Check for
Updates

A BOUNDARY BETWEEN DECIDABILITY AND UNDECIDABILITY FOR
PARALLEL PROGRAM SCHEMATA (Extended Abstract)

Raymond E. Miller
Mathematical Sciences Department
IBM Thomas J. Watson Research Center
Yorktown Heights, New York

ABSTRACT

Some theorems showing undecidability for computational commutativity, boundedness, termination
and determinacy of parallel program schemata are given, These results are then compared with contrast-
ing decidability results in [1] showing that the deletion of the hypothesis of repetition~freeness from the
decidability theorems produces undecidability.

I. INTRODUCTION

In attempts to better understand the structure of computer programs and to circumvent the well
known undecidability results concerning, for example, the termination and equivalence of programs,people
have turned to modeling certain restricted aspects of programs for which some more positive (decidability)
results can be obtained [1-5]. The determination and formulation of important properties of program
structure and behavior are of interest in themselves. In addition however, results that establish boundar-
ies between when such inherent properties are decidable or undecidable provide a fuller understanding of
what modifications and simplifications of programs can be carried out in an algorithmic fashion.

In this paper we extend some undecidability results of [5] to detecting computational commutativity,
boundedness, termination and determinacy, In particular, the unsolvability of determinacy holds for
finite-state schemata (Theorem 4}, This answers negatively a problem posed in [1] concerning the exis-
tence of an effective test for determinacy for the class of finite state schemata., In Section V we compare
these results with the decidability results of [1], and show that the deletion of the single hypothesis of
repetition-freeness provides a boundary between decidability and undecidability for these properties of
parallel program schemata.

II, PRELIMINARIES

To make this paper fairly self-contained we review some of the basic definitions of parallel program
schemata [1].

A parallel program schema J = (M, A,J) consists of: a set M of memory locations; a finite set
A of operations: we associate with each acA a positive integer K(a) called the number of outcomes of
a, and sets D(a) CM and R{a) C M called the domain locations and range locations of a respectively;
and a transition system control J =(Q, dg» Z, 7) where Q is a set of states, g is a designated initial
state, Z =Z; U Z, is the alphabet where Z; = ake)A{E} is the set of initiation symbols and

Z, = akejA{al,...,a

K(a)} is the set of termination symbols, and T 1is a partial transition function from

QX = to Q which is total on Q X zt.

An interpretation I of a2 schema J is given by a function C which associates a set of values C(i)
with each ieM, an initial memory contents o€ ié\/l C(i), and for each aeA two functions

Fa:ieﬁD(a)c(l) — ie)ik(a)c(i) and G _: iexD(a)C(i) - {al""’aK(a)}' For a performance of a, F_ deter-

mines the results to be stored in locations R(a) and G determines the conditional branch to be taken,
a

A finite or infinite word z over Z is called an .9 -computgtion for x? if for ¢, F_ and G

defined by d: () every prefix yo of z with ¢e¢eZ satisfies the constraints that 'r(qo,yo) is definzd,
and if o is a termination symbol for ac¢A then the number of initiation symbols @ in y is greater than
the number of termination symbols in y for operation a; (2) if z is finite then for all ceZ Condition (1)
is not satisfied for zo; (3) if x is a prefix of z and ¢eX with the property that for every y such that
xy is a prefix of z it follows that xyo satisfies (1), then for some y', xy'c is a prefix of z; (4) if xo
is a prefix of z and oe¢Z_ where ¢ 1is the ith termination symbol of operation a in xo then Ga evalu-~
ated after the ith a in x equals o.

An J -computation z thereby represents a sequence of initiations and terminations of operations
which is consistent with the schema control J and the outcome function G_. The memory locations are
read and changed by the sequence of initiations and terminations. Upon the fnitiation of an operation a the
values in locations D(a) are read. These values are then used both to compute new values for locations
in the set R(a) in accord with the function F_, and to determine the outcome of a defined by G_ for this
performance of operation a. Upon termination of the operation a the values computed by Fa are stored

116

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942578.807079&domain=pdf&date_stamp=1972-01-01

in locations R{a). In this way an Q -~computation z defines a sequence of contents for each cell ieM
and we denote this sequence by Q.(z). A more detailed definition of computations and the resulting sequ-
ences of memory values is given in [1] but this description should suffice for our current purposes.

