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ABSTRACT 

The Distributed Loop Computer Network (DLCN) is 
envisioned as a powerful, unified distributed computing 
system which interconnects midl/mini/micro-computers, 
terminals and other peripherals through careful inte- 
gration of hardware, software and a loop communication 
network. Research concerning DLCN has concentrated 
on the loop communication network, message protocol 
and distributed network operating system. For the 
loop communication network, previous papers [2,3] 
reported a novel message transmission mechanism, 
its hardware implementation, and its superior perfor- 
mance verified by GPSS simulation. This paper 
presents an overview of the design requirements and 
implementation techniques for DLCN's message protocol 
and network operating system. Firstly, a bit- 
oriented distributed message communication protocol 
(DLMCP) which handles four message types under one 
common format is proposed. Besides user information 
transfer, this protocol supports automatic hardware- 
generated message acknowledgment, error detection and 
recovery, and network control and distributed operating 
system functions, Secondly, the network operating 
system (DLOS) is described which provides facilities 
for interprocess communication by process name, global 
process control and calling of remote programs, 
generalized data transfer, alterable multi-linked 
process control structures, distributed resource 
management, and logical I/O transmission in a 
distributed file system. 

I. INTRODUCTION TO DLCN 

The Distributed Loop Computer Network (DLCN) [1-5] 
is envisioned as a powerful distributed computing 
system which interconnects midi/mini/micro-computers, 
terminals and other peripheral devices through careful 
integration of hardware, software and a loop communi- 
cation network (see Figure i). The major goals of 
DLCN are to provide efficient, inexpensive, reliable, 
and flexible service to a localized community of 
semi-autonomous users in an environment of constantly 
changing user demands and requirements. The ARPANET 
[6] and similar national computer networks have 
demonstrated the importance and practicality of 
networking for interconnecting large-scale computer 
facilities; research on DLCN hopes to prove that 
networking is also feasible and extremely beneficial 
in a geographically local environment of small and 
medium scale machines. Such a computing environment 
is frequently found today in many industrial, 
commercial, and university areas and therefore seems 
to be an ideal target for research on this type of 
networking and distributed computing. Bringing to 
such groups the cost advantages and performance 
improvements of the computer systems architecture of 
the 1980's [7] will be a very important achievement. 

For the purpose of this research, DLCN's stated 
goals can be broken down into five major design 
objectives: 

i) to provide an efficient, low-cost loop 
communication network which can simultaneously and 
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directly transmit variable-length messages between a 
variety of attached devices (computers, terminals, 
and peripherals) without the use of any centralized 
control; 

2) to construct an inexpensive loop interface 
between each such attached device and the network 
which can automatically buffer, transmit, acknowledge, 
and control messages without the need for software 
supervision; 

3) to design an appropriate message communica- 
tion protocol for this network and interface which 
will facilitate their operations while also providing 
a vehicle for implementing many distributed, low-level 
primitives for network operating system functions; 

4) to specify the design requirements and 
implementation techniques for a distributed network 
operating system which is to feature interprocess 
communication by name, remote program calling, 
alterable process control structures, distributed 
resource management, generalized data transfer, 
logical I/0 transmission, and control of a distributed 
file system; and finally, 

5) to integrate the results of the preceding 
four objectives into a Distributed Loop Computer 
Network (DLCN) which will give the network user 
access to a powerful, flexible and unified distributed 
computing system which he can use to meet his expanding 
processing needs without sacrificing his local autonom~ 

There are many important keywords stressed in 
DLCN's design objectives, but possibly the most 
significant is integration -- integration of hardware, 
software and communcation technologies to produce 
a unified distributed computing system (see Figure 2). 
Many distributed functions in DLCN are made possible 
because of the close integration of the network's 
hardware, software and communication systems. The 
term distributed computing is used here in a rather 
special sense to denote the interconnection of inde- 
pendent computer systems, terminals and peripheral 
devices into a common, unified computing system 
whose total resources may be shared by all. Further- 
more, it ~s hoped that the network can be constructed 
in such a manner that its users will see only a 
single, integrated computing facility with great 
power and many available resources. In the ideal 
case, the users would not even be aware of the system's 
actual organization and method of operation. 

In order to accomplish all these design objectives 
for DLCN, many new techniques must be applied, and 
some new concepts have to be developed. Previous 
DLCN research concentrated on the communication 
network and on hardware design of a loop interface 
which implements a superior message transmission 
mechanism [1,2,4]. The functioning of the communica- 
tion network was also modeled [3], and the advantages 
of the new transmission mechanism were verified 
through computer simulation using GPSS. These 
results are summarized in Section II. 

