
FORMAL DEVELOPMENT OF CORRECT ALGORITHMS: AN 
EXAMPLE BASED ON EARLEY'S RECOGNISER 

C B Jones 
Programming Technology Dept 
Product Test Laboratory 
IBM Laboratories Ltd 
Hursley Park 
WINCHESTER~ Hants 

ABSTRACT 

This paper contains the formal development of a correct algorithm from an implicit definition of the task 
to be performed. Each step of the development can be accompanied by a proof of its correctness. As well 
as ensuring the correctness of the final program, the structured development gives considerable insight 
into the algorithm and possible alternatives. The example used is a simplified form of the recognition 
algorithm due to Earley. 

0 INTRODUCTION 

The published literature on proving programs correct has tended to confine itself to rather simple 
algorithms. Apart from the obvious difficulties of long papers, part of the reason for avoiding proofs 
of larger programs may be that they are almost invariably incorrect~ In order to avoid writing a 
plausible algorithm and then constructing an equally plausible proof which misses the errors, it is 
necessary for the proof construction to be extremely detailed. The combination of large programs and 
detailed proofs makes the whole picture difficult to grasp: any errors that are present become elusive. 

Is there an alternative ? This paper supports an affirmative answer by going through a formal 
development of a reasonable-sized algorithm. The steps of development represent a, hopefully, natural 
evolution from the problem specification to the final program. Each step is stated in a formal notation 
which makes it possible to construct the proof.t Although the overall size may appear large, the 
structure of the development makes it easy to absorb. 

At each stage of development certain assumptions are made which may range from implicit function 
definitions to properties of data types and their operations. The same stage will, in turn, be further 
defining functions or adding properties of data types. A proof can be constructed that, under the new set 
of assumptions, this stage of development fulfils the earlier assumptions. The new assumptions provide, 
of course, the specification for the next stage. Thus, at each level, it is only necessary to prove 
that the hypotheses of the preceding level hold: not to prove again earlier results. Moreover, the 
development is not a chain of equivalences. It isScompletely structured development in which it is 
possible to think, and prove theorems, about one set of problems at a time. 

An example of this development taken from the paper begins with an implicit definition of a set (i.e. an 
object with no order); at the next stage operations are given whose closure on an initial set is shown to 
satisfy the implicit definition; a mapping of the set onto a list is then given as the next stage and the 
problems of mimicking the closure are considered. 

Although the author ventures some general cormnents in the next section, this paper does not purport to 
present a worked out method of formal development. The hope is to encourage further work on a range of 
examples. Such work should throw light on some of the problems referred to in the discussion of 
Section 10. In particular there are some areas requiring a much more thorough approach. However, if this 
is handled correctly further developments should be less difficult than that given below because they can 
appeal to general theorems. 

The body of the paper (Sections 3 to 7 and 9), consists of the development of the algorithm. The example 
chosen was a recogniser using a simplified form of the ideas of Earley. The reader is asked to refer to 
ref I for a description since such a readable presentation would make detailed exposition, in the current 
paper, pointless. Suffice it to say, that the algorithm carries out all possible top down parses in 
parallel, keeping track of them in sets of states. (The simplification made for the current paper was to 
omit Earley's H k look-ahead.) 

As a result of a draft of this paper the question of modifying developed programs was posed: an attempt 
to address this question is made in Section 8 with an, albeit rather simple, modification. 

t The proofs, which are omitted from the current version of the paper for reasons of space, are to be 
published in a report available from the author. 
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1 GENERAL COMMENTS 

As already mentioned, this section is far from presenting a complete general method for Formal 
Development. It is confined to making some observations resulting from the development contained below. 

The most pervasive rule in Formal Development appears to be to define as little as possible at each step. 
Thus only enough new properties are introduced to give some point to the step. Addition of too much, 
firstly, clouds the structure of the proof and, secondly, may be regretted. The process is addition of 
properties at each step, removal woul~ require backing up to the point of introduction. An example of the 
addition of properties is the use of (finite) sets as data types until the main lines of the algorithm are 
clear, at which time the additional properties of ordering are considered. 

The actual mode of development used by the author was at each step to sketch a solution using "understood" 
notation; then to go back and, in proving that step formally, write down exactly what properties were 
required of the notation. This provides a detailed specification for the next level. 

There is an important division in the subsequent development between the areas with which the development 
is concerned. Sections 4 and 5 are exclusively related to the Problem domain, the subsequent development 
is related more to the Data and Language domains. 

Comments on the process of modification are left to Section 8. 

2 NOTATION 

This section reviews the notation used below. Whilst an attempt has been made to minimize the quantity 
of non-standard notation, use has been made of parts of, so called, VDL (see ref 2 for a fuller 
treatment). Those parts adopted are defined below in a way which, hopefully, makes this paper self 
contained. 

normal function notation: 
conditional expressions, 
where clauses, etc. 

standard meanings 

(2-1) f:A->B f is total over A 

f :B->C a 

E,'~,_~, u,n,*, {xlp(x) } 

8(P) = {s Is~_P} 

specialisation of f:A x B->C to aEA 

normal set operations 

the power set (i.e. set of all subsets) 

N = {1,2,3 .... } 

N ° = {0,I,2 .... } 

N n= {|,2 ..... n} 

natural numbers 

integers 

natural numbers up to n 

~,V,A,D,E,3 normal logical connectives 

(3 x)(p(x)) 
xEX 

bounded quantification 

(~:x)(p(x)) 

(~x)(p(x)) 

there exists exactly one x, 
i.e. (~x)(p(x)) A (p(x) A p(y) ~ x=y) 
that unique x, under above hypothesis 

(2-2) a & b the conditional expression form of "and" 
(i.e. false if first operand yields false 
even if second is undefined) 
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Certain sets of elementar[ objects are given (e.g. N). Composite objects can be viewed as finite tree 
structures with elementary objects at the terminal nodes. Branches are named with, so called, selectors. 
No two branches emanating from the same node may have the same selector name. Subtrees of a given object 
are called components . As well as naming branches, selectors are used to select components from given 
objects. 

s (x) 

(2-3) is-p = (<s-l:is-p-l>,<s-2:is-p-2> ..... <s-n:is-p-n>) 

(2-4) P ffi {x[is-p(x)} 

(2-5) s-I:P->P-] 
s-2 : P->P-2 

s-n : - >P-n 

the component of x named s 

predicate defining a class of objects each 
with n sub-components etc. 
set of objects satisfying is-p 

selectors of 2-3 viewed as functions 

s-2(s-l(x)) iterated selection 

Selectors are used in the sequel only when such a component exists. The convention of using the prefixes 
"is-" and "s-", for predicates and selectors respectively, is followed. Certain "obvious extensions" of 
strict VDL are employed, e.g. 