A schema is called determinate if and only if for each pair of § -computations y and z,
Qi(y) :Qi(z) for each ieM. Two schemata ,X =(M,A,J) and ,8' =(M,A,J") are called equivalent if
for each ieM and each interpretation

{2(y) ly is an xQ-computation for ng} = {2.(z)|z is an S ~-computation for J'}.

A schema § is called bounded if there is a constant K such that for every interpretation J any prefix x of any
¥ ~computation has a number of initiation symbols which is no more than K greater than the number of
termination symbols in x. If K can be taken as 1 then the schema is said to be serial. Suppose for
schema)8, q is an arbitrary state in Q, and ¢ and W are arbitrary distinct elements of Z. is
ersistent if whenever T(q,0) and 7(q,m™) are defined then T(q,om™) and T(q,To) are also defined.

;3 is called commutative if whenever T{q,To) and T{(q,o™)} are defined then T(q,wo) = T(g,om).
4f 1is computationally commutative if whenever for some given interpretation , xwro and xow are
prefixes of { -computations then 7(q.,xTo) =T(q.,x ow), If T and ¢ are both initiation symbols ,J
is permutable if whenever T(q,oc™) is defined then T(q, ™) is also defined. o is called lossless if, for
every aeA, R(a) £ §. o is repetition-free if whenever an & -computation contains two initiation symbols
of the same operation such as va wa x then w contains a termination symbol of an operation ¢ for
which R{c)ND(a) # §. Finally, an operation acA is said to be terminating if @ occurs only a finite
number of times in each computation of & .

A counter schema 1is a schema whose control g is specified by: a nonneiative integer k (the
number of counters), a finite set S with a distinguished element s%; a vector [le NX, where N denotes
the nonnegative integers; a function v from the alphabet Z into N¥ such that ¢e Z; implies that
v(c) ® 0; and a partial function 0 : S X = — S which is total on S X Z;. Now for the control &J =(Q,qgsZ,T)
of the counter schema the state set Q =S X Nk, qg = (s, M), and T((s,x),0) is defined if 8(s,) is
defined and x + v{o) > 0; when defined, T((s,x),0) =(0(s,0), x + v(c)).

111, THE BASIC CONSTRUCTION

The elements of the constructions we use to prove undecidability are taken from [1] along with the
"'reset'" idea of [5], In those papers, as well as here, undecidability is proven by using the Post corres-
pondence problem. The form of the Post correspondence problem we use can be stated as follows: Given
two n-tuples X = X{sXys..03%, and Y =yy,¥5,...,y, of words over the alphabet {bl,bz}, to decide
whether there exists a sequence of indices i1,15,... ,ip such that X X ot X, =Y. YL e YL This

1 "2 P 1 %2 P
problem is denoted as P(X,Y). We show that the properties we wish to study for schemata are decidable
only if this class of Post correspondence problems is decidable. Since undecidability holds for this class
of problems, this is sufficient to prove undecidability for the schemata properties.

For any particular Post correspondence problem P(X,Y) we construct an X(X) and X(Y) similar
to that in[1]. For »§(X) and S(Y): M = {1,2}, A ={a,b}, D(a) =R(a) = {1}, D{b) = R(b) = {2}
K(a) = K(b) = 3. Since neither operation affects the domain location of the other, the sequence of outcomes
of a and b depend only on the interpretation and not on how the performance of a and b are interspersed.
(X) and (Y) are constructed in an identical manner so we describe the construction of ;g(X) only.

We say that an interpretation 9 is consistent with (X; il, N ,ip) if and only if:

(i) if a could be executed repeatedly, beginning with the control in state q; and the initial assigned
contents of memory location 1, the sequence of outcomes would have as a prefix:

i -1 i-1 i -1

1 P

2
1% Pt %%
and
(ii) if b could be executed repeatedly, beginning with state g, and the initial assigned contents of

memory location 2, the sequence of outcomes would have the prefix:

X, X, ...X, b_.
i 7i i3
1 2 o}
Thus, xg(X) is designed so that under a consistent interpretation the outcomes of a determine a sequence
of indices and the outcomes of b determine the word generated from X by this sequence of indices. The
actual computation for {X) under a consistent interpretation would have performances of a and b
interspersed so that the sequence of outcomes would be
i -1 i -1 i-1
1 2
a a_x, a ax,...ap a,x, a_b_.

