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Abstract

This paper discusses and shows by example the poten-
tial of a network of microprogrammable microprocessors
as a cost-effective alternative to traditional hardwired
medium- and large-scale mainframes. While biased
towards vector processing, this system is not intended to
compete with multi-million dollar supercomputers such as.
the 360/195, CDC STAR, Iliac IV, CRAY-1, TI ASC, etc.,
which use special algorithms and the fastest circuitry avail-
able.

The architecture incorporates pipelining, multipro-
cessing and distributed processing techniques with bipolar
microprocessor technelogy. The result should be a
machine which will equal or outperform most traditional
third- and fourth-generation mainframes at a fraction of
the CPU cost. This should be the case even for scalar,
general purpose computation.

Modularity in the hardware is a further feature. This
system can be implemented using a small library of com-
ponents (e.g., the AM 2800 bipolar microprocessor family)
and relatively little random logic.

The paper presents an overview of the proposed target
machine, with emphasis on a simple scheme for detecting
and resolving dependencies among instructions which must
run sequentially.

Keywords: microprocessors, pipeline, distributed
processing, vector machine, array processing.

1. Introduction

The proposed multi-microprocessor architecture is
not intended as a panacea for the EDP industry's current
or future processing requirements. Rather, it is one
example of a low cost approach to large-volume number-
crunching (e.g., large matrix multiplication) found in many
scientific applications such as signal processing. Ii is not
intended to be all things to all users, although we feel it can
be competitive even in areas other than number-crunching.-

Traditionally, CPU speed and power have been gained
by improvements in circuitry. Logic chips have become
significantly more sophisticated and faster every few years.
This trend will decelerate in the not-too-distant future,
however, due to basic constraints of physics and electronics.
Perhaps the Josephson Effect ci]r’c‘uitry1 or optical process-
ing2 will provide order(s) of magnitude speed increases,

but these techniques will not be routinely available in the

near future. Significant performance increases over tra-
ditional systems, therefore, are implemented today with

architectural as well as technological sclutions.

Currently, bipolar micreoprocessors have the best
price/performance ratio, as building blocks requiring
minimal design time. Our proposed machine, then, will
use the best aspects of architectural, microprocessor and
integraged circuitry technologies to achieve the design
goals.

Our use of architectural techniques such as pipelining
and multi-processing is not novel. There are 2 number of
machines in use today which employ many of these same
techniques. The CDC STAR® and especially the CRAY-1%
are fine examples of pipelined vector machines. The Iliac
IV is the archetypal array process0r5 and the Carnegie-
Mellon C. mmp network is a good example of a tightly
coupled mini-network with a price/performance ratio supe-
rior to that of traditional mainframes®.

The architectaral tools, then, are available and to some
extent have been used in combination before. What we pro-
pose is using microprogrammable microprocessors such as
the AM 2900 series as building blocks with which to imple-
ment a low cost CPU that uses the best architectural fea-
tures known to us. Thus, hardwired stations in a traditional
pipeline will be replaced by microprogrammed micropro-
cessors.

The design outlined is limited to internal eomputation.
We do not address such problems as [/0 and interrupt
handling here. We feel that these are amenable to a similar
treatment. Alsc, the exact sizes of instructions, memories
or buifers, and numbers of microprocessor stations, ete.
are by no means definitive or even optimal—we only claim
that this first-cut configuration should work quite well, at
the very attractive component cost of less than $10, 000 for
some 30 microprocessors constituting the CPU (exclusive
of mstruction and Data memory).

2. User's View of The Machine

Figure 1 shows a programmer's view of the proposed
target machine. It stores 84-bit instructions in an instruc-
tion memory and 32-bit data in a data memory. The instruc-
tion memory cannot be addressed for writing purposes with
normal instructions: program loading is done with privileged
instructions, The three-address format (20 bits absolute
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and use one or more auxiliary vector control blocks.

Figure 3 shows a typical vector instruction which requires a
gequence of two operations: a pairwise product and a run- . START ADDRESS DF VECTOR Address N
ning sum of products. The former can be done by running INDEX VALUE Address N+l
the multiplications on the 16 microprocessors which con-
stitute the Execution Processor in parallel, the other as a
form of postprocessing by the Destination Processor prior
to storing the result. Figure 4 shows an appropriate Vector
Control Block.

"NUMBER OF ITERATIONS Address N+2

Figure 4. Vector Control Block
machine, these are driven from (writable) control stores
for their special function.