(2-6) is-p = is-(<s-l:is-p-l>,<s-2:is-p-2>) 

(2-7) L = [el-l,el-2,...,el-n] 

(2-8) Z(L) = n 

(2-9) for I~i~£(L):L. = el-i 
I 

is-p-list 

(2-10) £:P-LIST->N ° 

lists can he considered as objects whose 
components are named by a subset of the 
natural numbers (Nn). 
length of list 

selection shown by conventional subscript 
notation 
class of all finite lists whose elements 
satisfy is-p 

(2-11) Nn:p-LIST->P 

(2-12) is-p-list ° used for lists which index from zero 

(2-13) is-p-set 

(2-14) £:P B(P)->{T,F} 

(2-15) xE{e]p(e)} E p(x) 

(2-16) u:SxS-> S 

denotes a class of finite sets whose members 
satisfy is-p 
"is a member of" written as an infix predicate 
symbol 
implicit set definition 

set union, such that xE(AuB) E (xEA v x~B) 

(2-17) elements of is-p-set cannot be "duplicates" 
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3 PROBLEM DEFINITION 

This section gives the definition of the task to be performed by the algorithm developed in subsequent 
sections. In outline: the class of grammars is defined in 3-I to 3-4 in the familiar terminal/non- 
terminal way; the class of strings which can be produced from a given grammar is defined in 3-5 and 3-6; 
a function "root" is introduced in 3-9 which is assumed to provide the non-terminal from which acceptable 
strings must be derivable. The recognition task, for given string and grammar, can now be defined in 
3-10 using the above notions. A useful Lemma on productions is given in 3-7. 

The class of grammars is defined: 

(3-I) is-grammar = is-rule-set 

which is assumed to have properties 2-13, 2-14 

(3-2) is-rule = (<s-lhs:is-nt> , <s-rhs:is-el-list>) 

properties 2-5 and 2-10, 2-11 are assumed 

r will be used as an abbreviation for £(s-rhs(r)) 

(3-3) is-el = is-nt v is-t 

(3-4) NT o T = ~ non-terminal and terminal sets are disjoint 

The following ~roduction symbols are defined: 

for is-el-list(a), is-el-list(B), is-graranar(G): 

(3-5) a A 8 ~> ~ ~ 8 ~ [~G ) (s-lhs(r) = A ^ s - rhs(r)=y) 

(3-6) a * 8 
=> ~ ,. 
G (~m)_ (Sa0, a I .. ,a m) (a=a0=>a i =>a2=>...=>am=B)) 

In the sequel, the grarmnar can be omitted from the production symbol with no danger of confusion. 

The following Lemma can be proven from 3-5, 3-6. 

(3-7) Lemm___~a y => x m (~tl,...,t£(y))(l~tl~t2~...~t£(~) = £(T) a 

YI i > r l"  ^ "'Ttl 

YE(T) => TtE(y)_l+l'' 'xtE(y)) 
The "specification" of the algorithm to be developed, say rec, can now be stated as follows: 

(3-8) rec : T-LIST × GRAMMAR -> {YES, NO} 

(3-9) such that for is-t-list assuming properties 2-10,2-11 

(3-1o) 

is-grarmnar(G) see 3-I 

root : GRAMMAR -> NT a predefined function 

rec (X,G) = YES iff root(G) => X 

NO otherwise 

Given that 3-8 requires that rec be total (see 2-I), the second part of 3-10 is not proved explicitly. 

153 



4 EARLEY'S STATE SETS 

The reader is assumed to be familiar with the concepts of states and state sets as described by Earley 
in ref I. (The simplification in the current paper drops the fourth element of Earley's states). 
Collections of state sets correspond to objects satisfying is-S (see 4-2) from which individual state sets 
can be retrieved using the function "state-set". The only properties required of the data object 
containing state-sets (see 4-3) are the applicability of the predicate "is member of" and the lack of 
duplicate members. Objects containing states are defined by 4-4 to be triples whose contents will be 
referred to via given selectors or using the specified abbreviation. More properties of the storage will 
be added as the algorithm evolves, those given so far are enough to show the first ideas about the 
algorithm. 

It is convenient to assume that there is only one rule of the grammar of which root (G) is the left hand 
side, this restriction is made in 4-I since it has no real effect on the class of valid grammars: 

(4-I) (~:r) (s-lhs(r) = root(G)) 
reG 

The object containing all state-sets satisfies: 

(4-2) is-S 

which is characterised by the existence of two functions: 

len : S -> N 

state-set : N n x S -> STATE-SET 
where N n is the set {O,l,...,len(S)} 

(4-3) is-stateset = is-state-set 

of which 2-14 and 2-17 are required to hold. 

(4-4) is-state = (<s-rule:is-rule> , <s-j:is-n> , <s-f:is-n>) 

of which 2-5 is required to hold. 

The abbreviation: 

s = <r,j,f> is used for the object for which s-rule (s) = r 
s-j (s) = j 
s-f (s) = f 

States will be used to record partial parses. The presence of a particular state, say <r,j,f>, in the ith 
state set will mean that a string can be derived from the granmar, G, which consists of the first 
f characters of X (the string to be recognised) followed by left hand side of r, and that the first j 
elements of the right hand side of r can produce, from G, the string Xf+l...X..l This property is stated 

formally in 4-7 below and represents an upper bound for valid state-sets: any state present must possess 
this property. In order to permit the "rec" algorithm to decide recognition, not all of these states are 
essential so 4-6 and 4-8 set a lower bound on valid state-sets: the former specifies a start element 
which must be present; the latter specifies that if <r,j,f> is in the ith state set and the next 
(i.e. j+l th) element of the right hand side of r can produce Xi+I..°X then <r,j+l,f > must be a member of 
the mth state-set, m 

It is fundamental to the style of development proposed by this paper that the freedom, to choose which set 
between the lower and upper bound will be generated, is left for the time being. The properties given 
permit the development of the first steps of the algorithm (see 4-5) and the proof that, under the 
assumptions on the creation of S, it fulfils the task described in Section 3. This freedom is used to 
show the correctness of an optimisation modification in Section 8 and could be used to validate many 
different algorithms including the use of Earley style look-ahead. Furthermore, the proof of the 
actual construction of state sets constructed in Section 5 has been made simpler by only having to prove 
that these looser properties hold. 
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The definition of a function, alleged to satisfy 3-8, 3-10, can now be given: 

(4-5) rec (X,G) = <rr,rr,0> ~ state-set (~(x),S) -> YES 

T -> NO 
where is-S (S) 
and len (S) = ~(x) 
and rr = (ir)(s-lhs(r) = root (G)) 

rEG 

The correctness of this function relies on the following assumptions about S. (These assumptions will, of 
course, form the definition for further development.) Some base element must exist in S: 

(4-6) <rr,0,0> E state-set (0,S) 

Any element of a state set must, at least, satisfy the properties: 

(4-7) 0~i~(X) & <r,j,f> e state-set (i,S) =r e G A , 
(-]~ )(root(G) => XI...X f s-lhs(r)~) ^ 
is-el-list (~) , 
(j>0 ~ s-rhs(r) l...s-rhs(r). => Xf+l...X i) ^ 

3 
j<_r ^ 0_<f_<i 

Certain elements must be in the state-sets: 

(4-8) 0si<£(x) & <r,j,f> £ state-set(i,S) A j ~ r & (]m )(s-rhs(r):+]j 
' i+l~m~(X) 

--> xi+1...x) 

<r,j+l,f> e state-set(m,S) 

(4-9) S must be created in a finite amount of time. 

