
ALGOL 68 AND STRUCTURED PROGRAMMING FOR LEARNER-PROGRAMMERS

Bryan Ratcliff, University of Aston in Birmingham

Abstract A method is described of introducing to absolute
beginners basic concepts of structured programming,
including constructing programs by "step-wise
refinement". This is interleaved with a "top-down"
description of a simple mini-subset of ALGOL 68,
which is closely followed by the concepts of data
structuring and procedurisation, as expressed in
this language. F~mphasis throughout is on the
programming philosophy behind the approach
controlling the teaching of ALGOL 68, rather than
vice versa.

i. Introduction

The philosophy behind the teaching method to be outlined is founded
upon the following set of simple beliefs:-

(i) ALGOL 68 is a good programming language

(ii) it is no more difficult to teach ALGOL 68 to beginners (up to a
certain level and given enough time) than any other programming language

(iii) it is only slightly more difficult to teach "top-down,
structured" programming to beginners than no programming methodology at all

(iv) it is possible to combine (ii) and (iii).

As to the merits of ALGOL 68, either in general or as a suitable
language for structured programming in particular, this has long been
debated (see [1] for example); suffice it to say that, at this level of
teaching, discussion of features such as a virtually non-existent escape
control structure and unimaginative loop control structure (no repeat
until etc.) becomes (literally) academic; if one is content with a
series, a generalised conditional and a while loop, then ALGOL 68 proves
adequate to the task. References to both ALGOL 68 and structured
programming are well-known and in the main need no re~eating here. However,
for the sake of completeness, I~ I remains a classic, [3] is typical of such
a distinguished author, while is representative of more recent and
radical outlooks. [5] is by one of the leading proponents of programming by
"step-wise refinement", and [6] provides a pragmatic all-round account of
modern theories of program design and related topics. For theories and
discussion of techniques of teaching programming, one could do no better
than consult [7]. Finally, [8] tends to sparkle by default amongst an
otherwise sadly sparse array of current ALGOL 68 primer literature; for a
more "practical" approach, try [9].

157

http://crossmark.crossref.org/dialog/?doi=10.1145%2F872738.807156&domain=pdf&date_stamp=1977-03-29

2. The method

A survey of the manner in which FORTRAN, COBOL, ALGOL 60, PL/I etc. are
introduced to learner-programmers would surely reveal that the following
order of "elaboration" of a language's constructs predominates: mnneric
"constants", integer and real variables (and their declarations if
appropriate), simple formulas involving basic numerical operators, pre-
defined functions, assignment, simple input and output, trivial "straight-
line" programs (such as computing the area of a triangle or the roots of a
quadratic equation - this truly is formula translation:), boolean
expressions and conditional statements, loops, arrays and programmer-defined
procedures. There would of course be variations depending upon the actual
language involved, teacher preferences and so on, but the overall tendency
towards a bottom-up approach would be obvious.

It may be argued, however, that if one's initial overriding concern is
to develop within students a feeling for "structure" and "top-downness",
then this will be achieved with far greater effect by largely reversing the
traditional order, particularly with a language as structurally expressive
as ALGOL 68. This is the basis of the method which is employed. Currently,
topics are introduced in the following order:-

(i) series, if-then-else-fi, while-do-od

(ii) int variable declarations, assignment, int denotations and
- * ÷ and ~ only), simple transput (including string formulas (+, , ,

denotations with "print") and bool formulas (=, ~ etc. plus and, or, not)

(iii) modes real, char and a few selected operators; correspondence
between applied and defining occurrences of identifiers ("scope")

(iv) data structuring - one and two-dimensional arrays of int, real,
bool and char, mode string, structures

(v) procedurisation

Each of these steps represents a major advance in the students'
experience; a few important points need to be made:

Step (i): Effectively, the students are taught that a bool series can
be written between while and do; this is to avoid awkward and inelegant
constructions of the form: SI; while B do $2; S1 od (there is no analogous
problem with the conditional clause). Students tend to have far more
initial difficulty with the loop than the conditional clause, and there are
two main reasons for this: firstly, the syntax of the former does not
directly reflect its elaboration whereas with the latter it does (it reads
"naturally"), and secondly, it is often not obvious how to express oneself
within the confines of the While form. Program schemata help here, and an
important schema students meet at an early stage is:-

set v to initial value;
while v ~ (or ~) final value
do S; increment (or decrement) v by step value od

(note how, at this stage, informal computer "Esperanto" is used for all

158

other programming notation required)

Step (ii): Low-level details now emerge. An abstract reference
machine whose storage model is one of a set of blackboards helps to give a
vivid interpretation of the most important concept of this step - that of a
variable (casually introduced in Step (i)) and the associated actions of
assignment and dereferencing. On completion of Step (ii), students are
introduced explicitly to the technique of top-down problem-solving and
coding; with the mini-subset of ALGOL 68 now within their grasp, they are
able to tackle many non-trivial and interesting algorithms as their first
practical programming exercises.