Section III presents the message protocol to 
be used by DLCN (called DLMCP, for Distributed Loop 
Message Communication Protocol). It is a bit- 
oriented message protocol with a distributed control 
discipline and is specially designed to exploit the 
unique properties of a loop network. Four message 
types are supported by DLMCP under one common format: 
information, acknowledgment, control and diagnostic. 
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Finally, Section IV provides a brief overview of the 
design requirements and implementation techniques for 

the network operating system, called DLOS (for 
Distributed Loop Operating System), which must 
transform a loosely coupled collection of semi- 
autonomous computing systems into a distributed 
computing system. As may be guessed, the latter task 
is far from an easy one. 

II. SUMMARY OF PREVIOUS RESEARCH ON DLCN 

As mentioned above, previous research on DLCN 
has been mainly in the area of communication network 
and hardware design. In this regard, a new message 
transmission mechanism has been developed for use in 
DLCN [1,2,4] which is faster and more efficient 
(multiple messages, variable length) than that used 
in Newhall loops (single message, variable length) 
[8,9,10] or Pierce loops (multiple messages, fixed 
length) [11,12]. The mechanism allows the simul- 
taneous and direct transmission of variable-length 
messages onto the loop without the use of any 
centralized control. By buffering incoming messages 
when necessary, it guarantees nearly immediate 
access to the loop for infrequent users, regardless 
of the level of message traffic on the loop. The 
mechanism also provides automatic regulation of the 
rate of message transmission in accordance with 
observed system load, favoring light, infrequent 
users at the possible expense of heavy, frequent 
users. Perhaps most importantly, it yields shorter 
message transmission times and makes much better 
utilization of the loop than any existing technique. 

The detailed operation of this transmission 
mechanism (see Figure 3) has been reported elsewhere 
[1-5] already, so only a brief su=mmry will be given 
here. Basically, a message can be placed onto the 
loop whenever no other message transmission is 
already in progress, provided that space exists 
locally (of a size at least as large as the message 
to be inserted) to delay any incoming messages that 
might arrive. Once an incoming message has been 
delayed in this manner, it is then transmitted 
ahead of any more incoming messages (which are in 
turn delayed, etc.). During the period when no 
incoming messages arrive, the space occupied by 
the delayed messages can be gradually reduced and 
finally eliminated. 

Inexpensive shift-register insertion hardware 
has been designed which allows this message trans- 
mission mechanism to be implemented totally in the 
loop interface [3,4]. This interface hardware has 
several highly significant features. It can transmit 
a message to a specific process executing on a 
particular machine, or it can broadcast the message to 
all active processes in one machine or in the entire 
network. In addition, it can automatically generate 
and transmit the proper acknowledgment response for 
any information message it receives (if so directed), 
can detect and remove lost messages, can prevent 
lockout of a node from accessing the loop, and can 
do all of these functions without any software 
supervision. A description of the hardware needed 
to accomplish these functions has been published 
elsewhere [3,4,5] and therefore will not be repeated 
again here. 

The superior performance of DLCN's message 
transmission mechanism was verified by an extensive 
computer simulation study [3,5]. Simulation models 
were written in GPSS for three types of loop networks - 
DLCN, Pierce, and Newhall - so that relative 
performance could be easily judged. As just one 
result of this study, Figure 4 graphs mean message 
transmission time in each of the three networks vs. 
message traffic rate and clearly shows the better 
performance of DLCN's transmission mechanism. This 

fact is not surprising, since the DLCN mechanism, 
when constrained appropriately, can be reduced to 
operate like either the Newhall or the Pierce mechanism. 
By exploiting their weaknesses while retaining their 
advantages, the DLCN mechanism is able to be better than 

either. 

III. MESSAGE COMMUNICATION PRoTOcoL 

The communication protocol used by DLCN for 
message transmission on the loop is called the Distri- 
buted Loop Message Communication Protocol (DLMCP) [4,5]. 
It is a bit-oriented protocol with a distributed 
control discipline. It is similar in many respects 
to the modern, bit-oriented protocols now being 
developed, like IBM's SDLC, ANSI's ADCCP or 
ISO's HDLC, which all use a centralized control 
discipline. One important feature of DLMCP is that 
messages are addressed specifically to user processes 
executing on particular machines in the network, thus 
facilitating interprocess communication by process 
name. Another significant feature of DLMCP is that 
four types of messages are provided under one common 
format; besides user information transfer, these 
messages support automatic hardware-generated 
acknowledgment, error detection and recovery, and 
network control and distributed operating system 
functions. Thus DLMCP is much more than just a data 
link control protocol, as it is designed with easy 
interprocess communication and network control in mind. 

