax Commands. Generalized Statements L+R are equiva-
lent to ordinary Statements when both L and R are Expres-

sions.
Several additional notations are provided for conven-

ience. The Statement L÷R adds the reverse transformation

R+L to a special list of transformations performed to Expres-
sions prior to their display. In addition, the Statement L ÷ ÷ R
combines two Statements into one; its net effect is to create a
new "external" notation for an equivalent " internal" nota-

tion, e.g. ~
x+y ÷ ÷ plus(x+y)

Finally, syntax commands may be combined with user com-
mands'as illustrated by:

syntax expression:

' let s;s I ;...;s n' ÷ '(s I ;...;s n) where s'
(s,s i statement (I _< i _< n, n integer))

* The requirements of x and y which match x+y when '+' has left
precedence(Ip) 700 and right precedence(rp) 701 is as follows. If L, p,
and o denote infix, prefix, and suffix operators respectively, and a and b
are expressions, then x is a~b implies rp(L)>700: x is pa implies
rp(p)>700; similarly, y is aLb implies Ip(t)>701, y is ao implies
Ip(o)>701.

107

5. TYPES.
Every Expression has an associated attribute called its

type. P r i m i t i v e t y p e s i n c l u d e the p a r t s of s p e e c h
(uncapitalized) of the language (e.g. integer, real, constant,
identifier), denotations for various canonical forms used for
r ep re sen t ing express ions (e.g. ran (ra t iona l n u m b e r) ,
poly(polynomial), raf (rational canonical form)), and special
classes such as literal (meaning "se l f -deno t ing") , scalar
(meaning "not an aggregate"), and arbitrary (union of all
types). Buil t - in non-pr imi t ive types correspond to non-
primitive parts of speech such as expression, s ta tement ,
block, etc. A type consists of an Identifier called its "name",
an expression called its "syntax", a set of Expressions called
"selectors", a set of "coercion rules" which describe how
expressions of other types are to be converted to the given
type, and an "automatic coercion list" (see below).

A new type is introduced by a special type command
which identifies the type name, syntax, and the set of selec-
tors. For example, the statement

type complex is <re:raf, im:raf> (re,im literal)

defines a new type complex as a Map conta in ing two ele-
ments with selectors re and im. The syntax derived from the
Expression on the right serves as a predicate for screening
candidates to receive type complex on coercion.

Expressions of a given type can be created only through
application of coercion rules. Coercion rules for a new type
are introduced through Statements using the one-argument
form of the type on the left-hand side, e.g.

complex([a,b]) = < re:a,im:b > (a,b raf)

In general, if foo is a type, then foo 0 denotes its coercion
function. The evaluation of the form foo (x) where foo is a
type is handled in a special way. If foo (x) has transform e
then e is checked for having the requisite syntax for type foo
objects. If it does, e is returned with its type changed to foo.
For example, having issued the above coercion rule, the ex-

pression complex(In,b]) will then produce an expression of
type complex on e v a l u a t i o n . By a g r e e m e n t , the rule
~foo (x) fix' if x is already of type foo is always assumed.

If x is an Identifier or a Form, then the type of x unevalu-
ated is always 'identifier' or 'form' respectively. Declarations
may be given however to force replacement values associated
with x to be of a given type. This is done by issuing the state-
ment: 'x is foo ', or 'x foo ', for short, at the top level. Such
declaration causes the coercion function for foo to be applied
to all non-NIL transforms of x with an error signaled should
coercion be unsuccessful.

When a funct ion expect ing an a rgument of type foo
receives an argument of type rum #foo, then the coercion
function for foo may be applied to the argument in an at-
tempt to coerce it to type.foo. This so-called "automat ic
coercion" from rum to foo will occur only if foo is a mem-
ber of the "automatic coercion list" associated with fum.

The "automatic coercion list" is a Sequence of types to
which a given type may be automatically coerced. This list is
init ial ly empty for new types and is created or modified
through statements of the form "coerce(foo)=E ' , where E is a

Sequence of known types, e.g.

coerce(complex) = [scalar, sequence]

indicates that only scalar Expressions and Sequences are to
be automatically coerced to type complex (but not, e.g. Maps,
Sets, matrices, etc). When the automat ic coercion list is
empty for a given type (as is the case for the examples be-
low), coercion can take place only through explicit use of the
coercion function in rules, e.g. 'g(x)=g(complex(x)) , x n o t

complex'.
The coercion list also affects the evaluation of 'x foo ' at

the inner level where it is interpreted as a predicate with
side-effect. This predicate evaluates to TRUE if x evaluates
to an expression e which can be coerced to type foo, and
FALSE otherwise. More specifically, the evaluation of predi-
cate 'x foo' involves the following cases: (l) if e is of type
foo, then the value is TRUE with no side effect; (2) if (a)e is
of type fum#foo, (b)foo is a member of the automatic coer-
cion list for rum, and (c)a coercion rule for foo successfully
coerces e into expression e w , then the value is TRUE with the
s ide-effect that x is locally bound to e t . (3) in all other
cases, the value of the predicate 'x foo' is FALSE with no
side effect.