Property 4-9 above is given to ensure that any subsequent algorithm generates state-sets in a useful 
way and permits the proof (see 4-13) that 4-5 is total. After a trivial Lemma (4-]0) on the finiteness of 
state-sets, the proofs that both implications of the first part of 3-|0 hold are given in 4-|I and 4-12. 
Of course, these proofs all rely on the assumptions that S satisfies 4-6 to 4-9. 

(4-10) Lemma for 0~i~len(S) : state-set (i,S) is finite. 

proof follows from finiteness of G and r. 

(4-11) Theorem rec (X,G) = YES root (G) => X 

proof follows from 4-7. 

(4-J2) Theorem root(G) => X = rec (X,G) = YES 

proof follows from 4-6 and 4-8 using 3-7. 

(4-13) Theorem rec is total 

proof follows from 4-|0 and 4-9 and check of domains/ranges. 
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5 CREATING STATE SETS 

Section 4 introduced the concept of state sets and some essential properties thereof, but offered no way 
of creating them. In fact (s-rhs(rr)) entries, presumably created by magic, would have been sufficient 
to fulfil the properties stated. This section shows how state-sets can be constructed using the main ideas 
(i.e. prediction, completion, scanning) of Earley's method. In order to facilitate construction of the 
required elements, many other states are generated. It is interesting to consider the parallel with 
proof construction where an induction hypothesis stronger than the theorem statement is used in order to 
prove the latter. First, the definition of rr which was in the last section a local convention, is 
adopted for the sequel. 

(5-0) rr = (ir)(s-lhs(r) = root(G)) see 4-1 
reG 

Earley's operations of prediction etc, are, of course, described in terms of lists of states. As will be 
clear shortly, many of the interesting points about these operations can be brought out using sets of 
states. Again it is found that deferring part of the detail, in this case the special ordering problems 
imposed by using lists, will structure and clarify the proofs. It will be necessary to use implicit set 
notation for creation of state sets so now the restriction: 

(5-I) Property 2-15 holds for is-stateset is added 

Using sets of states which are cumulative, prompts the idea of using the notion of the closure of a set 
under an operation as generating function. Intuitively the closure of an operation on a set is the 
minimum set containing the base set and having the property that applying the operation to any element 
creates only elements already in the set. We shall use the following properties: 

for op : P -> B(P) i.e. from elements of P to sets of such elements 

(5-2) closure : (op) × 8(P) -> ~(P) i.e. from sets of elements to sets of elements 

such that for S c p: 

x e (closure of op on S) ~ x ~ S v (] y)(x ~ closure of op on (op(y))) 
yes 

Notice that closure is total for suitable op. It should be clear that closure is monotonic. That is: 

(5-3) S] 5 S 2 ~ (closure of op on S|) ~ (closure of op on $2) 

Using closure it is now possible to show how the basic operations (i.e. prediction etc) are used to create 
the statesets. The base element is inserted by 5-4 which also shows that prediction is the only applicable 
operation on the 0th stateset. The creation, for all other statesets, of a kernel set of states 
resulting from the scanning operation on the preceding stateset is specified in 5-5. Both the prediction 
and completion operations are employed on all statesets but the last, where the former is not required. 
The closure is created from the kernel set described. The importance of the reliance by the completer 
on S (strictly on a part of S) is returned to in the next section. 

(5-4)t 

(5-5) 

state-set (0,S) = closure of predicto,x, G on {<r,0,0>} 

for I~iN~(X): state-set (i,S) s = scan (i,X,G,state-set(i-|,S)) 

(5-6) 

(5-7) 

for I<i_<~(X) : 
state-set (i,S)= closure of ~predicti,x, G 1 on state-set (i,S) s 

cc°mpletes,i ,X, G) 

state-set (~(X),S) = closure of completes,i,X, G on state-set (£(X),S) s 

* Notice use of function specialisation, see Section 2. 
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The definitions of the basic operations of prediction, scanning and completion can now be given. 
reasons discussed in Section 9, it is important to guard against predicates becoming undefined by 
careless use of "^" which is not normally defined for three valued logic. (see ref 4) 

For 

(5-8) predict (i,X,G,<r,j,f>) = {<s,O,i> [ jz~ &is_nt(s-rhs(r)j+l) & s e G & s-lhs(s) = s-rhs(r)j+ I 

(5-9) scan (i,X,G,ss) = {<r,j+l,f>l<r,j,f> c ss ^ j~r & is-t(s-rhs(r)j+]) & X i -- s-rhs(r)j+ I} 

(5-]0) complete (S,i,X,G,<r,j,f>) = 

{<s,m+1,g>]j=r & <s,m,g>estate-set(f,S) & m~s & is-nt(s-rhs(s)m+ I) & s-rhs(S)m+ | = s-lhs(r)} 

In order to resolve any possible difficulties deriving from too heavy a reliance on formalism the 
example used in ref | is now presented in the terms of the current paper. (Notice the addition of R to 
satisfy 4-]) 

G = {rl, r2, r3, r4, r5, r6} where r| = <<s-lhs : R> 
r2 = <<s-lhs : E> 
r3 = <<s-lhs : E> 
r4 = <<s-lhs : T> 
r5 = <<s-lhs : T> 
r6 = <<s-lhs : P> 

<s-rhs : [E]>> 
<s-rhs : IT|>> 
<s-rhs : [E,+,T]>> 
<s-rhs : [P]>> 
<s-rhs : [T,*,P]>> 
<s-rhs : [a]>> 

such that is-nt(R), is-nt(E), is-nt(T), is-nt(P), is-t(~), is-t(*), is-t(a), rr = rl 

Consider the recognition of: 

X = [a,+,a] 

state-set (0,S) = closure of predict on {<rl,0,0>} 
= closure of predict on { ,<r2,0,0>} 
= closure of predict on { ,<r4,0,0>,<r5,0,0>} 
= closure of predict on { ,<r6,0,0>} 
= {<rl,0,0>,<r2,0,0>,<r4,0,0>,<r5,0,O>,<r6,0,0>} 

state-set (l,S) s = scan (state-set (0,S)) 
= {<r6,],0>} 

state-set (I,S) = closure of predict/complete on state-set(1,S) s 
= closure of predict/complete on {<r6,1,0>,<r4,],O>,<r5,],0>} 
= closure of predict/complete on [ ,<r2,1,0>,<r3,],0>} 
= closure of predict/comDlete on { ,<rl,l,0>} 
= {<r6,l,0>,<r4,],0>,<r5,],0>,<r2,],0>,<r3,1,0>,<r],1,0>} 

state-set(2,S) s = scan(state-set(],S)) 
= {<r3,2,0>} 

state-set(2,S) = closure of predict/complete on state-set (2,S) s 
= closure of predict/complete on {<r3,2,0>,<r4,0,2>,<r5,0,2>} 
ffi closure of predict/complete on { ,<r6,0,2>} 
= {<r3,2,0>,<r4,0,2>,<r5,0,2>,<r6,0,2>} 

state-set(3,S) = scan (state-set(2,S)) 
= {<r6,1,2>} 

state-set(3,S) s = closure of complete on state-set(3,S) s 
= closure of complete on {<r6,1,2>,<r4,1,2>} 
= closure of complete on { ,<r3,3,0>,<r5,1,2>} 
= closure of complete on { ,<r],l,0>} 
ffi {<r6,|,2>,<r4,1,2>,<r3,3,0>,<r5,1,2>,<rl,l,0>} 

Referring to 4-5 gives: 

rec (X,G) ffi YES 
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The algorithm represents a way of generating some set of states between those specified by 4-8 and 4-7. 
The justification% consists of proving this containment (see 5-]2, 5-]3) and establishing 4-6 and 4-9 
(see 5-11, 5-14 respectively). Notice that this is all~ It is not necessary to prove again any of the 
results dealt with in Section 3. 