DLMCP's overall message format is shown in 
Figure 5. The flag is a special bit-sequence which 
denotes the start or end of a message frame. Either 
the bit-stuffing technique (as in SDLC) or the more 
efficient bipolar violation technique (as in the 
Newhall [8] loop) can be used to ensure that the flag 
sequence never occurs elsewhere in the bit stream 
so as to achieve data transparency. The two 12-bit 
address fields are each decomposed into 7-bit loop 
interface addresses and 5-bit process numbers for 
identifying the source and destination processes. 
The first two bits of the message control field are 
used to encode the message type -- information (00), 
acknowledgment (01), control (i0) or diagnostic (ii). 
The next bit allows for broadcast message transmission, 
whereby a message is copied by every interface on the 
loop but is not removed; this technique has considerable 
application in inquiry situations when the address of 
the desired receiver is not known. The following 
3-bit subfield is interpreted differently for each 
message type (i.e., function code, response code, etc.). 
The next 3 bits are used for lost message detection 
and lockout prevention. The final 7-bit subfield of 
the control field also has different uses for different 
types of messages (i.e., sequence number, function 
modifiers, etc.). The final field of the message 
frame is the CRC-CCITT (Cyclic Redundancy Check) error 
checksum field in which a 16-bit checksum is stored 
by each message transmitter. Note that not only the 
user information field but also the address and control 
fields are checked by this technique, thus ensuring 
their integrity as well. 

Information and Acknowledsment Messases 

Little need be said about information messages. 
They exist solely to carry transparent, user-defined 
text between communicating processes. Their contents 
are completely ignored by the loop communication 

network. 
Since information messages may not be received 

properly for a variety of reasons, it is necessary 
that each be acknowledged in some manner. In a loop 
network, the receiver can simply copy the message, 
set a field in it to indicate reception, and return 
the entire message to the transmitter (as in DCS [9]). 
However, because message frames in DLCN may be of 
arbitrarily great length, it is more efficient to 
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remove the information text at the receiver and to 
generate a very short acknowledgment message for 
return to the transmitter. 

DLMCP implements two kinds of message acknowledg- 
ments. Each information message transmitted can be 
individually acknowledged, or only messages which 
require an exception response may elicit an acknowledg- 
ment, the rest being implicitly accepted through use 
of a single 7-bit sequence number. In either case, 
the interface hardware is so constructed that it can 
automatically generate the proper acknowledgment 
message (if one is required) from the information 
message received and can return the response to the 
sender, all "on the fly" and without the need of 
any software assistance [5]. 

The advantages of this method of message 
acknowledgment should be clear. First, acknowledgments 
are generated totally by the loop interface hardware, 
without host intervention or supervision, in the 
minimum possible time. Thus correct message trans- 
mission is the sole responsibility of the communica- 
tion network. This method will work even when the 
attached host is not operational or in cases where 
there is no intelligent host (as when a peripheral 
device is attached directly to the loop). Second, the 
transmitter can regulate exactly how and when 
messages are acknowledged, either for each individual 
message or only when an exception is noted. By using 
a combination of these two methods, the transmitter 
can send a block of messages, only the last of which 
requests a definite response, thus implicitly 
acknowledging the entire block of messages with one 
return message. This method can be used aspart of 
message flow control on the transmitting side; pacing 
on the receiving side is handled by another mechanism. 

Control Messages 

The control message, as its name implies, is used 
partly to control the operation of the loop communica- 
tion network. Its primary purpose, however, is to 
implement privileged low-level primitives for 
accomplishing some of the basic functions of the 
Distributed Loop Operating System (DLOS). Table i 
lists various control message types and their control 
functions. Their use in the loop executive DLOS 
will be discussed in the next section. 

Diagnostic Messages 

Diagnostic messages are used for error detection 
and recovery during normal operations and for system 
initialization and bootstrap loading at start-up time. 
Four basic modes of diagnostic messages exist -- normal, 
diagnostic, recovery and initialization. Normal mode 
is the usual setting when no errors have been detected; 
periodic status checking is still performed, just to 
be certain that all components are working properly. 
Once an error is suspected, diagnostic mode is entered 
to pinpoint the cause of the problem. When the cause 
is located, recovery mode is entered to attempt to 
solve the problem and to continue despite it. Finally, 
initialization mode is the state entered when an 
interface is powered up for the first time or which 
follows reconfiguration. In this mode, not only the 
interface is initialized for operation, but even 
the host software can be bootstrap loaded from another 
source. 