A Hyphena t ion (a hyphenated word) may be used to
indicate categories of given types, e.g. enumerated-sequence,
predicate-set, as introduced earlier. In addition, the Hyphen-
at ion may be used to introduce parameterized types, e.g.
mat r ices-over- t where t s tands for some arb i t ra ry type
(Figure 5). The kludge "x is type-t" is used to declare x to be
of type t (for some t) for the purpose of creating replace-
ment rules.

type set is sequence
syntax expression: '{...}' ÷ + set([...])

'coercion rules for sets'
sequence(S)=S (S set)
set(S) -- if S is explicit-sequence

then remove-duplicates(order(S))
else S (S sequence)

'evaluation of sets'
eval(S) = set(eval(sequence(S))) (S set)

'operations on sets'
(A,B) explicit-set
AUB={(x I xeA),(x [xeB)} 'union '

AfIB= {xeA I xeB} 'intersection'

A - B = {xeAI xlB} 'set difference'

A x B= { Ix,y] for xeAfor xeB} 'cartesian product'

#A=2×eAl 'count '

Figure 4. Set as an Extension to SCRATCHPAD

(assume extension: '[xeS I ...]' -* [x for x~S I ...1)
(note: 'for xeS ...' causes iteration over 'sequence(/~S)')

108

6. AN EXAMPLE.
The following example illustrates how a user might add a

new special purpose package to S C R A T C H P A D for the
formal manipulation of power series (this facility is available
in ALTRAN; see [4]). The need for this can be amply illus-
trated in applications, e.g. in perturbation theory where one
seeks an approx imate solut ion to an equat ion as a power
series expansion in one or more small parameters [11]. Anoth-
er applicat ion is in obtaining a power series expansion of a
function around a p o i n t to a finite number of terms• Here,
the approach of repeated differentiation is usually hopeless.
Fo r example , if one wants the power ser ies expans ion of
e X/(sin(x)3+cos(x)3) by repeated dif ferent ia t ion, one finds,
e.g. the third derivative a l ready to contain 23 terms each a
r a t i o n a l f u n c t i o n i n v o l v i n g up to t he 4 th p o w e r o f
sin(x) 3+cos(x) 3 in the denominator! Yet this example is strict-
ly a numerical problem• One can represent the power series
of e x, sin(x), and cos(x) by arrays of rational numbers and do
formal power series operations with these arrays to produce
the desired expansions• This approach results in considerable
savings in comput ing time and space required for solving
many problems•

We represent t runcated power series by expl ic i t -Maps
with domain {0 n} for some positive integer n, and whose
components are rational functions. First, a new type tps will
be introduced to represent truncated power series:

type tps is <i:raf for i e [0 n] > (n e [0,...])

Secondly, we introduce two special variables: tpsvar, to iden-
tify the power series var iable ; and, tpsord, to denote the
order of the series approximation.

special tpsvar, tpsord
tpsvar identifier
tpsord e [1,2,...]

Next, we give declarat ions to be used in forthcoming state-
ments:

a,b,c tps; p,q,n e [0,...]
i e [0 p]; a i raf ; a i s < i : a i >
j r [0 q]; b j ra f ; b i s <j:bj>
k e [0 n] ;c kraf ; c i s<k:Ck>

Here and below, we assume the range convention so that, e.g.
<i:ai> is an abbreviation for <i:a i for i e [0 p]>.

