
DEVELOPMENT OF EDUCATIONAL SOFTWARE
USING THE DEC PDP-II

D.D. Cowan, P.H. Dirksen, J.W. Graham, J.W. Welch
Department of Computer Science

University of Waterloo

ABSTRACT

During the past two years, the Waterloo Foundation for the Advancement of Computing (WATFAC) and the
University of Waterloo have been developing educational software in a number of projects using DEC PDP-II
mini-computers. These projects include the development of WATFOR-II (a load-and-go FORTRAN compiler),
WATBOL-II (a load-and-go COBOL compiler), and WIDJET Ca student editing and job-entry system). This
paper presents a survey of these projects and discusses several problems encountered during their
implementation.

INTRODUCTION

Many high schools, community colleges, junior colleges and similar types of educational ~nstitutions are
developing and teaching computer-related courses which require the student to do programming exercises.
In order to fac i l i ta te use of the computer and toal low large numbers of students to write and
successfully execute programs, an appropriate computing environment should be available.

.Programs written by students usually have a short l i fet ime and normally are not used to produce more than
four or f ive separate calculations. Since the programs are so short-lived, i t is important that the
period between conception and actual operation of the program be minimized. Specifically, the computer
system available should have a number of properties which are directed to student use. The software and
hardware should detect common errors and diagnose them so that the student may quickly make corrections
and put the program into production. I t should be easy to enter program text and put the programs into
execution, and an attempt should be made to minimize the amount of program text to be entered by a student.

The provision of an adequate computer system to support these courses has generally been expensive and
often is beyond the limited budget of many educational insti tut ions. The development of educational
software based on mini-computers should provide a solution to this problem.

During the past two years the Waterloo Foundation for the Advancement of Computing (WATFAC) and the
University of Waterloo jo in t ly have been developing educational software which forms a solid base for an
inexpensive educational computer system based on the DEC PDP-II series of computers. These software
systems include:
(i) WATFOR-II: a load-and-go FORTRAN compiler ¢Cowan, 1975a) which has a high compilation rate and
excellent error diagnostics both at compile- and run-time.

l i i) WATBOL-II: a COBOL compiler ¢Cowan, 1975b) with characteristics similar to WATFOR-II.
iii)WIDJET: an editing and job-entry system (Graham, 1975) which is tailored to student use.

In this paper a description of these software systems and a discussion of some implementation problems are
presented.

LOAD-AND-GO COMPILATION

load-and-go compiler normally translates a source language program in a language such as FORTRAN or
~OBOL into executable machine instructions or equivalent forms which are stored direct ly in the computer

~o mory. Once stored in the memory the translated program is usually placed in execution. Consequently,
ad-and-go compilers have substantially less overhead compared to the more traditional method of

I ompilation in which the object code is written as a f i l e to be subsequently linked with other f i les of
bject code. The size of a program which can be compiled and executed by load-and-go compilers is

bounded by the amount of memory available to store the translated program and other relevant data such as
symbol tables.

109

http://crossmark.crossref.org/dialog/?doi=10.1145%2F872740.807102&domain=pdf&date_stamp=1976-03-04

Load-and-go compilers are often used in environments where the programs are generally small, and where a
large number of such programs are run. These conditions are generally found in educational and research
environments. Historical ly, load-and-go compilers have been designed to run on large-scale computing
systems (Cress, 1969; Rosen, 1965; Shantz, 1967; WATBOL, 1972~. I t has Been only recently that load-and-go
compilers have generally been implemented on mini-computers. Two such compilers are WATFOR-II and WATBOL-II.