Lost Message Detection and Lockout Prevention 

The lost message detection and the lockout 
prevention mechanisms are completely distributed and 
performed by all interfaces in the network on all 
messages. They were reported fully in [4,5] and will 
not be repeated here, due to lack of space. 

I l drJ l I Plag Contro l  I n f o r m a t i o n  
• (8) (8) (8) (Variable) (16) , (8) 

(a) SDLC Message Format 

Orlgl. ̂ddr. C .... l X n , o ~ . t t o ~  cuc-~T"~;7"! 
I (8) I (12) (12) (16) (Variable) (IS) t (g) j 

( b )  DLMCP Message F 0 c m a t  

Address  F i e l d  S p e c i f i c a t i o n :  

B i t  P o s i t i o n s  - S p e c i f i c a t i o n  

0 - 6 Loop  i n t e z f a c e  addres s  (0  - 127 )  

7 - 11 Process nm~ber (0  - 31 )  

Contro l  F l e l d  S p e c i f i c a t i o n :  

B i t  P o s I c l o n ( s )  S p e c t f l c e t f o n  

0 - 1 Message tYpe: 
CO I n f o r m l t t o n  
O1 Acknowledgement 
I0 Contro l  
ii D i a g n o s t i c  

2 Broadcast  message 

3 - 5 Funct ion ,  re sponse  o r  o t h e r  (depe~dlng  On 
message type)  

6 - 7 L o s t  message d e t e c t i o n  

8 Lock-out p r e v e n t i o n  

9 - 1 5  Sequence number ( 0  - 1 2 7 )  o r  f u n c t i o n  m o d i f l e r  
(depending on message type )  

Fig. 5. Message Formats for (a) SDLC and (b) DLMCP 

G r o u p  C o x m a n d  Subcos~and F u n c t i o n  

O PACE 

RESPONSE 

I LOCATE 

CALL 

RETURN 

2 PRIVILEGE 

3 RESOURCE 

4 ~EGUIATE 

5 TRANSFER 

6 SYNCHRONIZE 

7 EXPANSION 

I n q u i r e  

Request 

Grant  

Revoke 

Test 

O b t a i n  

Allocate 

Deallocate 

D a t a  

Parameter  

Message  f l o w  c o n t r o l  

C o n t r o l  A c ~ m o w l e d g m e n t  

Locate  a p r o c e s s  o r  program b y  name 

C a l l  a remote  p r o g r ~  on a n o t h e r  m a c h l n e  

R e t u r n  from a remote  program 

E s t a b l i s h  p r o c e s s - t o - p r o c e s s  c o n t r o l  s t r u c t u r e  

F i n d  out w h i c h  p r i v i l e g e s  a r e  g r a n t e d  

Ask  f o r  a s p e c i f i e d  p r l v l l e g e  

Give a specified privilege 

Take away e specified privilege 

D i s t r i b u t e d  r e s o u r c e  management 

T e s t  a v a i l a b i l i t y  o f  r e s o u r c e  

Ask f o r  a r e s o u r c e  to  be  a l l o c a t e d  

A l l o c a t e  a r e s o u r c e  t o  r e q u e s t e r  

D e a l l o c a t e  a r e s o u r c e  from h o l d e r  

U n s p e c i f i e d  s y s t e m  c o n t r o l / r e s p o n s e  

C o n e r a l i z e d  d a t a / f i l e  t r a n s f e r  

Psrameter passlng for re~ote calls 

Expllelt pEocess synchronization 

Reserved for future expanslon 

Table I. Control Messages 

IV. DISTRIBUTED NETWORK OPERATING SYSTEM 

The Distributed Loop Computer Network (DLCN) 
is envisioned as a loosely coupled, heterogeneous 
network, consisting of many different computer systems 
(both small and medium size), each operating for the 
most part independently and under local control, yet 
occasionally sharing data and programs with or borrowing 
resources from other computer systems in the network. 
In order to make such cooperative resource and data 
sharing possible in a uniform manner, it is necessary 
that all processors in the network execute components 
of a commonly structured Distributed Loop Operating 
System (DLOS). Each local component of DLOS is 
responsible for converting between local and network- 
wide representations for all forms of information 
(both user and system) that must be exchanged through 
the network. Thus the primary job of DLOS at the 
system design level is to define a standard, universal 
representation for all network information transfer; 
each local component then serves to map this universal 
representation to that of its particular host. By 
requiring only that the data structures and operating 
protocol be identical on all machines, each local 
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component of DLOS can be implemented differently, 
according to local requirements. It is hoped that DLOS 
can be added between existing local operating systems 
and the network with relatively minor changes. 

