
I. 

II. 

A HIERARCHY OF HIGH ORDER LANGUAGES FOR SYSTEMS PROGRAMMING 
Don M. Lyle 

Burroughs Corporation, City of Industry, California 

Introduction 

The programming of systems software in higher level languages has been a subject of much interest 
and debate. At Burroughs the debatability of the issue has long since ceased to exist since both 
the operating system and the compilers for the B5500 were successfully implemented in variants of 
ALGOL 60. The low manpower requirements and the ease of maintenance and modification have caused 
all concerned with the project to accept this approach without question. This technique has the 
added benefit of producing more reliable software due to the greatly reduced number of lines of 
code required. 

When the decision to produce a successor to the B5500 was made, there was no controversy over the 
use of high level languages but considerable debate over how high a level the languages should be. 
B5500 ESPOL (Executive System Problem Oriented Language), the operating system implementation 
language, contained many "unsafe" constructs, for example, the ability to directly address memory 
through a subscripted reference to an array known, strangely enough, ss MEMORY. This allowed 
coding errors to produce undesirable side effects on the system. Examination of the algorithms 
used in most operating systems indicated that surprisingly few routines actually require such 
"unsafe" tools leading to the conclusion that the proper approach to the coding of the overall 
systems software might be a hierarchical set of systems programming languages with varying degrees 
of "safety." 

The hardware facilities of the B67005 were designed with this fact in mind. For example# array 
bounds protection is provided in the hardware which the "user" programmer cannot circumvent and the 
"systems" programmer must consciously work to circumvent. 

B6700 Extended ALGOL 1 as a Systems Programming Language 

The object of B6700 Extended ALGOL is to allow the programmer access to all machine and operating 
system facilities within the constraint that his program may not adversely effect other programs 
not created by the current execution of his program. The flexibility of the language is illus- 
trated by the fact that all B6700 compilers, including the Extended AI~OL compiler itself, are 
written in Extended ALGOL. The Extended ALGOL compiler compiles large programs at a rate in excess 
of 4000 card images per minute thus proving that it is possible for a compiler implemented in a 
high level language to be both reasonably fast and to generate reasonably efficient code. The 
claim that the code generated is efficient is supported by noting that the compiler, which runs at 
reasonable speed (and is therefore reasonably efficient), is an ALGOL program. 

Certain extensions have been made to the ALGOL 60 language to facilitate its use as a systems 
programming language which, by the way, makes it a more powerful user language. These include, 
among many others: 

1. Bit manipulstion facilities 

IF X.[5:2] = 3 THEN X.[9:I] := i; 

The above statement tests the two bits beginning at bit number five of the current 
value stored in the variable X against the value 3. If equal, then bit 9 of the value 
of X is turned on. 

2. 

X := Z & Y.[31:20:15]; 

The value of X is replaced by the bit pattern at Z which is modified beginning at the 
31st bit by the 15 bits beginning at bit 20 of the variable Y. 

Recursion 

The ALGOL language allows full recursion. If efficiently implemented, this provides a 
very powerful tool for the systems programmer. For example, in B6700 FORTRAN the 
following subscripted reference to the array X is allowed: 

A = B + X(B + SQRT(X(I))) 

This (possibly useful) extension to the FORTRAN language occurred due to laziness on 
the part of the implementor of the FORTRAN compiler. Subscripts are encountered 
frequently in the compilation of arithmetic expressions. Since the implementor was 

73- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942596.807061&domain=pdf&date_stamp=1971-10-01


coding the expression routine which must, of course, compile generalized arithmetic 
expressions~ when he reached the point in the algorithm where he must call the sub- 
script evaluation routine, he elected to call himself recursively rather than go to 
the trouble of coding still another specialized expression routine. 

3. High Level Macros (Defines) 

The define capability is provided primarily for documentation and maintainability. 

DEFINE STATUS = [5:2]#, 
TESTPASSED = [9:1]#; 

A define indicates to the compiler that when the defined word is encountered in a sub- 
sequent statement, a direct textual substitution of the text appearing between the 
equal sign (in the DEFINE statement) and the pound sign should be made for the tokens 
parsed by the compiler. With the above DEFINE the following statement produces 
identical code to that produced by the first example under "Bit manipulation facilities" 

IF X.STATUS = 3 THEN X.TESTPASSED : = i; 

Similarly, a DEFINE may be "passed" parameters at compile time. If the following 
DEFINE, as well as the two above~ has been encountered during the compilation process, 

DEFINE TEST (Z) = IF Z.STATUS = 3 THEN Z.TESTPASSED := l#; 

then the subsequent appearance of the statement TEST(X); will again produce identical 
code to that of the first example. 

4. Inter-Program Communication 

While the ALGOL 60 language specification does not allow separately compiled procedures 3 
the EXTERNAL declaration for procedures in I%700 Extended ALGOL allows this feature. 
The system allows procedures to be explicitly "bound" to a host program prior to exe- 
cution, implicitly bound at execution time, or even to be non-existant assuming that 
the procedure is not to be called during a given execution. While itself an important 
(and necessary) addition to the language as far as effective systems programming is 
concerned, EXTERNAL procedures provide an even more useful extension to the language 
when coupled with the multi-tasking facilities described below. 