3. Internals The Instruction Controller network of four micropro-
cessors is fed preconditioned instructions via the FIFO

3.1 Overview queue between it and the Preprocessor. If, in turn, checks
with the Opcode Analyzer to see if a suitable processing
station for an opcode is available in the Execution Processor,
while simultaneously fetching the source operands and send-
ing the destination address to the Conflict Controller. The
Exocution stations are typically divided into ALU, multiply/
divide, string, and 1/O groups. However, since the micro-
processors have dypamic control store, they may be recon-
figured: for example, they could all be reloaded to run a
large arithmetic vector operation running 16 multiplies at
once for maximum throughput. The internal timing of the
Instruction Processor causes each station to be activated
about 400 nanoseconds behind its predecessor. Since a

Figure 5 shows a machine consisting of a pipeline of
four major stations, each of which will be treated in more
detail later. The Preprocessor network of four micropro-
cessors basically is used to fetch the four instruction fields
in parallel from the mstruction memory and, in the case of
vector mode, Vector Control Blocks from Data memory as
well; it also performs very menial tasks in order to queue
up jobs for the next station in the pipeline. The program
counter in the Preprocessor may be incremented, loaded
under program control (branching, subroutining), or loaded
by an interrupt mechanism to effect a context awitch. As
all other microprogrammed bipolar micreprocessors in the
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Figure 5. Lower Level Architectural Block Diagram

fixed point multiply takes approximately 16 x 400 ns, by the
time station 15 has been scheduled, station 0 is available for
rescheduling. The Instruction Processor then has just
enough time to get 0 started again when 1 terminates, and
so on. This will give an effective rate of about 400 ns per
pair of points for an inner product, once the process is
started.

The term "preconditioned" above refers to the fact that
whenever possible the Preprocessor has relieved the
Instruction Processor of the burden of certain basic tasks.
For instance, in vector mode the Preprocessor need not
dump raw (20 + 4 bit) addresses in the FIFO queue, but can
do all effective address calculations; once started oh a vector
instruction, there can be no interference with the index reg-
ister and memory locations by other instructions. The Pre-
processor uses the data in the Vector Control Blocks to
decompose the vector instruction into a sequence of scalar
instructions for the FIFO queue. Further instruction pre-
fetching may be inhibited until the vector sequence is done.
Also, the Preprocessor will not pass on an instruction (such
as unconditional branch) which it is capable of executing. In
case the branch is taken, unneeded instructions past the
branch are flushed from the queue simply by resetting the
queue's pointers.

The Conflict/Retry Processor ascertains whether
instructions conflict. A conflict is said to occur whenever
the instruction trying to start has as one of its operands the
result of an earlier instruction which has not yet completed
execution, ‘or its destination is the same as one in progress.
The two conflicting instructions are interdependent, as
described in data flow formulations”.

If a conflict ig detected and/or the Instruction Processor
cannot find a station to execute the current instruction, the
instruction Processor will store the instruction to the
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16-word Retry Buffer in the Conflict/Retry Processor.
Valid operands are stored as 32-bit data; ones in conflict,
by their 20-bit effective address,

If there is no conflict and an available Execution Pro-
cessor station exists, the Instruction Processor puts the
two gource operands on the bus to the Execution Processor
along with the opcode via the opcode bus, The selected 32~
bit microprocessor in the Execution Processor gates the
opcode and operands from the bus into its internal registers
and emulates the designated target operation under direction
of its control store.

Meanwhile, the destination effective address is saved in
a location in a destination/conflict RAM which corresponds
to the number of the Execution Processor station which was
activated for this opcode.

When a station completes, the Destination Processor
fetches the destination address from the destination RAM's
location with the corresponding address and stores the
results to Data memory. It also notifies the Conilict/Retry
Processor that conflicting instructions waiting on that just-
computed operand may be retried.

Note that nonconflicting instructions can run in arbitrary
order and often in parallel by taking advantage of the multiple
execution stations. Simple arithmetic and logical instructions
may vary from 400 ns to 10 microseconds; with the possible
parallelism, the effective throughput can be a fraction of
these individual instruction rates, as in the inner product
example above. Furthermore, there are unusually few reg-
ister load instructions since most indexed loops can be
handled by vector instructions, and all memory locations can
be used for operations without explicit loading and storing of
accumulater registers (and associated execution overhead)
which takes such a large fraction of the programs for ordinary,



non three address architectures. Thus, typical instruction
streams will execute considerably faster on this architecture
than on traditional ones. Alsoc, it can be made even faster by
the usual technique of adding special purpose function boxes,
€. g., hardwired multiplication, floating point, trigonomet-
rics, etc.