Control of the network as a unified distributed 
computing system is made easier to achieve by the 
close cooperation of the message communication protocol, 
DLMCP, and the design of DLOS, since all the required 
low-level operating system functions are implemented 
using the interchange of control messages through the 
loop communication network. Having a loop for the 
communication network, which makes message routing, 
broadcast transmission and distributed control so 
easy, has had a profound effect on the structure and 
design of the network operating system. 

Features of DLOS 

To reiterate, the philosophy of DLOS is that 
DLCN, even though actually a collection of separate 
computer systems connected by communication links, 
should be viewed by its users as a single, unified 
distributed computing system. Consequently, all 
functions in DLOS have been implemented with this idea 
in mind. Interprocess communication is by process 
name, not address. Remote programs (procedures 
located in another machine) are "callable" by a 
global network process also by name, not by location, 
using a generalized parameter transfer mechanism. 
Similar capabilities are provided for alterable, 
multi-linked process control st ructures and for 
distributed resource management. Even generalized 
data transfer and logical I/O transmission at the 
file record level is possible with DLOS for a 
distributed file system formed from separate, 
heterogeneous file systems. Thus, by using the 
facilities specifically designed for it in the hardware 
and communication network, DLOS can give the distri- 
buted computing user the illusion of executing on a 
single, powerful machine with a great number of 
available resources. 

Interprocess Communication 

The message communication protocol used on the 
loop network (DLMCP) requires that physical addresses 
be given in every message to identify both the 
receiver and the sender, since messages (unless 
broadcast) are directed to a particular user process 
executing on a particular machine in the network. 
In order to accomplish this objective, every process 
address is broken down into two components: a 
7-bit physical loop interface address (LIA) for 
locating the proper machine in the network and a 5-bit 
process number (PN) which identifies the process 
itself. 

While this method of physical addressing was 
chosen for transmission efficiency, it is desirable 
that user processes be able to communicate with each 
other by logical process name, without having to know 
the actual physical locations of other processes. 
If interprocess cummunication by_name is to be 
supported, while physical addressing of message 
frames is to be required for message transmission on 
the loop network, then DLOS must translate from 
process name to process address (and vice versa) for 
every message transmitted or received. This transla- 
tion must be both dynamic (since the location of a 
process may change) and efficient. To see how this 
translation is done by DLOS, consider the following 
problem and its step-by-step explanation. 

Suppose that process A in machine 1 wants to send 
a message to process B in machine 2. Process A does 
not know the physical location of process B (nor does 
it wish to know) and thus it will send its message to 
process B by name. The action of transmitting this 

message from process A to process B can be explained 
in four steps (see Figures 6, 7, and 8). 

i) First, DLOS must set up a logical connection 
between the two named processes. A LOCATE control 
message is put on the loop in broadcast mode from 
machine i, giving the address of process A and the 
names of processes A and B. Every machine on the 
network receives the LOCATE command and checks its 
local list of process names to see if process B is 
located there. If found, that machine (2 in this case) 
copies the physical address and logical name of 
process A into its Process Name-to-Address Translation 
Table (PNATT, see Figure 6b), then sends a LOCATE 
control message back to machine i to give it the 
physical address and logical name of process B. 
Machine i copies that information into its own PNATT 
(see Figure 6a). Should the location of either process 
ever change, a single LOCATE control message can 
cause the appropriate translation table to be updated. 

2) Next, a communication (talk) path must be 
established between processes A and B. Thus process A 
must request permission to talk to process B by issuing 
a Request Talk Privilege command to process B (either 
explicitly, or implicitly by executing a Send Message 
command with process B as the destination). Further- 
more, process B must also issue a Grant Talk Privilege 
command to process A (again explicitly, or implicitly 
by executing a Receive Message command with process A 
as the origin) in order to complete the talk connection. 
Once this communication path is established (and until 
it is broken by either party), process A is free to 
send messages to process B (see Figure 6). 

3) When process A later prepares a message it 
wishes to send to process B, it can transmit it by 
executing a Send Message command. DLOS uses the 
parameters (see Figure 7) of the Send Message command 
to construct a Message Queue Element (MQE) for the 
message, which is then linked to the Send Queue chain 
pointed to by process A's PCB (Process Control Blocks, 
see Figure 8). If process B were in machine i, ,then 
the Message Communication Handler for DLOS would 
simply transfer the MQE just formed from the Send 
Queue of process A to the Receive Queue of process B. 
However, since process B is assumed to be in machine 2, 
the MQE is instead removed and ~dded to the Send 
Queue of the Loop Communication handler for machine i. 