The only way to create an object of type tps is through
the use of the coercion function tpsO. Initially, we will de-
scribe the coercion function only on Identifiers, Integers, and
Maps having the requisite syntax. The truncated power series
will be "normalized" on coercion so that trailing O's are drop-
ped from the representat ion and so that the approximat ion
has at most tpsord terms.

tps(x)--<0:0,1 > if x=tpsvar else <0:x> (x identifier)
tps(n)= <0:n> (n integer)
tps (a)= <i:a i for 0<i<_m>

(m=min[tpsord,max[(i [ai¢:0),0]])

We now describe evaluation for truncated power series, first
for the algebraic operators + . - . × . and / (we take the liberty

where

a i ' = a i if 0 < i < p e l s e 0

b j ' =bj if 0 < j < q e l se 0

low(a) =min[(0< i< p I a ig0) , 1 +tpsord]

and then exponentiation:

of using some o! tlae various syntax extensions al lowed in
standard SCRATCHPAD):

- a - - c (Ck=--a k, n=p)

a + b = c (ck=a k' + b k' , n=min[tpsord,max[p,q]])

a - b = a + (- b)

a x b = c (Ck=~-0_<i_<ka i' xbk_ i' ,n=min[tpsord,p+q])
a / b = cases:

a=tps(0) : tps(0)
b=tps(0) error(0 DENOMINATOR)
T: let k=low(b)

c a s e s :

k=0: l / b 0 x a xc

(Co= 1 ;

cj------~0_<k_<j_lCkXbj_k if 0<j_<n)

(n=q; c k tps)

k>low(a) : error("TPS DIVIDE ERROR")

T : a / b where (a= <0:a k ap>,b= <0:b k bq >)

a0--tps(1) (a# tps (0))
al_-a

an--an/2×an/2 (n=2,4,. . .)

a n f a × a n - l (n=3,5,. . .)

an= 1 /a -n (n integer, n<0)

aY-- cases :

a o # O • 1 / a o x Z o < . < n C - w h e r e (co - - 1 •
• _ j _ J
c j - - (y - j + 1) / ixc j_ I ×b if 0 < j < n)

w h e r e (b-- < 0:0,a I ,a 2 ap> ; c k tps)

T:xYxbY (k--low(a); b = < 0 : a k ap>)

(x=tpsvar ,n=tpsord)

(ag tps(0) , y not integer)

with special cases:

tps(0)Yffi0

tps(1)Y-- 1
(y¢O)

(y arbitrary) ,

and, finally, differentiation and integration:

~×a--c (C k = (k + l) x a k + l , n - - p - - 1)

(n=max[O,p-- 1], x=tpsord)

.t'~a=c (c0=0; c k f a k _ l / k if k>0)

(n=min[tpsord ,p+ 1], x=tpsord)

The semantics of all of the above commands is exemplified by
that for a+b: "an expression of the form a+b , where a and b
are of type tps and have the respective formats <0:a 0 ap>
and < 0 : b 0 bq> for some p and q, t r a n s f o r m s to c =
<0:c 0 Cn> where n is defined to be the minimum of tpsord
and the maximum of p and q and where c k is the sum of a k
and bk; the final result is then obtained by coercing c to c t of
type tps which has trailing O's deleted•"

109

Next, we coerce algebraic expressions by breaking them
down recursively until special cases result:

(u,v) not tps
t p s (u+ v)= tp s (u)+ tp s (v) (u ,v#0)
t p s (u - v) = t p s (u) - t p s (v) (u ,v#0)
tps (u×v)=tps(u) ×tps(v) (u,v~|0,1 })
tps(u/v)=tps(u)/tps(v) (v # l)
tps(um)=tps(u) m (m > 0, m integer)

We now add coercion functions for common functions:
x=tpsvar ; i e [0,1 tpsord]
tps(e x)= < i: 1/i! > (e literal)
tps(cos(x)) = <i: 1/i! × (- l)i//2 × 8(i even) >
tps(sin(x))-- <i: 1 / i ! x (- I)i//2xS(i odd)>

. , o

Here 8 h is similar to Kronecker delta and defined as follows:

8TRUE = 1 ; 8FALSE----0

The suffix operators even and odd may be introduced by:
syntax suffix-op: (' even ' , 'odd ') 900
i even=i f i is 2n then T R U E else F A L S E (i,n integer)
i odd=-~ (i even) (i integer)

Finally, we create a function which will compute the Taylor
series expansion of e around the point x--0 tO n terms:

taylor(e,x,n)=(Y-0<i_<m(a.i)×xi where (tpsvar--x,
t p s o r d = n ; a = t p s (e) ; m=length(a))

(e expression,x identifier, n e [1,2,...])

m,n e [1,2,...]; ie [1 m]; j e [1 n]

aid is type-f
type f -ma t r ix is <[i,j]: ai.j>
f - m a t r i x (x) = x (xis <[i,j]: a id>)

'declarations'
p,q e [1,2,...1; k e [1 p], i e [I q]
(A,B,C) f -ma t r ix

A--<[i , j] :ai , j> (aid type:f)
B--<[k,l]:bk,i > (bk, I type:f)
C=<[i,I]:ci; i > (ci, I type-f)

'operat ions with matrices'