1 2111 212 1 21p33

117

A control for xg(X) to accomplish this is sketched in Figure 1. For termination symbol transitions

not shown in Figure 1 the ,X(X) transitions are all assumed to go to a sink state construction which is
serial and nonterminating.

From the construction of IX(X) it is readily seen that for any pair (X;i_ ,i

i »1) and interpreta-
tion d state 9, is reached in .J(X) if and only if is consistent with

Py .
(X,11,12,. o ,1p).

If t& is not consistent with (X;i_ ,i_,...,i) then each Q-computation.reaches the "sink'' and is infinite
in length 12 P

Now consider schema ;g(XY) depicted Figure 2.

=1

4
SEQUENCE b,b,,b,
CORRESPONDING TO %

O~ O—0—@

-

SEQUENCE FOR %3

4(Y)
STATE G — — +

OF 4 (X Y)
Figure 1: Sketch of 5(X) Control Figure 2: Schema X(X Y) with reset operation r

SEQUENCE FOR %

In schema J(X Y) we let M = {0,1,2} D(r) =0, R(r) =(1,2) and operations a and b be defined as
before for ,_g(X) and g(Y). For convenience we denote state q, of J(Y) in xg(X Y) as qz. Note
that the first performance of operation =, preceding ,.X(X), initializes locations ! and 2. The interpreta-
tion is consistent with (X;il, iz, cees ip) for some (il, iz, .o ,ip) if and only if the computation reaches

state qe in the ;g(X) part of)g(X Y). In this event operation r is performed a second time, and state
qqg of (Y) is entered. The second performance of r must reset locations 1 and 2 to the same values
that they had upon entering ,,S(X) (since F,. is single valued, and location 0 is never changed). Thus,the
sequence of outcomes for a in ,X(Y) must have the same prefix as the sequence that occurred in ,g(X);

i -1 i -1 i-1
in particular the outcomes must have the prefix a,l1 a, al2 a.. .alp a2a3. Now, the interpretation

is also consistent with Y if and only if state qﬁ of S(x Y) is reached. Thus qz is reached in some

computation if and only if there is a solution to the Post correspondence problem P(X,Y). Thus the
accessibility of states, in particular state qz » 1s undecidable for this type of schema.

From the construction it can be shown that ,X(XY) is a finite state, one-valued, serial, determin-
ate, permutable, persistent, computationally commutative, lossless, counter schema.

1V, THE UNDECIDABILITY THEOREMS

Using £ (X Y) and minor variations the following new undecidability results can be obtained.

Theorem 1: It is undecidable whether a given finite state determinate, permutable, persistent, lossless,
counter schema is computationally commutative or serial,

Theorem 2: It is undecidable whether a given finite state, determinate, permutable, persistent, compu-~
tationally commutative, lossless, counter schema is bounded.

Theorem 3: It is undecidable for a finite state, serial, determinate, permutable, persistent, computa-
tionally commutative, lossless, counter schema whether a given operation aeA is terminating.
-

It is interesting to note that one sees directly from J(X Y) that the question of the existence of a
finite computation is undecidable. From Theorem 3 we obtain a different result, namely that the question
of the existence of an infinite computation is undecidable.

Theorem 4: It is undecidable whether -a finite state, permutable, persistent, computationally commutative,
lossless, counter schema is determinate.

It can also be shown that in Theorem 4 the terms ""persistent' and "'permutable' can be removed
and replaced by the term ''serial",

By a simple addition of an operation which is performed exactly once only when q"; of ;g(X Y) is
reached we can obtain the related result:

Theorem 5: It is undecidable for a finite state, serial, determinate, permutable, persistent, computation-
ally commutative, lossless, counter schema whether, for a given operation c¢, any computation exists
containing <.