(5-11) Theorem <rr,0,0> c state-set (0,S) 

proof follows from 5-4, 5-3. 

(5.12) Theorem 

O~i~£(X) & <r,j,f> c state-set (i,S) m r £ G A * 

(~ )(root(G) => XI...X f s-lhs(r)~) ^ 
is-el-list(s) , 
(j>0 m s-rhs(r) l...s-rhs(r) j => Xf+I...X i) A 

j~ ^ 0~f~i 

proof: shows that the set satisfying the above is a fixed point of 5-4 to 5-7 (i.e. that given such a 
set the operations 5-8, 5-9, 5-10 create only elements of that set). 

(5-13) Theorem 

=> O~i<~(X) & <r,j,f> £ state-set(i,S) ^ j~r & ~mi+l~m~(X))(s-rhs(r)j+l * Xi+l'''Xm ) 

< r , j + l , f >  ¢ s t a t e - s e t ( m , S )  

proof by induction on n(the number of => steps in ffi> see 3-5, 3-6, using 5-8, 5-9, 5-10. 

(5-14) Theorem S is created in finite time 

proof follows from the closure and finiteness (4-10) 

6 MAPPING STATE SETS ONTO LISTS 

So far state sets have been assumed to be set-like objects and they have been extended by closure. Whilst 
it would be possible to model this state of affairs in a conventional store it would be much more 
convenient if we could show how the sets can be mapped onto lists. The lists will obviously have extra 
properties, in particular an ordered property. If closure can now be replaced by a new, more efficient, 
operation which relies on this ordering, an increase in efficiency results. This section makes 
precisely this mapping. Subject to a restriction on grarmars (see 6-9) the extension is performed by a 
single scan over the lists. It is, in the author's opinion, worthwhile understanding the cause of the 
restriction. It would for instance be a relatively simple task, at this level, to avoid introducing 
the restriction by utilizing a more sophisticated scan. 

So far the only properties assumed of state-sets are those required by 4-3 and 5-I. That is: 

e: STATExSTATESET -> {T~F} 
x ~ {state I p(state)} ~ p(x) 
states~ts do not contain duplicates 

This section describes how these objects can be mapped onto lists. Thus: 

(6-I) is-stateset = is-state-list assuming properties 2-10 and 2-11. 

It should be possible to construct a direct proof that a set given by 4-7, with equivalence replacing 
implication, is the minimum fixed point (see ref 3) of 5-4 to 5-10. The current author's attempts have 
foundered on the ordering problems caused by the completer. 
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Now the membership and implicit set definitions are reinterpreted as follows: 

(6-2) e £ s becomes (~i )(s i = e) but will be abbreviated e ~ s 
l~i~£(s) 

(6-3) {s I p(s)} becomes create-state-list(p) but will be abbreviated !slp(s)~ 

with the following properties: 

let ~(islp(s) 2) = n p(x) m (~ ~j)(!sJp(s)i)j = x) 
l ~j ~n 

l~j~n = p(!slp(sl!)j 

A new operation will be required tO manipulate state-sets. 

(6-4) combine (list],list2) which will be written 

with the following properties: 

s ! (list] ~ list2) E s ~ list] v s £ list 2 

(~j k 
l_<j ,k<£(list ]_ulist2) 

)((list I ~ list2) j = (list I ~ list2) k m j = k) 

l~i~£(liStl) m (list I ~ list2) i = (liStl) i 

The properties required of state-sets can now be verified: 

(6-5) Lemma 

a) £ : STATE × STATESET -> {T)F} 

b) x ¢ {state i p(state)! ~ p(x) 

c) statesets contain no duplicates 

Operating on lists makes it desirable to replace the closure operations (see 5-2) with linear scans. 
It will be found necessary to introduce a restriction on grammars in order to fulfil property 5-2. 

The construction of is now given by: 

(6-6) S = S z where next (z+]) = end 

(6-7) next (I) = (0,1) 
for i>l: 

next (i) = £(state-set(j,si-])) = k -> j~£(X) & state-set(j+],si-l)~[] ->(j+],l) 

T -> end 

T -> (j ,k+l) 

where (j,k) = next (i-l) 
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(6-8) state-set(0,S °) = [<rr,0,0>] 

for 0<i<Z(X): state-set(i,S °) = [] 

for ke0: 

j ~ r ^ i<£(X) & is-nt(s-rhs(r)j+ I) 

k+l ,  
state-set(i,S ) = state-set(i,sk)~ islepredict(i,X,G,<r,j,f>) ~ 

j ~ r A i<£(X) & is-t(s-rhs(r)j+ l) & s-rhs(r)j+ I = Xi+ I 

state-set(i+l,S k+l) = state-set(i+l,S~ ~!slsescan(i+l,X,G,<r,j,f>)i 

j = r ~ state-set(z,S k+l) = state-set(i,sk)!!slsecomplete(sk,i,X,G,<r,j,f>)l 

otherwise state-set(p,S k+l) = state-set(p,S k) 

where <r,j,f> = state-set(i,sk) n 

where (i,n) = next (k+l) 

The "algorithm" as shown would not work for all possible grammars~ In particular if the grammar includes 
rules which generate the empty string, the sequential pass over state-sets coupled with the fact that 
although created many times only one copy of a state appears in a state-set, prevents the completer 
creating the full closure. 

Consider G = {rl,r2} where rl = <<s-lhs : R>,<s-rhs : [a,E,E,a]>> 

r2 = <<s-lhs : E>,<s-rhs : []>> 

x = [a,a] 

state-set(O,S) : [<rl,O,O>] 
state-set(l,S) = [<rl,l,O>,<r2,0,1>,<rl,2,0>] 
and no more elements will be appended to the list. 

The following restriction on grammars is made: 

(6-9) r E G m r > 0 

It should be clear that Lermma 3-7 now becomes: 

(6-|0) y => T ~ (It I .... ,t£(y))(l~tl<t2<...<t£(T)= £(T) ^ YI => TI'''Tt ^ 
I 

~Z(~) :> T "~t ) t z ( y ) - l + l '  " Z(y) 

The proof that the state-sets of Section 5 and the state lists of this section contain the same elements 
(assuming 6-9) is now given in 6-]I. Since closure was considered total (see 5-2) it is also necessary 
to show that the scanning which replaced it is total. Notice that, once again, the theorems revolve 
around only those things which have been changed, and the earlier theorems still apply because properties 
are only enhanced. 