A + B - - C (ci,i----ai,l+bi.i) (re=p, n = q)
A - B = A + (- B)

AxB=C (Ci,l=Y.kai,k xbk,l) (n=p)
A / B = A x (I / B)

'operat ions with scalars'
x scalar
x + A = A + x--matrix(< [i,j]:ai,j+ x × 8i= j >)
x - A - - x + (- A)
xx A = A × x=matr ix(< [i,j]:xx ai,j >)

'matrix functions'
t ranspose(A) =matrix(< [j,i] :aid >)
trace(A)--Y.lai, i (re=n)
I n = A (a i j=gi=.j ,m=n)
de t (A)= Y.I(- 1)-iJ+i x a i .i x minor(A, 1 ,i) (m = n)
minor(A,p,q) =det(matr ix(< [i,j]:ai, j I i # p ^ j # q >))

(p,q e [1,2 n]; n = m)
x (A) = d e t (A - X x l n) (m = n)
submatr ix(A,u,v)=matr ix(< [ij]:ai. j for i eufor jev>)

if uc[1 m] A v e i l n]
. . o

Figure 5.
Matrices over f as a Type Extension

(f denotes a ground field, e.g.
integer, poly, raf, complex, etc.)

a) Initialization:

n,k integer; n > k ; k> 1

a is [a I an]; a i # a j (i# j)

b) Sk(a)----totality of distinct sequences of k distinct elements

chosen from [a I an]:

S0(a)= {[1}

Sk(a)--Ui<i<n{[ai] join Sk.l([a j for 1 < j < n l j~i])}

c} Sk, n -- totality of sequences of k distinct integers chosen

from 1 to n:

Sk,n = Sk([1,2 n])

d) perm(a) ---- set of all permutations of [a I an]

penn(a) = Sn(a)

e) Qk(a) ----- totality of sequences of k distinct elements chosen

from [a I,...,an] with strictly increasing subscripts:

Qk(a)--{x e Sk(a) I ¥1<i<k(x . i<x-(i+l))}

f) A more efficient definition of Qk(a), using Qik(a)=

subset of sequences in Qk(a) having a i as first element:

Qk (a) ---- UI <i<n-k+l Qik(a)

Qil(a) -- [ai] (1 < i < n)

Qik(a) -- [ai] join {QJk_l(a) for i < j < n - k + 2 }

(1 < i < n - k + l , k > 2)

g) Qk,n = totality of strictly increasing sequences of k

integers chosen from 1 to n:

Qk.n = Qk ([1 '2 hi)

h) Ek(a) = k th elementary function of [a I an]:

Ek(a) = ~S e Qk(a) l-I S

or, Ek(a) --- ~S e Qk,n l-li e S ai

Figure 6. Combinatorial Examples
(key: [a] join [b,c] ÷ [a,b,c];

[a] join {b,c} -+ {[a] join b, [a] join el)

110

7. CURRENT IMPLEMENTATION
The present SCRATCHPAD system has evolved from

earlier versions [3] and [8] and has been implemented in LISP
primarily by J.H. Griesmer and the author. The system runs
on the VM/370 and TSS time-sharing systems at the IBM
Research Center, Yorktown Heights, New York.

SCRATCHPAD includes significant portions of other
systems such as REDUCE2[12], MATHLAB[7], and SIN[17]
which have been adapted for use in SCRATCHPAD by J.H.
Griesmer and the author. Among the symbolic facilities
currently available to the user are: manipulation of rational
functions, polynomial greatest common divisor, user-
controlled simplification, differentiation (all originally from
REDUCE); polynomial factorization (from MATHLAB);
symbolic integration (from SIN); and new facilities for manip-
ulation of sequences(Maps) and sets, solution of equations,
unlimited precision rational arithmetic (up to 9000 decimal
digits), access to the FORTRAN subroutine library (due to
H.F. Trotter), truncated power series, and symbolic matrix
and APL array operations. Two dimensional output of ex-
p r e s s i o n s is p r o v i d e d by a m o d i f i e d v e r s i o n of
CHARYBDIS[15] (due to F.W. Blair).

The following components of the SCRATCHPAD lan-
guage have been implemented much as described here since
early -1971: interpreter and evaluator with Markov model and
L r E statement format; explicit, implicit and virtual Maps;
predicate sets; iterators; and syntax extensions (implemented
using M E T A / L I S P [13] and META/PLUS[14]) . The
"history file" concept allowing conversational backtracking
was implemented in early 1972. The following represent
some of the more recent ideas and/or work in progress on the
user language: types and type extensions; handling of implicit
and virtual sequences in patterns; implementation of Se-
quences using generators; modifications to existing input and
output translators to handle more general forms of syntax
extensions; generalized Statements: compiler design and
implementation.