WATFOR-II (FORTRAN) and WATBOL-II {COBOL) are modelled after the highly successful WATFOR/WATFIV (Cress,
1969) and WATBOL CWATBOL, 1972) compilers, which were developed at the University of Waterloo for the
IBM 7040, 360 and 370 series of computers. WATFOR-II can compile programs at a rate of over lO00 statements
her minute (PDP II /45). At this rate, there is s t i l l a substantial amount of processing capacity available
for multi-tasking. In addition to being able to compile at a fast rate, these compilers provide excellent
error diagnostics. Considerable effort has been expended so that appropriate error messages can be printed
during either the execution or compilation of a program. Because of their diagnostic capabil ity, many
people have termed these compilers 'debugging compilers'. WATFOR-II, for example, can issue over a hundred
different error messages. WATBOL-II has at least double that number of error messages.

There are a number of differences in the way these load-and-go compilers are designed for mini-computers
rather than for larger systems. While main memory is a limited resource on both kinds of systems, i t is
usually more restricted on mini-computers. This shortage of memory has influenced our design in a number
of major ways.

Both WATFOR-II and WATBOL-II make extensive use of overlay fac i l i t i es . The PDP-II architecture permits
addressing over only 32K words. This is insuff icient space in which to store either the WATFOR-II or
WATBOL-II compilers. The original WATFOR/WATFIV compilers do not use overlay fac i l i t i es . The original
WATBOL compiler has an overlay f ac i l i t y as an integral part of i ts operation. Both WATFOR-II and WATBOL-II
can be generated in a number of overlay configurations, As the compilers are configured to use less memory
the speed naturally decreases because of the increased number of direct-access operations required to load
more overlay segments into main memory.

Both WATFOR and WATBOL have fac i l i t i es whereby error messages are printed as text. The size of a message
is approximately f i f t y characters. In WATFOR-II and WATBOL-II, error-message codes are used. For example,
the code "UV-O0 XXX" indicates that a variable XXX was used with an undefined value during the execution
of a program. The elimination of textual error messages occurred because of the limited amount of memory.

The speed of the mini-computer versions is comparable to the speed of larger systems. Typically, the rate
of job throughput is governed by the slower of the input (card reader) or the output (printer) devices.
Both systems have been operated in "cafeteria style" situations where students queue for a card reader,
read the programs into the computer, and proceed direct ly to a printer to tear their own l ist ings from the
printer. In the larger systems, card readers and printers process at approximately lO00 cards or lines per
minute. Although peripherals with these speeds exist for mini-computers, i t is more usual to configure
them with devices whose speeds are slower { i . e . , about 300 lines or cards per minute). In cases such as
this, the load-and-go compilers can be configured so that the minimum amount of memory is used. Even when
operating with the maximum number of overlays, the compilers are able to operate the slower devices at their
maximum speed.

Our experience with the PDP-II has convinced us that load-and-go compilers are very practical on mini-
~omputers. Two such compilers have been produced and are being successfully used. The major problem to
overcome when implementing these kinds of compilers is the management of limited memory. This has been
accomplished in WATFOR-II and WATBOL-II by using overlay fac i l i t i es without a serious degradation in
performance.

~DITING

Another area of research has been student-editing and job-entry systems. A simple editor, the WIDJET
~ystem, was implemented and augmented with commands which allow submission of jobs for execution. Two
basic configurations were used. In the f i r s t , jobs were passed to the WATFOR-II compiler for execution
and the WATFOR-II compiler returned a l is t ing which could be inspected at the appropriate terminal. In the
second configuration, jobs are passed to another computer (an IBM 370/158) over a bisynchronous
communications line in order to be executed and the l ist ings are returned to the PDP-II.

The motivation for developing the editing system was provided by the rising cost of cards, paper, and the
unit-record equipment which processes these media. We are interested in investigating the economics of
providing equivalent service to a relat ively large student population using cathode-ray terminals. The
students would normally be f i rst-year computer science students with l i t t l e or no computer experience.

110

I ne of the prime considerations was that students could use the editor to write their f i r s t computer program
f ter their f i r s t lecture. We feel strongly that novice students should run programs immediately rather

than possibly losing interest during several "theoretical" lectures. The command language was designed to
Be very simple to learn. Basically, the editor is a context editor whose commands apply to a current l ine.
The current l ine may be changed by repositioning commands. The original editor could only move the current
l ine pointer forward in a f i l e ; in order to move backward the pointer had to be repositioned at the
beginning of the f i l e . In response to student suggestions, the editor was modified so the pointer could be
moved either forward or backward.