The Loop Communication Handler forms an informa- 
tion message frame from the MQE (using the PNA~T 
addresses for processes A and B), and transmits the 
frame out onto the loop. The MQE is then removed from 
the Send Queue and is saved on a Wait-for-Acknowledg- 
ment Queue while the Loop Communication Handler 
waits for a Positive response to be returned from the 
receiving end. If a negative acknowledgment (or no 
response at all within a certain timeout period) is 
returned, then the MQE is used to form a new message 
frame, which is then retransmitted onto the loop. If, 
however, the message was received correctly, the MQE 
is removed and destroyed, its message buffer space is 
released, and the appropriate status is reported to 
process A (see Figure 7). 

4) At machine 2, where the received message 
frame is removed from the loop by its own Loop Communi- 
cation Handler, the message frame is dismantled, the 
message text is placed into a system buffer, and an 
MQE is formed for the message which is added to the 
Receive Queue chain of process B's PCB. The message 
sender (process A) has now been located in the PNATT, 
and the MQE is associated with process B. It will 
simply wait there on the Receive Queue until process 
B executes a Receive Message command specifying process 
A by name as the desired sender. The first (oldest) 
MQE associated with process A will be removed from the 
qhain, the message text will be copied into the user's 
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buffer area, proper status will be reported, and the 
MQE will be destroyed. 

The data structures and operations upon them which 
have been presented in the preceding paragraphs 
should explain how interprocess communication b~name 
is to be achieved under DLOS. The explanation of this 
feature was rather detailed, since the same design 
philosophy and kinds of operations are found throughout 
DLOS. Thus, the features to be presented hereafter 
will not be discussed in quite so much depth. 

Remote Program Calling 

DLOS introduces the concept of ~lobal process 
control in the sense that a process can be considered 
an entity whose existence and scope of control is 
global to the entire distributed computing network, 
just as the latter is regarded as a single, unified 
computing system. The idea is that a single user 
process should (logically) be able to control the 
sequential execution of programs or procedures that 
are physically scattered among several heterogeneous 
machines (processors) in the network. 

What will be explained here is essentially a 
generalized method of remote subroutine calling, 
whereby a piece of code (program X) being executed 
by a process A in machine 1 can call (transfer 
control to) another piece of code (program Y) located 
in machine 2, but still under the supervision of 
process A. The actual transfer of control (the call) 
from program X to program Y is effected by a Call 
command in program X. If programs X and Y are both 
in the same machine, then the call is handled in the 
normal manner. Otherwise, a CALL control message is 
sent to machine 2 (which contains program Y), 
specifying the name of program Y and the address of 
process A which is (logically) to control it. What 
acutally happens is that a new process A' is created 
in machine 2; and it is actually this new process, 
acting as the remote agent of process A, that 
controls the execution of program Y in machine 2. 

Thus process A which controlled the execution of 
program X in machine 1 is deactivated by the remote 
call, for machine 1 has no work to perform for 
process A until the called remote program finishes 
and returns control to program X again. When that 
event occurs (signalled in DLOS by the execution of 
the Return command in program Y and the transmission 
of a corresponding RETURN control message to machine 
i), several actions will be performed: process A will 
be reactivated, the specially created process A' will 
be destroyed, and execution of program X will be 
resumed. 

Thus, the remote program call mechanism is easy 
to implement and totally transparent to its users. 
A user process need never know if a called program is 
local or remote, for DLOS handles all the location 
and linkage details. The transfer of parameters 
between such remote programs is considered next. 

Generalized Data Transfer 

Data transfer between a local calling program and 
a remote called program (or between two processes) is 
in general extremely difficult, since the two programs 
may reside in different machines that have completely 
different internal data representations. However, all 
machines are capable of outputing information in 
human-readable form as character strings in some 
standard code (EBCDIC, ASCII, etc.) and can accept 
input expressed in the same general format. There- 
fore, one solution to the data transfer problem is to 
establish a network-wide, standard character string 
representation for all data and to map output into this 

standard form on transmission and input from it on 
reception. Na~ura%l[~ the mappings will be different 

for each machine. 

Actual data transfer might well use two separate 
pieces of information: i) the data itself, expressed 
as an ASCII (or perhaps EBCDIC) character string, and 
2) the format description of that data, also represented 
as a character string (similar to a FORTRAN or PL/I 
format statement), extended to include all necessary 
device control information. By having such a gener- 
alized format capability to describe the data and its 
treatment, it is possible to transmit any kind of data 
between two machines, without having any prior agree- 
ments as to its exact format and interpretation. By 
having the data itself expressed as a character string, 
it is possible to ignore internal data representation 
differences and to use a standard external representa- 
tion which most systems already use for communicating 
with the outside world. With such a powerful and 
generalized data transfer mechanism at its disposal, it 
should be possible for DLOS to support parameter 
transfers between remote programs (or even file 
transfers between remote file systems). 