V. THE BOUNDARY

In [1] a number of results were given showing the decidability of commutativity, boundedness,
termination, and determinacy for repetition-free counter schemata. The results of the previous section
yield undecidability results for these properties. By comparing these results we show that deletion of
repetition-freeness from the hypothesis of the decidability theorems changes each problem to an undecid-
able one. Thus, in a sense, we are ''close' to the borderline between decidability and undecidability.

We proceed with this comparison.

Theorem (4.5 of [1]): It is decidable whether a given repetition-free counter schema)K(is commutative.

By inspecting the proof of this theorem it becomes evident that the result is also true if ''computa-
tionally commutative'' replaces commutative,

Corollary (of Theorem 1): It is undecidable whether a given counter schema is computationally commutative.

Theorem (4.6 of [1]): It is decidable whether a given repetition-free counter schema is bounded.

Corollary (of Theorem 2): It is undecidable whether a given counter schema is bounded.

Theorem (4.7 of [1]): It is decidable of a repetition-free counter schema J whether a given operation
aeA is terminating.

Corollary {of Theorem 3): It is undecidable of a counter schema 6(whether a given operation aeA is
terminating.

Theorem (4.9 of [1]): It is decidable whether a repetition-free, lossless, persistent, commutative
counter schema is determinate.

In this theorem the term commutative can also be replaced by ''computationally commutative'
since determinacy is a property that is concerned only with sequences that can arise from computations.

Corollary (of Theorem 4): It is undecidable whether a lossless, persistent, computationally commutative,
counter schema is determinate.

From these theorem-corollary pairs it is evident that the removal of the single hypothesis of
repetition-freeness changes the problem in question from a decidable problem to an undecidable one. Since
only the one hypothesis is removed, these results are as tight as can be expected.

It is interesting to note that the schema cg(X Y), which is the basis for the undecidability results,
is itself very reliant on the repetitive character of the !''reset' operation. In particular, operation r is
the only repetitive operation of ¥4{XY) and is performed at most twice in any computation. Thus S (X Y)
is in some sense minimally repetitive since only one operation can be repetitive and this operation can be
repeated only once.

The corollaries of Theorems 1 through 4 were obtained simply by deleting some of the schema con-
straints of the theorems. These constraints, or any combination of them,could be added back as hypo-
theses in the respective corollaries. Of course, the constraints could also be added into the hypotheses
of the decidability theorems for each of the theorem-corollary pairs since adding further constraints to the
hypotheses of the decidability theorems could only tend to simplify the problem further. This thereby gives

119

a family of comparable theorem-corollary pairs with whatever combination of constraining hypotheses
consistent with Theorems 1 through 4 are desired.

Since it is decidable whether a given counter schema is repetition-free, (Theorem 4.4 of [1]) we
can now see rather clearly the importance of repetition-freeness in schemata. A natural question for
further study arises from these results as to whether similar results can be obtained by deletion of one
or more of the other constraining hypotheses in the decidable theorems, For example, does undecidabil-
ity result if either persistence or computational commutativity are deleted from the determinacy theorem?
Since (X Y) is repetitive it is clear that a different basic construction would be required to answer
these questions.

Acknowledgment

The author is grateful to Dr. Arnold L. Rosenberg for his careful reading and detailed comments
on an earlier version of this paper.
References

[1] Richard M. Karp and Raymond E, Miller, ""Parallel Program Schemata', Journal of Computer and
System Sciences, Vol. 3, No. 2, May 1969, pp. 147-195,

[2] I. I. Ianov, ""The Logical Schemes of Algorithmsg', Problems of Cybernetics, Vol. 1,1958,pp. 75-127.

[3] J. D. Rutledge, '"On lanov's Program Schemata'’, Journal of the Association for Computing Machinery,
Vol. 11, January 1964, pp. 1-9.

[4] D. C. Luckham, D, M. R, Park, and M. S. Paterson, ""On Formalized Computer Programs',
Journal of Computer and Systerm Sciences, Vol. 4, No. 3, June 1970, pp. 220-249.

[5] V. E, Itkin and Z. Zwinogrodzki, ""On the Program Schemata Equivalence', report of the Computing
Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk 90, USSR. 1970.

120