Step (iii): Modes real and char widen the basis for programming
examples. "Scope of identifiers" is always a difficult topic but it is
best to explain it now before discussing procedures, and before the need to
explain it has arisen anyway, because some student's program has
mysteriously (to the student) failed to compile.

SteD (iv): Slices are a somewhat tiresome subject to teach; to avoid
getting bogged down in syntactic/semantic minutiae, simplification is
achieved by always using trimmers with explicit lower and upper bounds.
Mode strin6 is taught as an entirely separate data type (flex is never
mentioned for everyone's safety and peace of mind).

Step (v): To ease the technicalities of the material involved,
introducing procedures in the following order seems best:

(a) parameterless void procedures
(b) parameterless non-void procedures
(c) procedures with parameters

At point (b), the idea of a closed clause yielding a value can easily be
conveyed as a "write-the-expression-last-in-the-series" rule, since 6oto
and exit are never discussed. At point (c), ref and identity declarations
appear for the first time in order to explain properly parameter
correspondence.

3. Concluding remarks

The main features of the way in which ALGOL 68 is taught can be
summarised as follows:-

(i) By starting with a top-down development of the simple mini-
subset described, the essence of structured progr~_mming embodied in the
three basic types of control mechanism is emphasised from the outset;
moreover, "top-downness" in teaching encourages "top-downness" in program
construction.

(ii) In effect, point (i) illustrates the general principle that the
programming methodology being taught should control the order of introduc-
tion of the language's constructs and concepts, rather than vice versa;
pleasant but initially unnecessary constructions such as assigning operators,
initialised declarations, brief symbol forms, if clauses and assignations
as expressions, case clauses etc. are left until the end of the course.

159

(iii) Constructs and concepts are introduced only at the point where
they are deemed to be first needed e.g. identity declarations and ref are
not mentioned until procedures with parameters are discussed.

(iv) A "theological" approach is completely shunned; to confront a
beginner with ref int i = loc int (rather than an int blackboard named iX)
will serve only to confuse rather than enlighten.

(v) Simplicity is of prime importance (as point (iv) implies);
experience has shown that the subset of ALGOL 68 described in steps (i) -
(v) inclusive of section (2) can be taught without resort to most of the
more difficult concepts and terminology embodied in ALGOL 68 (particularly
as regards coercions and context strengths).

It might be argued that, since structured programming is initially
intellectually more demanding than a conventional approach, it will serve
to discourage certain students from persevering with learning to program.
However, there is always a small proportion of any class who are apparently
incapable of expressing themselves in a "programmatic" way, whatever the
language or methodology being taught. Since habits,whenever acquired, die
very hard indeed, it is vital for those people who do not belong to the
afore-mentioned group, that the first habits they acquire are good ones.
The more traditional bottom-up teaching methods must be questioned as to
their effectiveness in achieving this objective. Certainly, the initial
results obtained from the teaching method described are extremely encourag-
ing, with students constructing highly structured programs. The main area
of difficulty lies in developing the problem-solving capabilities of
students and the systematic application of these in top-down design; it is
envisaged that the course will undergo further modification in an attempt to
improve its effectiveness in this crucial area.

Re fe rence s

[i] Sintzoff M., "A brief review of Algol 68" Algol Bulletin, No. 37,
July 197h.

[2]

[3]

[4]

[5]

Dahl O.J., E.W. Dijkstra & C.A.R. Hoare, Structured Programming,
Academic Press, 1972.

Knuth D.E., "Structured Programming with Go-To Statements", ACM
Computing Surveys, Dec. 197h.

Weinberg G.M., D.P. Geller & T.W-S Plum, "IF-THEN-ELSE considered
harmful", SIGPLkN Notices, Vol.lO, No.8, Aug.1975.

[7]
[8]

[9]

Wirth N, Systematic Programming, Prentice-Hall, 1973.

Yourdon E., Techniques of Program Structure and Design, Prentice-Hall,
1975.

Turski W.M. ed., Programming Teaching Techniques, North-Holland, 1973

Pagan F.G., A Practical Guide to Algol 68, Wiley, 1976.

Learner A & A.J. Powell, An Introduction to Algol 68 Through Problems,
Macmillan, 197h.

16D