(6-11) Theorem s ~ state-set(i,S z) see 6-8 

iff 
s E state-set(i,S) see 5-4,5-5,5-6,5-7 

proof follows from the inspection of each state by next; mutual disjoint conditions; 
and 6-10 for completer. 

Because 5-2 claimed completeness for closure use must also prove - 

(6-|2) Theorem The creation of S given in 6-6 to 6-8 is total 

proof follows from inspection of domains/bounds 
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7 STRUCTURE FOR STORE 

The preceding section represented a solution to the main parts of the recognition task. However, for a 
number of reasons it is not a program which can be run on a computer. The principal point is that the 
algorithm of Section 6 uses a storage object which is not representable in any known language, for 
example the grammar is just "referred to" whenever required• It might be possible to sit at a console and 
supply rules whenever needed, but a more useful program will result if the first step is to read in both 
grammar and string to be recognised in such a way that subsequent references are simple. The particular 
storage structure given below has been adopted from an actual program written in the conventional way 
and designed with a view to efficiency. This decision was taken so as to avoid the danger of choosing 
a data structure particularly suited to the proof but which put limitations on the potential efficiency 
of the final algorithm. 

The input of granmlar and string will be assumed to be carried out by routines called INGR and INSTR 
respectively. The grammar is stored in the s-RULES, s-NONT, s-RULED, s-STR and s-STRCHAR; the string 
in the s-INPUT components of the store given in 7-I to 7-7 below, k~at were, in the algorithm references 
to the original arguments, now become references to these storage components and the reinterpretations 
to be made are specified in 7-9 to 7-17. 

The object is-S is also refined in this section and now occupies the s-S and s-STATE parts of 7-I 
to 7-7. 

The store is still presented as a VDL style object and a further transition to PL/I Data Structures will be 
made later. The decision to introduce this step is perhaps questionable, but is probably justified since 
the object of 7-] could be realised in other languages. The only properties required are those in 7-8 
and although "bunches" were used with PL/I based storage in mind, the only objection to an array style 
implementation with numeric "selectors" would be that all elements would have to be of the same length. 

Store is considered as an object satisfying: 

• • o> 
(7-I) is-$ = (<s-S : is-state-ptr-lzst , 

<s-STATE : is-STATE-bunch>, 
<s-INPUT : is-t-list>, 
<s-RULES : is-(<s-TYPE : is-T v is-N>, 

<s-N : is-n>) - list>, 
<s-NONT : is-ruled-ptr-list>, 
<s-RULED : is-RULED-bunch>, 
<s-STR : is-(<s-START : is-n>)-list>, 
<s-STRCHAR : is-char-list>) 

where - 
(7-2) is-state-ptr = is-sel 
(7-3) is-STATE-bunch = {<K : state> II is-sel(K) ^ is-STATE(state)} 
(7-4) is-STATE = (<s-SIZE : is-n>, 

<s-N : is-n>, 
<s-INFO : is-(<s-RULE : is-(<s-RPTR : is-ruled-ptr>, 

<s-SSC : is-n>)>, 
<s-RULPOS : is-n>, 
<s-STRPOS : is-n>)-list>) 

(7-5) is-ruled-ptr = is-sel 
(7-6) is-RULED-bunch = {<K: ruled> I] is-sel(K) A is-RULED(ruled) 
(7-7) is-RULED = (<s-NEXT : is-n>, 

<s-RULED : is-(<s-START : is-n>, 
<s-LENGT : is-n>)-list>) 

(7-8) In all object of 7-I to 7-7: selectors are assumed to have property 2-5 
lists are assumed to have properties 2-10, 2-11 

Using the above data object as storage the algorithm can now use the following ways of referring to its 
arguments: 

(7-9) ~(X) becomes ~(s-INPUT(~)) 

( 7 - 10 )  x. 
1 

becomes s-INPUT ($)i 
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Now, INGR defines a relation between rules of is-grammar and objects satisfying 
is-(<s-RPTR : is-ruled-ptr>,<s-SSC : is-n>) which is written: 

(7-11) 

(7-12) 

for convenience, let /(s-rhs(r)j 

l(r,(p,i)) 

r becomes s-LENGT (s-RULE(p(s-RULED(~))) i) 
£(s-rhs(r) 

s-rhs(r)j becomes s-RULES(S) s-START (s-RULED(p(s-RULED($)))i)+J-I 

) be an abbreviation for s-RULES($)s_STAR T(s_RULE(p(s_RULED($)))i)+j- 1 

(7-13) is-t(s-rhs(r)j) becomes 

(7-14) is-nt(s-rhs(r)j) becomes 

(7-15) for is-t(s-rhs(r)j): 

s-rhs(r)j becomes 

(7-16) for is-nt(s-rhs(r)j): 

s-rhs(r)j = s-lhs(s) 

s-TYPE(f(s-rhs(r)j)) = T 

s-TYPE(I(s-rhs(r)j)) = N 

s-STRCHAR(~)s-N (/(s-rhs(r).)) 
J 

becomes s-NONT($) = q 
s-N(I(s-rhs(r)j)) 

where f(s,(q,k)) 

(7-17) r c G becomes is-RULED(p(s-RULED($))) ^ i<s-NEXT(p(s-RULED(E))) 

Now, it is necessary to show that the reinterpretations of these functions still satisfy the stated 

properties (3-8 and 3-I to 3-4). 

(7-~8) Lemma 

~: T-LIST -> N ° see 7-9)3-B,2 -lO 

Nn: T-LIST -> T see 7-I0,3-8,2-II 

Both results follow immediately from 7-I, 7-8, 2-10, 2-11. 

(7-19) Len~na 

a) 

b) 

c) 

d) 

e) 

s-RULES,s-NONT,s-RULED,s-STR,s-STRCHAR are finite 

~: (RULED-PTR × N) × (RULES, .... STRCHAR) -> {T,F} 

~: (RULED-PTR × N) × (RULES,...,STRCHAR) -> N 

Nn: (RULED-PTR × N) × (RULES,...,STRCHAR) -> 

~(is-nt(s-rhs(r)j) ^ is-t(s-rhs(r)j)) 

see 3-1,2-13 

see 7-17,3-|,2-14 

see 7-11,3-2,2-10 

see 7-15,7-16,3-2, 
2-11 

see 7-13,7-14,3-3, 
3-4 

proofs follow from definitions and 7-8. 

However, it is not possible to simply change the problem definition (see 3-10 and 3-5, 3-6,) which is stated 
in terms of the original operations (e.g. r e G). It was clear from the beginning that routines like 
INSTR and INGR would be required and it would have been possible to use different operations in the 
algorithm and note the equivalences which must hold between the original and algorithm notations. This 
was not done since it would have made the subsequent writing more tedious. In making the change to our 
re-interpreted operations we must now, carefully, check what properties are required and use them as a 
specification of the INSTR and INGR routines. 