Possibly the most useful extension made to ALGOL from the standpoint of its use as a 
systems programming language is the incorporation of Inter-Program Communication (IPC) 
facilities. Software EVENTs are included which may be CAUSEd 3 WAITed upon~ or tested 
to see if they have HAPPENED. Both hardware and software I~I~RRUPTs (similar to PL/I 
on-conditions) are allowed which may be ENABLEd and DISABLEd. Any given procedure may 
be invoked via a normal procedure call~ as a coroutine partner, as an asynchronous 
process, or any combination of the three in any given program. Asynchronous processes 
and coroutines are assigned TASK identifiers by which they may be monitored and con- 
trolled through interrogation and assignment of their task attributes. 

Task attributes include as a subset those familiar in the PL/I language. Some of the 
additional attributes include: 

COREESTIMATE Estimated core storage requirement of the task (used for 
system scheduling purposes). 

MAXPROCTIME Maximum processor time to be allowed before the task is 
automatically terminated by the system. 

STATUS Current status of the task: Scheduled, active~ temporarily 
suspended, terminated. 

HISTORY Reflects cause of termination of a task: Operator termin- 
ate~ arithmetic fault, etc. 

EXCEPTIONTASK Identifier of the task to be notified of changes of status of 
this task. 

NAME By assignment to the NAME attribute of an inactive task and 
the subsequent activation of that task 8 program may refer to 

- 74 - 



III. 

any program or procedure known to the system (compilers, 
user programs, etc.). 

By appropriate manipulation of task attributes the programmer may activate as a 
dependent, asynchronous process any procedure known to him as well as any program 
known to the system (subject to security constraints) including compilers, utilities, 
and other user programs. 

A measure of the relative conciseness of B6700 Extended ALGOL is reflected in the size 
of some of the B6700 compilers. The Extended ALGOL compiler is roughly 15,000 source 
statements in length; FORTRAN IV, level H requires 12,000 card images while a full 
CODASYL 68 COBOL is implemented in 25,000 statements. 

B6700 DCALGOL 2 as a Systems Programming Language 

B6700 DCALGOL (Data Communications ALGOL) was originally intended as a slightly less safe superset 
of B6700 Extended ALGOL for the purpose of writing that portion of the systems software dealing 
with the data-communications interface to remote terminals and computers. The language contains 
many constructs dealing with handling of remote stations such as polling frequency, automatic dial- 
up, etc. It is beyond the scope of this paper to deal with this aspect of the language, therefore, 
we will concentrate on those features with which the programmer may exercise control over the 
central system. 

It was previously stated that one of the constraints upon the facilities allowed in B6700 Extended 
ALGOL was that an ALGOL program was not permitted to detrimentally affect other concurrently 
executing programs not created by itself. The design constraint placed upon DCALGOL was that a 
DCALGOL program is not permitted to detrimentally affect the operation of the operating system 
(alias Master Control Program or MCP). 

As mentioned above, the original conception of DCALGOL was that this language was a vehicle to 
control a data-communications subsystem. It has since been realized that the facilities embodied 
within the language provide a powerful, safe and convenient tool for more general systems program- 
ming. The basic differences between DCALGOL and Extended ALGOL, other than those intended speci- 
fically for data-communications, include: 

1. Messages 

Messages may be thought of as a variable length string of characters whose meaning 
lies in the eyes of the beholder. Messages passed to the Data Communications Pro- 
cessor (an outboard processor of the B6700 CPU) have a fixed format in the first six 
words (36 characters), but messages passed between asynchronous processes may have 
any format whatever. An example of a message declsration and assignment is: 

MESSAGE MESSAGETOC O~I~ROLLER; 

2. 

REPLACE MESSAGETOCONTROLLER BY "COMPILE MY/JOB USING COBOL"; 

Messages may reside in save (non-overlayable) memory if realtime response is required. 
The ALLOCATE statement assigns a fixed number of words of save memory for a given 
message. The statement 

ALLOCATE(MESSAGETOCONTROLLER, 8); 

reserves eight words for the message to be subsequently placed in MESSAGETOCONTROLLER. 

Messages form the atomic elements of Queues. 

Queues 

Queues contain messages. A message may be placed in a queue at either the queue head 
or queue tail. Since queues may be passed as parameters to procedures, coroutines or 
asynchronous processes, such routines may communicate via messages. A queue may be 
thought of as a non-symmetrical, two-dimensional array in which each row might be of 
a different length. Messages may be added to a queue head or tail via the INSERT 
statement. One form of the INSERT statement is: 

INSERT (MESSAGETOC0~ROLLER, CO~ROLQ, BOOL) ; 

- 75 - 



IV. 

In the above statement MESSAGETOCONTROLLER is linked into the queue, CONTROLQ, at 
either the head or tail depending upon the value of the boolean expression, B00L, 
true or false respectively. 