3.2 Conflict Resolution

3.2,1 Overview. As an instruction is peeled off the
FIFO queue by the Instruction Processor, it stores itin a
buffer register and tries to schedule it by invoking three
processes in parallel:

1) it asks the opcode analyzer if there is a free Execu-
tion Processor station;

2) it starts a fetch from data memory on the assumption
that neither the source operands nor the destination
operand are in conflict with a destination operand
currently being computed in the Execution Processor
or waiting to be scheduled for computation in the
Retry Buffer;

3) it verifies this assumption simultaneously through
the Conflict Analyzer which will signal any conflicts,

When the fetches are completed (less than 75 ns later, a
valid source operand (one not currently being computed and
therefore not in conflict) is placed in the appropriate 32-bit
field of the partially decoded instruction in the buffer regis-
ter, while an invalid one is kept as a 20-bit effective address,
with an associated invalid operand bit. A completely valid
instruction for which the Opcode Analyzer found a station is
then sent to the ¥xecuticn Processor. Conversely, if no
station is available, or one or both source operands or the
destination address are still being computed, the partially
decoded instruction (opcode, effective addresses for invalid
operands and fetched data for valid operands) is considered
blocked. M is stored in its partially decoded form in a slot
in the Retry Buffer of the Conflict Processor for subsequent
rescheduling when an execution station frees up and both
source operands are available and/or the destination address
is availahle for a new computation of the same variable ™.

When all operands become valid, the Retry Processor is
notified that it ought to present the ready-to-run instruction
to the Instruction Precessor, as soon as the Instruction
Processor completes handling a prior instruction from either
the FIFO queue or the Retry Buffer. If a station is not avail-
able, the instruction is flagged as ready to run and remaing
in the Retry Bulfer for periodic sampling by the Retry Pro-
cessor. Note that the Instruction Processor need not de a
memory fetch or a conflict check for instructions presented
to it by the Retry Processor, as it does for instructions from
the FIFO queue.

3.2.2 The Conflict Processing and Retry Algorithms.
The conflict processing described below is functionally not
significantly different from that of the 360/’918 and the CDC
66009. The implemecntation described here differs in that

*
Note that we only compute one instance of a variable at a
time to simplify bookkeeping and space requirements.

the control of the conflict processing is kept simple and is
done principally by a microprocessor network., Figure 8
shows a somewhat more detailed block diagram of the Retry
Buffer, Destination RAM, a number of status bits, and
some queunes built up for an atypical instruction mix example
with an abundance of conflicts.

The diagram can be divided into twe parts. The upper
half consists primarily of a 16-element vector of 20-bit
destination addresses. The i'th element contains the desti-
nation address for the result being computed in the i'th
Execution station. (Status bits and queues associated with
the element will be explained below.) The diagram shows
variables X, ¥, B, and Z being computed.

While the upper half thus pertains to instructions
already being executed, the lower balf, i.e., the Retry
Buffer, contains blocked instructions awaiting execution.
For example, Xop Y P is the first blocked instruction.
Since the Retry Buffer was empty initially, the first few
instructions were placed in the Retry Buffer in chronolog-
ical order. 20-bit destination addresses of these blocked
instructions (e.g., P for the first one) are stored in an
identical format to those of executing instructions in the top
half.

The combined vector of up 1o 16 executing and 16
blocked destination addresses is referred to as the Destina-
tion RAM, Its principal purpese is to allow the Conflict
Processor to determine by direct comparison with the
entries in this RAM whether there is a confiict, Each of
the three addresses of an instruction just taken from the
preprocessor’'s FIFO Queue is compared against all destina-
tion operands being computed (X, ¥, B, Z}or about to be
computed (P, C, Q, etc.). In reality there are three iden-
tical copies of the entire 32 entry vector of destination
addresses, which allows the comparison to take place in
less than 200 ns for all three addresses simultaneously.

The format of a blocked instruction in the Reiry Buffer
is opcode, A (source) operand, conflict tag A, B {source)
operand, conflict tag E, and C {destination) operand, con-
flict tag C. The conflict tags distinguish a valid 32 bit oper-
and from an invalid 20 bit effective address.

Thus in the first instruction X and Y are currently being
computed (by execution stations 0 and 1, respectively), as
shown in the uppexr half of the Destination RAM, When the
result of the source operand computation on which a blecked
instruction is waiting becomes available, effective addresses
are replaced by the computed value in the Retry Buffer and
the appropriate conflict bits are cleared. When Xand Y
become available, therefore, the first blocked instruction
may be scheduled, if there is an available station.