(7-20) Constraints on INSTR - 

%(X) = ~(s-INPUT($)) 

X i = s-INPUT(~) i 
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(7-21) Constraints on INGR- 

let (l(r, (p,i)) 

re G 

r 

is-t (s-rhs (r) j) 

is-nt (s-rhs (r) j) 

for is-t(s-rhs(r)j) : 

s-rhs (r) j 

for is-nt(s-rhs (r)j) : 

=- is-RULED(p6s-RULED(~))) ^ i <s-NEXT(p(s-RULED(~))) 

= s-LENGT (s-RULE(p(s-RULED(~))) i) 

-'s-TYPE (l(s-rhs(r)j)) = T 

- s-TYPE (l(s-rhs(r)j)) = N 

s-STRCHAR(E) s-N (I (s-rhs (r) j ) ) 

s-rhs(r)= = s-lhs(s) ~ s-NONT(E) = q 
J s-N 

(l(s-rhs (r)j)) where l(s, (q,k)) 

The storage structure given in 7-] to 7-4 also gives us an interpretation of the collection of state-sets 
(see 4-2). 

(7-22) len(S) becomes £o (s-S(~)) 

(7-23) state-set(i,S) becomes s-S(~)i(s-STATE(~)) 

(7-24) for is-state(s): s-rule(s) becomes s-RULE(s) 

(7-25) s-j(s) becomes s-RULEPOS(s) 

(7-26) s-f(s) becomes s-STRPOS(s) 

It is, of course, necessary to check that the required properties still hold: 

(7-27) Lemma £o, state-set,s-RULE,s-RULPOS,s-STRPOS behave as in 4-2,4-4 

proofs all follow from 7-1,7-2,7-3,7-4,7-8. 

The resulting reinterpretations of is-stateset are: 

(7-28) 4: STATE-SET -> N becomes s-N(STATE) 

(7-29) Nn: STATE-SET -> STATE becomes s-INFO(STATE) i 

(7-30) Lemma 

The obvious equivalences hold. 

Follows from 7-1,7-4,7-8 

Notice that ~ and ! (see 6-2 and 6-4) are automatically correct. 

It would now be possible to rewrite the "algorithm" of Section 6 so that it uses the data structures of 
7-I to 7-7, i.e. using the various reinterpretations set out above. 
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8 A MODIFICATION 

Changes of specification and new ideas to, for example, improve efficiency are facts of life: if Formal 
Development is to be an accepted way of const~cting programs its influence on subsequent changes must 
be understood. It is the opinion of the current author that, if generality and abstractness have been the 
keynotes of the development, the difficulty of installing changes should be in realistic relation to how 
drastic that change is. Certainly more work will be required than with a "quick patch", but the same gains 
of certainty as with Formal Development should make the investment worthwhile. 

The modification made in this section is an optimisation to reduce the number of irrelevant states created 
and scanned. It is, again, taken from a conventionally built version of the program. The concept is to 
append to rules an inevitable terminal character (i.e. a character with which any derivation of the rule 
must start), if such exists. This is specified formally in 8-2. During prediction this look ahead 
character, if it exists, is compared to the next character of the string: if they are unequal no state 
for this rule need be generated. Any such state would, after some number of further predictions, have 
been shown to be a "blind alley" by the scanner. This test will be performed by the predicate "cond" 
whose essential property is stated in 8-3: an, obvious, realisation is given in 9-13. 

The effect of this change is now traced beginning with the definition of is-rule (3-2) which is extended 
to include the pre-computed look ahead symbols: 

(8-~) is-rule = (<s-lhs : is-nt>, 
<s-rhs : is-el-list>, 
<s-lk : is-t>) 

Further, the restriction on the look ahead character is: 

(8-2) for r • G : s-lk(r) ~ ~ = (s-rhs(r) => e ^ is-t(~ I) ~ ~I = s-lk(r)) 

Now a check of the development process is made to determine the extent of the changes. 

Consider the problem definition (Section 3) - there is no change to be made since the whole point is to 
recognlse the same strings, but to do it more efficiently. 

Consider the outline of Earley's state sets (Section 4) - there will be no change since the cut down 
state sets will still fall between those satisfying equations 4-7 and 4-8. 

Consider the creation of State sets (Section 5) - A predicate "cond" is introduced which is assumed to 
satisfy the property: 

(8-3) for r • G : s-rhs(r) => ~ ^ is-t(el) = cond(r,e I) 

cond: RULE x T -> {T,F} 

Then 5-8 is modified to emplQy cond: 

(8-4) predict (i,X,G,<r,j,f>) = {<s,O,i>lj ~ ~ & is-nt(s-rhs(r)j+ I) & s • G & s-lhs(s) = 

s-rhs(r)j+ 1 ^ cond(s,Xi+l)} 

The proof that the state-sets still satisfy 4-6 to 4-9 is modified as follows: 

Theorem 5-11 unchanged 
Theorem 5-12 unaffected, because the set satisfying 8-4 is clearly a subset of that 

satisfying 5-8. 
Theorem 5-13 slight change related to cond 

Consider the mapping of state sets to lists (Section 6) - no change to be made. 

Consider the structuring for store (Section 7) - the reinterpretation of 8-I (see 7-17) includes: 

(8-5) s~Ik (r) becomes  s-STRCHAR(~)s_ N (l(s_rhs(r)o)) 

and the additional constraint on INGR (see 7-21) - 

(8-6) s-lk (r) : s-STRCHAR(~)s_ N (i(s_rhs(r)o)) 

Notice that this simple change to the input properties would require a fairly drastic change to INGR 
in that space must now be left for all the look ahead characters in s-RULES. 

164 



9 CODING IN PL/I 

This section discusses the PL/I version (see APPENDIX l) of the algorithm contained in Section 7 (plus 
5-8,5-9,5-I0) as modified by Section 8. The transition is not shown in full detail since this would 
require a significant portion of the theory of PL/I to be formalised. This is not only outside the scope 
of the current paper, it would also be inappropriate since it should be part of a larger, more general, 
endeavour. 

First a number of constructs of PL/I are related to the properties that have been used above; then a 
number of specific results are established. 

PL/I data properties - 

(9-I )  Objects (as i~ 2-6) can be replaced by PL/I structures and the named selectors can be 
mimicked by qualified naming• Notice that this property only holds with selectors which 
cannot yield the null object (see ref 2). 

(9-2) Where the selectors are arbitrary (i.e. their names are not explicitly given) the objects can 
be replaced by a collection of allocations of a based variable. In this case the selectors 
are replaced by pointers. (N.B. in the representation of STATE-SETS given, the REFER option 
has also been used to obtain the possibility to dynamically vary the maximum size of a 
state set). 

(9-3) Lists (as in 2-10, 2-II) can be replaced by PL/I arrays, these present upper bound problems 
which make the algorithm non-total. Referencing is via subscripting and the current length 
is usually stored in another variable. 

(9-4) As an alternative, lists of characters can be replaced by PL/I variable character strings. 
In this case selection is via the 'SUBSTR' built-in function, and length can be found via the 
LENGTH built-in function. 

(9-5) Integers are represented by FIXED BINARY numbers of length 15. This again introduces a, 
difficult to specify, restriction on the domain of the algorithm. 