Unquestionably, this method is inelegant, inef- 
ficient and somewhat restrictive. Yet it is entirely 
workable, can be implemented fairly easily, and is 
quite general in nature. Every computer system that 
uses FORTRAN or similar languages already has elaborate 
data conversion and formatting routines for the input 
and output of data. In these cases, it should be as 
easy for programs to exchange data as it is to read or 
punch a card. The data transfer component of DLOS in 
each machine could even be written to perform all 
needed conversion automatically, so that individual 
programs need not be concerned with the data conversion 
at all. 

Process Control Structures 

In most systems in which processes can be created, 
controlled and destroyed by other processes, a tree- 
like hierarchical process control structure is formed. 
Every kind of process control function is then bound 
to this single, unchangeable control structure. Such 
a static, regulated environment makes life easy for 
the operating system, but it can unduely hamper and 
restrict user processes. Why cannot a process have 
control over its creator, as long as both are willing 
to swap roles? Why cannot two or more independent 
processes agree to cooperate and help each other (form 
coroutines)? Why cannot a process permit a group of 
other processes (instead of just one) to exercise 
joint control over it? The philosophy of DLOS is that 
all these forms of control (and others) are reasonable 
and should be possible, especially in a distributed 
computing system. 

Such an environment as found in DLCN virtually 
demands that a dynamically alterable, multi-linked 
process control structure he permitted. Furthermore, 
the kind of structure suitable for one kind of process 
control may be entirely inappropriate for another, 
thus requiring a separate control structure for each 
kind of process control to he allowed. Therefore, 
DLOS provides a Privilese command which allows user 
processes (by mutual agreement) to change and extend 
their process control structures (for such things as 
communication with other processes, status monitoring, 
error recovery, etc.). With such freedom and power 
available to user processes, the potential for misuse 
is very great. But if adequate safeguards are imposed 
such that potential damage is limited to the cooper- 
ating processes themselves and such that ultimate 
control still lies within DLOS, then the resulting 
benefits should be tremendous. Almost any kind of 
complicated interaction of cooperating processes could 
be formed to achieve a distributed computing goal, 
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limited only by the imagination and talents of the 
problem solvers. 

Distributed Resource Management 

In order to accomplish distributed resource 
management (see Figure 9) under DLOS, it is envisioned 
that all resource requests in each machine will be 
made through the local Resource Manager. If the 
resource request can be satisfied locally, the 
Resource Manager will simply pass control over to the 
appropriate local resource allocator; otherwise, 
the Resource Manager will issue a RESOURCE control 
message in broadcast mode to determine if some other 
machine in the network has the requested resource and 
is willing to allocate it. No response may be 
obtained, in which case the resource is simply not 
available now, or perhaps several replied will be 
obtained from different machines. In the latter case, 
the Resource Manager can choose the one it feels is 
"best" in some appropriate sense and will pass the 
request on to that machine's Resource Manager so 
that it can handle the allocation of its own resources. 

All usage of the allocated resource would also 
have to pass through the local Resource Manager. For 
local resources, the appropriate local routines would 
directly service all requests, as usual. Otherwise, 
a control message describing the type of resource 
access requested is passed through the network to the 
remote Resource Manager and thence to the remote 
access routines. The resulting reply, if any, is 
passed back by the same method to the original 
requestor. 

This method of resource management is workable 
and attractive for a distributed computing system, 
since it still allows local management to work without 
change. As far as the local operating system is 
concerned, the Resource Manager is just another 
program to which it assigns resources -- if the Re- 
source Manager wishes to reallocate them to remote 
programs, that is entirely its buisness. Moreover, it 
should also be possible to suballocate and exchange 
resources among processes, while still maintaining 
ultimate control over them. Obviously, there are many 
difficult problems to solve in an actual implementation 
of this approach, such as resource accounting, dead- 
lock avoidance, or just ordinary resource access and 
usage. However, since resources are allocated and 
ultimately controlled by local Resource Managers, each 
under control of a local operating system, it seems 
likely that these problems can be overcome and that a 
powerful, flexible and easy to use resource management 
system can be obtained. 