If a destination address of a new instruction conflicts
with a prior computation of that operand, the C operand con-
flict tag is used to indicate that the new instruction should
not be started until completion of the prior instruction which
computes the same operand. As an example, locations 1 and
4 contain computations of C; the conflict bit is 0 for the first
but 1 for the second computation. In this manner, instruc-
tions chronologically between the first and second computa-
tion will get the right version of the twice-computed operand,
This avoids a critical race in which the second instruction,
if it were scheduled and completed before the first one was,
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Figure 6. Retry Buffer and Destination RAM

would store its result in Data memory, only to be erroneously
cverwritten when the first oompleted**. When the first ver-
sion of such an operand is available, all intermediate instruc-
tions which were waiting on it as a source are cleared as
before. Similarly, the conflict tag C on the second version's
instruction is cleared, allowing it to be retried if its sources
are available,

The Retry Processor is notified when a blocked instruc-
tion has all three conflict tags zeroed. Additional buffer
status bits (shown to the left of the Retry Buffer) distinguish
between slots with blocked instructions, slots waiting for an
Execution Processor, and free slots. Since the order in
which instructions are scheduled is not known beforehand
and is almost certainly not chronclogical, the Retry Buffer
is filled at random using the free location bits.

**A]ternatively, the second instruction could be started as
soon as its operands were available and its result treated
as if it were an independent entity. The redundant first
store could then be obviated.

33

As noted, the computation of an operand should result
in the replacement of the address of that operand by its
value in all dependent instructions which use the result as a
source, as well ag in a data memory store operation. Data
flow dependencies in an instruction stream are typically
modeled as a directed graph which could be encoded in a
linked list structure. mnstead the convention here is to store
in a FiFO queue the Retry Buffer addresses of all ingtrue-
tions fetched which use a given destination operand. Each
destination in the Destination RAM has such a queue, with
between 0 and 16 entries. (The gueue hit in the upper half
of the Destination RAM facilitates checking for empty queues. )
Each element in the queue consists of a 4-bit Retry Buffer
address (shown as & single hex digit) and a three-bit operand
position mask which is used to identify which of the three
operands in the dependent instruction is in conflict. Tor
example, the third queue element for result P computed by
the first instruction in the Retry Buffer contains a 5, indi-
cating that Retry Buffer address 5 contains a dependent
instruction, and a bit pattern of 100 indicating that the com-
puted value should replace the first (A) operand address.



Similarly, the second queue element of C at location 2 indi-
cates that the second (B) operand address at location 3 is to
be replaced.

A destination address of a blocked instruction in the
Retry Buffer will be moved to a slot in the upper 16 words of
the Destination RAM when its instruction is scheduled, and
the queue of addresses will simply be copied to the new loca-
tion. (Also, since this slot in the Retry Buffer is now avail-
able, the status bits are reset to 00.) For example, when
the first instruction, X op Y P, is scheduled, P is put in
an Execution station slot in the Destination RAM, its status
bits are cleared, and its queue is copied. When P is avail-
able, the first queue element indicates that retry slot two is
to have its A cperand assigned the value P; likewise, P will
be put in the A operand of the third and fifth instructions. In
case of a 1 bit in the third position, no value need be snbsti-
tuted but the conflict tag is cleared to allow the instruction to
proceed. For example, when C in slot 1 is computed, its
third queue element will cause the conflict tag C of the
instruction at 4 to be cleared.

To facilitate building distinct queues for multiply-com-
puted variables, the C {current) bit next to a destination
address is set to 1 for the current (latest) copy of a given
variable/destination address. A new entry in the Retry Buf-
fer can then have its address and field hits put into the queue
of the current destination variable.

It should again be noted that the scheduling and conflict/
retry algorithms are conservative in order to keep them
simple, cheap to implement, and adequately fast. Special
casing could be used to do more optimal scheduling, and
keep the execution stations busier. Since they are cheap,
however, idleness is not a cardinal sin. Also, an optimiz-
ing compi]erm can help produce instruction streams which
reduce instruction conflicts and therefore allow more execu-
tion concurrency.

4. Summary

We have presented a high-level description of a cheap
CPU architecture which uses networks of microprocessors
to effect a pipelined architecture well suited to mimber-
crunching, e.g., large vector and matrix manipulations.
Many details have been left unspecified even in the much
more detailed design presented inll and need to be resolved
through detailed simulation, Also, such facilities as siring
handling, I/0, virtual memory, and cperating system support
need special treatment and some additional hardware., How-
ever, preliminary calculations show that this type of archi-
tecture can make very good use of dynamically micropro-
grammahle microprocessors to achieve parallelism and
therefore high throughput. The expected performance is
very competitive with all but the biggest existing processors,
at greatly reduced cost and greater modularity and expand-
ability. For example, memory and buffers can be enlarged,
more execution stations can be added, and slower micropro-
cessors can be replaced, where needed, by fasier ones or
hardwired logic.

In many cases the use of a microprocessor in our sys-
tem may be "overkill". Our goal was to develop a machine
as free of hardwired logic as possible, so microprocessors
were used for nearly every feasible station in the pipeline.
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in addition, we feel that the current technological trend indi-
cates that overkill may be economically justificable before
very long, 1.e., the cost of hardware will outstrip the cost
of a microprocessor with firmware for even trivial imple-
mentations.
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