PL/I statement properties - 

(9-6) Conditional Expressions can be replaced by PL/I statements of the form - 

(9-7) 

IF Pl THEN ... 

ELSE IF Pn THEN ... 

With objects which extend monotonically (e.g. state sets) assignment can be used with no 
loss of information. 

(9-8) The use of where clauses can be replaced by computing the required value and assigning it to 
a variable which is referred to wherever the name is used (this can be thought of as 
1! asslgnment as an abbreviation")• 

(9-9) PL/I DO loops are used to specify the sequencing of operations. In particular nested DO loops 
iterating through the collection of state sets and through the members of a state set are used 
to mirror the function of "next" (see 7-33). Notice that the correctness of this relies on 
the fact that PL/I re-evaluates the while clause of a DO loop at each iteration. Thus a 
DO BY TO construct would fail~ 

(9-10) The conditional expression form of and (see 2-2) is translated so that the second operand is 
not evaluated if the first is false. 

Special Results - 

(9-11) Lemma 

(9-12) Lermna 

Ss" = ss ~ !<s>! yields same result as a procedure whose argument is a 
state and which changes the state-set by side effect. 

DOCV = I BY I TO ~(ss); 

IF ss(cv) = <s> THEN RETURN ; 
END 

sSz(ss)+ I = <s> ; 

The effect of adding a set defined implicitly can be obtained by an ordered search, 
calling the procedure of 9-10 each time a candidate for addition is located. 
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(9-13) Le~na 

cond (r,t) - s-lk(r) = ~ v t = s-lk(r) satisfies 8-3 

proof follows from 8-2 and 9-12. 

The program invokes procedures called INGR and INSTR to read grammar and string into store. (These 
routines were in fact taken from the conventionally built program.) A procedure IPTEST is then invoked 
to check restrictions 4-1,6-9,7-20 and 7-21,8-2. Clearly the relation to the input grammar cannot be 
checked directly and the expediant of printing the grammar as it "must have looked" is adopted. Finally, 
the parsing proper is performed. 

I0 DISCUSSION 

This section attempts to discuss some of the open questions. It is the hope that work on Formal 
Development will be applied to a variety of examples in an attempt to resolve these and other 
questions. 

Breaking the development down into steps has given a clearer picture of the algorithm and its correctness: 
is the work justified ? Making a comparison to the more widely used "write then attempt proof" there are 
few portions of the above work which are wasted. (One example is the necessity to set up the same 
inductive form for proofs at two or more steps.) In view of the difficulty of composing a complete 
algorithm oorrectly from the beginning, this cost is not great. The proofs also tend to follow the 
intuative program ideas more closely. Comparisons to methods not involving formal proofs are more 
difficult, but the opinion of the current author is that without the discipline of proof such methods 
will migrate poorly from their original environment, 

The conment was made, by an experienced programmer du=ing a presentation of this work, that the much 
maligned tendency to start coding too early may be a symptom of wanting to write something formal but 
lacking any alternative language in which to state the partially thought out ideas~ 

The development given here was aided by the existence and knowledge of an actual working version of the 
program. In an actual development much more backtracking would be required: it is certainly not claimed 
that the formal development approach would give rise to inspirations like Earley's state sets. However, 
the formal approach would certainly offer a framework in which to search - only further work can resolve 
this point. 

One of the principal problems is the level of formality required in the proofs. The developed algorithm 
was keypunched and run on an Algol grammar. Although no errors have been uncovered this does not 
establish that the above level of proof would be formal enough to provide security against errors. There 
is certainly an important distinction to be made between assumptions on the data which are extremely 
dangerous (being the source of many conventional programming errors), and formality in the deductions 
which is not attempted. In particular, the extremely attractive, notion of machine checkable proofs 
may not be practical because of the tedium of formalising the deductive steps. A particular problem of 
this distinction is the failure in the development to separate variables of the problem and language 
(e.g. control variables.) domains. 

There are many general problems which become apparent in the above development: is there a clear set of 
ways of using storage/assignment (see 9-7,9-8) ? Are there better ways of specifying order than the 
usual DO loops ? Questions like this could provide valuable feedback to language design from a problem, 
rather than the usual machine, angle. 
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EARLY: PROC 
DCL NULL BUILTIN; 

DCL 
DCL 

OPTIONS (MAIN) ; 

INPUT CHAR(5000) VARYING INIT(' ') EXTEP~AL; 
1 NONT(500) EXTERNAL PTR, 
I STR(250) EXTERNAL, 

2 START FIXED BIN(15), 
STRCHAR CHAR(4000) VARYING INIT('') EXTEPNAL, 
1 RULES(4000) EXTERNAL, 

2 TYPE CHAR(1) , 
2 N FIXED BIN(15), 

1 RULED BASED(Q) , 
2 MAXNRULES FIXED BIN(15) , 
2 NEXT FIXED BIN (15) , 
2 RULE(NRULES REFER (MAXNRUL~S)), 

3 START FIXED BIN(15), 
3 LENGT FIXED BIN(15) ; 

DCL IPGR ENTRY EXTERNAL; 
DCL IPSTR ENTRY EXTERNAL; 
DCL IPTEST ENTRY EXTERNAL; 

CALL IPGR ; 
CALL IPSTR ; 
CALL IPTEST ; 

/* N.B. IPSTR HAS SQUEZED ALL BLANKS TO AVOID REQUIREMENT Tn CODE 
SAME IN ALGOL GRAMMAR */ 

BEGIN; 

DCL S (0 :LENGTH (INPUT)) PTR; 
DCL I STATE BASED (SI) , 

2 SIZE FIXED BIN(15), 
2 N FIXED BIN(15), 
2 INFO (STATE SIZE REFER (SIZE)), 

3 RULE, 
4 RPTR PTR, 
4 SSC FIXED BIN(15), 

3 RULPOS FIXED BIN(15), 
3 STRPOS FIXED BIN(15); 

DCL STATE SIZE FIXED BIN(15) INIT(70); 
m 

DCL I FIXED BIN(15); 
DCL N FIXED BIN(15); 
DCL PI PTR; 
DCL II FIXED BIN(15); 
DCL J FIXED BIN(15); 
DCL F FIXED BIN(15); 
DCL R FIXED BIN(15); 

/* STATE SET INDEX ,~AJOP LOOP */ 
/* STATE INDEX ,2ND LOOP */ 
/* PTR OF S-RULE OF STATE(N,STATE-SET(I)) */ 
/* INT OF S-RULE OF STATE(N,STATE-SET(I)) */ 
/* RULPOS OF STATE(N,ST~TE-SET(I)) */ 
/* STRPOS OF STATE(N,STATE-SE,~(I)) */ 
/* LEN-PHS (Pl ,11) */ 

DCL 1 RHS EL, 
2 ~YPE CHAR(1) , 
2 N FIXED BIN(15); 

/* RHS EL(J+I,(PI,II)) */ 

DCL P2 PTR; 

DCL K FIXED BIN(15); 