The number of messages contained in a queue grows when an INSERT statement is executed 
and shrinks when a REMOVE statement is executed. 

3 • Remove Function 

4. 

5. 

The simplest form of the REMOVE function is: 

SIZE := REMOVE(SaID, QID); 

in which the message, NSGID, is removed from the queue, QID. The message size is 
returned as the result. A possibly more useful form of the REMOVE construct is: 

SIZE := REMOVE(ARRAYID, QID); 

in which the top message in the queue, QID, is removed and placed in the array row, 
ARRAYID, and the message size is returned as the result. 

Queues may be interrogated as to their depth, concatenated to form a larger queue, 
split to form smaller queues, etc. 

Operator Communication Facilities 

The DCALGOL language contains two "known" queues. The first is a queue of messages by 
which a DCALGOL program may communicate with the operating system in exactly the same ~ 
way as the machine operator may communicate with the system. This is known to the 
compiler as OPERATORQ. The second is the queue by which the operating system commun- 
icates with the operator. The depth of this queue is an installation option and is 
specified by either the maximum number of messages retained or the maximum duration of 
retained messages. This queue is known to the system as MCPQ. 

Using these two queues, a DCALGOL program may monitor activities taking place within 
the system (such as jobs initiated independent of itself), perform scheduling, 
priority assignment and even abort jobs in the system of which it does not approve. 
In thls way a DCALGOL program may assume complete control of the system, with the 
same "power" as the human operator, subservient to the control of the B6700 MCP. 

The capability of DCALGOL is illustrated by the current implementation of the B6700 
Remote Job Entry system. Written entirely in DCALGOL and providing remote sites with 
the full capabilities of the central site, the RJE software consists of under 2300 
lines of DCALGOL source code. 

B6700 ESPOL 3 as a Systems Programming Language 

Within the current concept of the B6700 operating system, B6700 ESPOL is the high level language 
utilized for the implementation of those machine dependent aspects of the B6700 ~CP. Some of the 
facilities of the language and their uses have been adequately covered by ClearyL The ESPOL 
language contains constructs which enable one to massage the physical resources of the machine and 
is, therefore, somewhat machine dependent. Another way of stating the above is that ESPOL contains 
constructs which are unsafe. Coding errors in ESPOL routines can be disastrous to the overall 
system. 

Due to the inherent machine dependency of B6700 ESPOL, this language is of less interest to the 
subject of this paper. Even though a radical departure from generally accepted "state-of-the-art" 
practices, ESPOL is still another variant of B6700 ALGOL and, in general, quite readable by ALGOL 
programmers. The language contains constructs which allow it to directly address memory via a 
subscripted array reference, scan out control words to the B6700 multiplexor, interrogate the state 
of the physical hardware devices, etc. In theory, only those portions of the MCP actually concerned 
with manipulation of the physical resources need be coded in ESPOL with the remainder coded in 
DCALGOL or Extended ALGOL. Unnecessarily, under the current implementation, most of the operating 
system is coded entirely in ESPOL amounting to over 40,000 lines of source code. This excessive 
amount of ESPOL code will be gradually reduced as the inevitable refinements and rewrites take 
place • It should be noted, however3 that the operating system implemented is a multi-programming, 
multi-processing, dynamic storage allocation system. Considering this, the "excessive" size looks 
somewhat more reasonable when compared with contemporary systems. 

- 76 - 



V. Conclusion 

We have presented here some aspects of a currently implemented and successfully operational hier- 
archy of languages for systems programming. A large part of the success of the implementation is 
due to the fact that the B6700 systems architecture was designed with this high level language 
approach in mind. It is, nevertheless, felt that such an approach to systems programming would be 
successful regardless (or in spite of) the hardware architecture. 

Many of the ideas presented in this paper will undoubtedly be obsolete at the time of presentation 
due to the impressively fast evolution of the system implemented using these tools. Although 
large systems programming has been done in high level languages at Burroughs for over lO years 3 the 
power and flexibility of our current hierarchical approach are making themselves felt in the extreme 
flexibility in the things that may be done utilizing the system, resulting in high rate of develop- 
ment and improvement of the system. The value of this approach to software systems implementation 
is unquestioned by any of those concerned with the current system. 

- 77 - 



REFERENCES 

I. "Extended ALGOL Reference Manual." Form 5000128. (7/1971~.. 
Burroughs Corporation, Detroit, Michigan. 

2. "B6700 Data Communications ALGOL Language." Form 5000052. (11/1970). 
Burroughs Corporation, Detroit, Michigan. 

3. "B6700 ESPOL Reference Manual." Form 5000094. (11/1970). 
Burroughs Corporation, Detroit, Michigan. 

4. Cleary, J. C. (1969). "Process Handling on Burroughs B6500." 
Proceedin@s of Fourth Australian Computer Conference, 1969 
The Griffin Press, Adelaide, South Australia. 

5. "B6700 Processor." Form 1040326. (8/1971). Burroughs 
Corporation, Detroit, Michigan. 

- 78 - 