Communication to SCRATCHPAD is currently via 2741
or 3277 terminals with either the EBCDIC or APL character
set. Algebraic expressions are expressed on input as in FOR-
TRAN. Subscripts, superscripts, etc. are linearized according
to a few simply stated rules. Various character substitutions
are used, e.g. SUM for Y-, PROD for H, .(). for {}, etc. Out-
put is in 2-dimensional form(except when intended for subse-
quent input to the FORTRAN compiler).

8. ACKNOWLEDGEMENTS
The author would like to thank S. Bourne (Cambridge

University), R. Loos (University of Utah), A.C. Norman
(Cambridge University and IBM Research), P.C. Gilmore,
J.H. Griesmer, D.Y.Y. Yun, and others at IBM Research, for
many useful discussions and suggestions with regard to this
paper. The choice of Sequence as the basic aggregate object
was inspired by conversations with P.C. Gilmore. Section 5
and parts of Section 4 were done with the help of A.C. Nor-
man. The provision for parameterized types was suggested
by R. Loos. The procedural language programming
style(with let and cases) was motivated by [2]. The design of
set theoretic notations was influenced by the work of Earley
[61 and others.

I11

REFERENCES.
[1] Anderson, R.H., "Programming on a Tablet: A Proposal

for a New Notation", in [16]
[2] Allen, C.D., Chapman, D.N., and Jones, C.B., "A For-

mal Definition of Algol 60", Technical Report 12-105,
IBM United Kingdom Laboratories Limited, Hursley
Park, Winchester Hampshire, August 1972

[3] Blair, F.W., Griesmer, J.H., and Jenks, R.D., "An Inter-
active Facility for Symbolic Mathematics", Proceedings
of the International Computing Symposium, Bonn,
Germany, 1970, pp. 394-419

[4] Brown, W.S., ALTRAN User's Manual, Bell Telephone
Laboratories, Murray Hill, New Jersey, 1971, Third
Edition, November 1973

[5] Burge, W.H., "Even More Structured Programming",
IBM Research Report RC 4604, October 31, 1973

[6] Earley, J., "Relational Level Data Structures in Program-
ming Languages", University of California, Berkelely,
California, 1973

[7] Engelman, C., "The Legacy of MATHLAB 68", in [18]
[8] Griesmer, J.H., and Jenks, R.D., "SCRATCHPAD/I -

An Interactive Facility for Symbolic Mathematics", in
[18]. (Also available as IBM Research Report RC
3260)

[9] Griesmer, J.H., and Jenks, R. D., "The SCRATCHPAD
System", IBM Research Report RC 3925, July 1972

[10] Griesmer, J.H., and Jenks, R.D., "SCRATCHPAD: A
Capsule View", in [16]. (Also available as IBM Re-
search Report RC 3972, August 1972)

[11] Hall, A.D., Solving a Problem in Eigenvalue Approxi-
mation with a Symbolic Algebra System, SIGSAM
Bulletin No. 26, June 1973

[12] Hearn, A.C., "REDUCE2: A System and Language for
Algebraic Manipulation", in [18]

[13] Jenks, R.D., "META/LISP: An Interactive Translator
Writing System", IBM Research Report RC 2968, July
1970

[14] Jenks, R.D., "META/PLUS: The Syntax Extension
Facility for SCRATCHPAD", Proceedings of the IFIP
Congress 71, C.V. Freiman (Ed.), North-Holland,
Amsterdam, 1972, pp. 382-384. (Also available as
IBM Research Report RC 3529)

[15] Millen, J.K., "CHARYBDIS: A LISP Program to Dis-
play Mathematical Expressions on Typewriter-like
Devices", in Interactive Systems for Experimental Ap-
plied Mathematics, M. Klerer and J. Reinfelds, eds.,
Academic Press, New York, 1968, pp. 79-90

[16] Morris, J.B. and Wells, M.B., ed., Proceedings of a
Symposium on Two-Dimensional Man-Machine Com-
munication, SIGPLAN Notices, Volume 7, Number 10,
Association for Computing Machinery, New York,
October, 1972

[17] Moses, J., "Symbolic Integration", Project MAC Report
MAC-TR-47(Thesis), Massachusetts Institute of Tech-
nology, Cambridge, Mass., December 1967

[18] Petrick, S.R., ed., Proceedings of the Second Symposi-
um and Algebraic Manipulation, Association for Com-
puting Machinery, New York, March 23-25, 1971