Logical I/O Transmission 

The last feature to be considered is the way 
DLOS will go about achieving logical I/O transmission 
at the data record level in a distributed file system. 
In each machine in the network which has its own file 
system, with its own special data formats, device 
characteristics and I/O conventions, DLOS will estab- 
lish a Logical I/O Handler. This local program will 
be capable of exchanging logical data records with 
user processes in response to standard read/write 
requests and file commands. It will also be able to 
handle all the intricacies of physical I/O to the local 
file system, including file naming and location, access 
protection, update interlocking, directory lookup, 
record searching, device dependent functions, actual 
I/O operations, error recovery, blocking/deblocking, 
code translation, formatting, and data movement. In 
short, the Logical I/O Handler must be able to isolate 
user processes from the real file system and to allow 
them to regard file I/O as nothing more than the 
exchange of data messages with a special I/O process. 

The advantages of handling all I/0 in this manner 
are clear. First, the burden of physical I/O opera- 
tions and control is removed from the user process. 
Second, the Logical I/O Handler has complete control 
over the local file system, since all requests are made 
through it. Thus it can enforce access protection 
and can establish proper interlocks during file updates. 
Third, its functions can later be implemented in a 
special microprogrammed I/O controller, without any 
changes being necessary to user processes. Finally, 
and perhaps most importantly, since all data transfer 
is at the logical data record level, all that is needed 
is a standard data representation together with a set 
of standard file commands and conventions to make it 
possible to exchange data records between any two 
Logical I/O Handlers in the network. Since such a 
generalized data transfer mechanism was considered 
earlier in this section, it can be concluded that a 
user process can access any file in the entire network, 
so long as its request is sent to the proper Logical 
I/O Handler using standard file commands and conventions. 

Thus DLOS is able to provide access to a network- 
wide distributed file system that is composed of 
multiple heterogeneous, local file systems. When a 
user process wishes to access this distributed file 
system, it always sends its request to its local 
Logical I/O Handler for initial processing. If the 
desired file cannot be found locally, the Logical 
I/O Handler puts the user's request into standard form 
and passes it around the loop to its proper remote 
counterpart. That remote Logical I/O Handler then 
accesses its own file system to satisfy the user's 
request, converts the results of the operation back into 
standard form, and passes them back around the loop to 
the local Logical I/O Handler and thence to the origi- 
nal requestor. 

Design Philosophy of DLOS 

As shown by Figure 9, the design philOsoPhY 
DLOS has been to handle requests locally if possible; 
otherwise, they are put in a standard form and broad- 
cast through the loop to a corresponding remote 
component which services the requests and returns the 
results to the local component. Any necessary data 
conversions are performed by the request handlers. 
Since requests are always made to the local component 
and all responses are obtained from it, the end user 
sees no difference in local and remote requests. 
Instead, he sees only a single, unified distributed 
computing system which can easily and efficiently 
meet all his distributed processing needs. 

At the same time, this design philosophy makes 
implementation of DLOS as a separate component on 
each machine much easier, since each local component 
can operate almost independently of all others. All it 
need do is accept local requests, service them locally 
if possible, otherwise transform them into standard 
form and ask for remote help from anyone that can give 
it. Thus control of DLOS as a set of logically identi- 
cal, cooperating components which make up a global, 
distributed operating system is greatly simplified. 

V. CONCLUSIONS 

The preceding sections have considered various 
facets of the message transmission protocol and network 
operating system design for the Distributed Loop 
Computer Network (DLCN), a distributed computing 
system envisioned as a means of investigating funda- 
mental questions in distributed networking and computing. 
Research concerning DLCN is primarily directed toward 
geographically local communities of semi-autonomous 
midi/mini/micro-computer users, who occasionally 
have need of computing services or resources which are 
present elsewhere in the group, yet which are not 
available locally. Such a computing environment is 
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is typlcal of that frequently found today in many 
industrial, commercial~ and unvierslty settings, 
Bringing the cost advantages and performance improve- 
ments of distributed computer networking to such 
computing groups would be a very significant achieve- 
ment and is, therefore, one of the major design goals 
for DLCN. 

A university campus, which already contains dozens 
of minl/mldi-computer facilities scattered among many 
academic departments, seems a logical place to test 
the feasibility of this goal. Thus, a proposal is now 
being made which may lead to the implementation of an 
experimental prototype version of DLCN. In support of 
this effort, additional research on distributed 
processing is now being conducted in the areas of 
distributed network operating systems, distributed 
data base management, abstraction and formalization 
of protocols, analytic modeling of computer networks, 
and fault-tolerant distributed computing. As new 
results are obtained from these projects, additional 
reports can be expected. It is to be hoped that 
through these efforts and with its careful integration 
of hardware, software and a loop communication network, 
the Distributed Loop Computer Network can meet its 
expectations and be the fore-runner for future 
distributed computing systems of this type. 
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