/* PTR PT OF RULES S.T. 
RHS NT EQ LHS((PI,II),J+I,(P2,?)) */ 

/* PREDICT~R'~ ~LE INDEX */ 

DCL LK CHAR(l) ; /* LK_EL (P2 ,K) */ 

DCL KS FIXED BIN(15) ; /* STATE INDEX WITHIN S(F) */ 

DCL P3 PTR; 
DCL I2 FIXED BIN(15); 
DCL L FIXED BIN(15); 
DCL G FIXED BIN(15); 

/* PTR OF S-RULE (STATE(KS,S~ATE-SFT(F)) */ 
/* INT OF S-PULE (STATE(KS,ST~TE-SF~-(F)) */ 
/* S-RULPOS (STATE (KS ,STATE-SET (F)) */ 
/* S-STRPOS (STATE (KS, STATE-S~T (F)) */ 

DCL 1 SF RHS EL, 
2--TYPE" CHAR ( I ) , 
2 N FIXED BIN(15); 

/* RHS EL(P3,I2) */ 
D 
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DCL ADD STATE ENTRY (PTR, FIXED BIN(15),FIXED BIN(15) ,FIXED BIN(15), 
FIXED BIN(15)) ; 

DCL SI PTR; 
DCL SF PTR; 
DCL NONTIPTR PTR; 

/* CONTAINS S(I) : F COMP RESTR */ 
/* CONTAINS S(F) : F COMP PESTR */ 
/* CONTAINS NONT(1).PTR : F COMP REST~ */ 

ADD STATE: 
PRO~ (PTR, INT,J,F,I); 

/* ADDS ((PTR,INT),J,F) TO STATE-SET(I) ,UNLESS THERE */ 

DCL PTR PTR; 
DCL INT FIXED BIN(15); 
DCL J FIXED BIN(15); 
DCL F FIXED BIN(15); 
DCL I FIXED BIN(15) ; 

DCL K FIXED BIN(15); /* STATE INDEX WITHIN STATE SET(1) */ 

DCL SI PTR; /* CONTAINS S(I) : F COMP PESTR */ 

sl = s(I); 

DO K = IB BY IB TO SI -> STATE.N ; 
IF (SI -> STATE.INFO(K).RULE.RPTR = PTR ) 

&(SI -> STATE.INFO(K).RULE.SSC = INT ) 
&(SI -> STATE.INFO(K).RULPOS = J ) 
&(SI -> STATE.INFO(K).STRPOS = F ) THEN 
RETURN; /* STATE ALREADY THERE */ 

END; 

IF SI -> STATE.N 

END ; 

= SI -> STATE.SIZE THEN 
DO; /* STATE SET FULL */ 

PUT EDIT(' R4 FAILED ') (SKIP,A); 
STOP; 

END; 
ELSE 

DO; /* ADD */ 
SI -> STATE.N = SI -> STATE.N + 1B; 
SI -> STATE.INFO(SI -> STATE.N).RULE.RPT~ = PTR; 
SI -> STATE.INFO(SI -> STATE.N).PULE.SSC = INT; 
SI -> STATE.INFO(SI -> STATE.N).RULPOS = J; 
SI -> STATE.INFO(SI -> STATE.N).STRPOS = F; 
END; 

DO I = 0B BY IB WHILE(I <= LENGTH(INPUT)); 
ALLOCATE STATE; /* SETS SI */ 
S(I) = SI; 
SI -> STATE.N = 0B; 

END ; 

SI = S(0B); 

SI -> STATE.N = 1B; 
SI -> STATE.INFO(IB).RULE.RPTR = NONT(IB); 
SI -> STATE.INFO(IB).RULE.SSC = IB; 
SI -> STATE.INFO(IB).RULPOS = 0B; 
SI -> STATE.INFO(IB).STRPOS = 0B; 

/* INITIAL S S.T. : IS-S(S) 
L(STATE SET(O) )=I 
STATE(I,STATE SET(0)) = 

< (RT(LAS (R) =ROOT(G) ) ,~ ,0> 
1 <= I <= L(INPUT) IMP 

L(STATF SE~(I,S))= ~ */ 
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DO I = 0B BY 1B WHILE(I<= LENGTH(INPUT)); 
SI = S(I); 
DO N = IB BY 1B WHILE(N<= SI -> SqTATE.N); 

PI = SI -> STATE.INFO(N).RULE.RPTR; 
II = SI -> STATE.INFO(N).RULE.SSC; 
J = SI -> STATE.INFO(N).RULPOS; 
F = SI -> STATE.INFO(N).STRPOS; 
R = Pl -> RULED.RULE(II).LENGT; 

IF(J -I= R ) &(I ~= LENGTH(INPUT)) THEN 
DO; 

RHS EL = RULES(PI -> RULED.RULE(II).START + J ) ; 
IF ~.HS EL.TYPE = 'N' THEN 

DO;-- /* PREDICTOR */ 
P2 = NONT(RHS EL.N); 
DO K = 1B BY TB TO P2 -> RULED.NEXT -1B; 

LK = SUBSTR(STRCHAR,STR(RULES(P2->RULED.RULE(K).START-1B).N) 
.~A~T,1) ; 

IF(LK=' ')I(LK=SUBSTR(INPUT,I+IB,I))THEN 
CALL ADD STATE(P2,K,0B,I,I); 

END; 
END; 

ELSE IF(RHS EL.TYPE = 'T') THEN 
IF SUBSTR(STRCHAR,STR(RHS EL.N).START,I) 

CALL ADD STATE(PI,II,JTIB,F,I+IB); 
m 

END; 

= ST~RSTN(INPUT,I+I,1) TH~N 
/* NCANNEN */ 

ELSE IF J = R THEN 
DO; 

SF = S(F); 
DO KS = IB BY 1B TO SF -> STATE.N; 

P3 = SF -> STATE.INFO(KS).RULE.RPTR; 
I2 = SF -> STATE.INFO(KS).RULE.SSC; 
L = SF -> STATE.INFO(KS).RULPOS; 
G = SF -> STATE.INFO(KS).STRPOS; 

/* CO~PLE~EP */ 

END; 
END; 

IF L -i = P3->RULED.RULE(I2) .LENGT THEN 
DO; 

SF RHS EL = RULES(P3->PULED.RULE(I2) .START+L) ; 
IF--SF ~HS EL.TYPE = 'N' THEN 

IF--NON~(SF RHS EL.N) = Pl THEN 
CALL AD~_.ST~TE(P3,I2,L+IB,C~,I) ; 

END; 
END; 

END; 

/* CHECK FOR END STATE IN S(L(X)) */ 
m 

SI = S (LENGTH (INPUT)) ; 
NONTIPTR = NONT(IB) ; 

DO N = IB BY IB TO SI -> STATE.N; 
IF (SI -> STATE.INFO(N) .RULE.RPTR = NONT(IB)) 

&(SI -> STATE.INFO(N).RULE.SSC = IB ) 
&(SI -> STATE.INFO(N).RULPOS = NONTIPTR -> ~ULED.RULE(IB).LENC~T) 
&(SI -> STATE.INFO(N).STRPOS = 0B ) THEN 

DO; 
PUT EDIT (' YES' ) (SKIP ,A); RETURN ; 
END; 

END; 

PUT EDIT (' NO') (SKIP,A); RETURN ; 
END; 
END; 
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