A public f i l e f a c i l i t y was also implemented in WIDJET. This allowed the instructors to leave messages about
the conduct of the programming laboratory and to even distribute the problem sets on-line. I t was also
possible to place portions of a program in the public f i l e so that students could move this module into their
own program. For example, this technique often saves the student from having to copy large portions of a
COBOL DIVISION.

The editor was implemented as a re-entrant program to process commands from a single terminal. When a
number of editors is run simultaneously, a single copy of the executable code is present. Each editor
has approximately 1.5K bytes of data allocated to i t . In the fa l l term of 1975, 32 editors were being
run simultaneously on a PDP 11/50 wi th 8OK words of memory.

Over 600 students used th is system to run t he i r assignments. Our plans are to expand th is to 64 edi tors.
A PDP I I / I 0 has been configured to support 8 edi tors. This system, however, has not been run in a
production environment.

Although a number of ' teeth ing ' problems were encountered, the system has been successful ly run during
~wo school terms. Two of the future appl icat ions of the system are:
(i) To'present mobile "computer-science days" at a number of high schools in Ontario. Computer-science
days have been used at the Univers i ty of Waterloo to introduce high school students and teachers to
computing. By using a mini-computer conf igurat ion, we hope to be able to educate small groups of users at
a reasonable cost in t he i r own locat ion.
(i i) To teach structured-programming techniques to business programmers.

We are presently developing some of the packages required by these groups. Using our load-and-go compilers,
students are able to develop programs quick ly since they are provided with fast turnaround and exce l lent
~rror diagnostics. Textual materials are currently being prepared for courses using these compilers. The
WIDJET system provides a method to use these compilers without using card readers or printers.

~n summary, i t is hoped that these developments wi l l introduce computing to a large audience. Of course,
~his can only occur i f the cost of this type of computing is reasonable.

FUTURE PLANS

Our overall goal is to develop a comprehensive package of program materials for a number of educational
groups. Increasingly, high schools, community colleges, and junior colleges are developing computer-
~elated courses and educational programs and are in i t ia t ing more and more computer-based applications.
All groups are similar in that they normally cannot afford large computer installations or the manpower to
support them. Instead, they require low-cost hardware configurations and the software packages to support
~heir operation.

.Relatively inexpensive computer installations can be configured using mini-computers. We are in the process
~f developing software to run on PDP-II hardware. To date, the major developments have been two load-and-
go compilers and an editor. We are in the process of developing textual material for courses which use
these systems. We are also developing a portable mini-computer configuration. This portable computer
!could be shared by a number of remote users or i t could be used for demonstration purposes.

More information regarding these and other software may be obtained by writing WATFAC at the following
address: WATFAC, Box 803, Waterloo, Ontario, Canada.

111

.REFERENCES

Cowan 1975a

Cowan 1975b

Cress 1969

Graham 1975

Rosen 1965

Shantz 1967

WATBOL 1972

Cowan, D.D., et al; WATFOR-II and WATFOR-IIS; Ig~5 Spring DECUS Symposium.

Cowan, D.D., et al; WATBOL-II; 1975 Fall DECUS Symposium.

Cress, P.H., Dirksen, P.H., Ward, S.J.; WATFIV Implementation Guide; Computing Centre,
University of Waterloo, 1969.

Graham, J.W., et al; WIDJET: A Student Editing System; 1975 Fall DECUS Symposium.

Rosen, S., et al; PUFFT - The Purdue University Fast FORTRAN Translator; CACM 8, II
~Nov. 1965), pp. 661-666.

Shantz, P.W., et al; WATFOR - The University of Waterloo FORTRAN IV Compiler; CACM lO,l,
pp. 41-44 (.January 1967).

WATBOL Implementation Guide; Computing Centre, UniversSty of Waterloo, 1972.

112

