
MESSAGE COMMUNICATION PROTOCOL AND OPERATING SYSTEM DESIGN
FOR THE DISTRIBUTED LOOP COMPUTER NETWORK (DLCN)

Ming T. Liu and Cecil C. Reames*
Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

ABSTRACT

The Distributed Loop Computer Network (DLCN) is
envisioned as a powerful, unified distributed computing
system which interconnects midl/mini/micro-computers,
terminals and other peripherals through careful inte-
gration of hardware, software and a loop communication
network. Research concerning DLCN has concentrated
on the loop communication network, message protocol
and distributed network operating system. For the
loop communication network, previous papers [2,3]
reported a novel message transmission mechanism,
its hardware implementation, and its superior perfor-
mance verified by GPSS simulation. This paper
presents an overview of the design requirements and
implementation techniques for DLCN's message protocol
and network operating system. Firstly, a bit-
oriented distributed message communication protocol
(DLMCP) which handles four message types under one
common format is proposed. Besides user information
transfer, this protocol supports automatic hardware-
generated message acknowledgment, error detection and
recovery, and network control and distributed operating
system functions, Secondly, the network operating
system (DLOS) is described which provides facilities
for interprocess communication by process name, global
process control and calling of remote programs,
generalized data transfer, alterable multi-linked
process control structures, distributed resource
management, and logical I/O transmission in a
distributed file system.

I. INTRODUCTION TO DLCN

The Distributed Loop Computer Network (DLCN) [1-5]
is envisioned as a powerful distributed computing
system which interconnects midi/mini/micro-computers,
terminals and other peripheral devices through careful
integration of hardware, software and a loop communi-
cation network (see Figure i). The major goals of
DLCN are to provide efficient, inexpensive, reliable,
and flexible service to a localized community of
semi-autonomous users in an environment of constantly
changing user demands and requirements. The ARPANET
[6] and similar national computer networks have
demonstrated the importance and practicality of
networking for interconnecting large-scale computer
facilities; research on DLCN hopes to prove that
networking is also feasible and extremely beneficial
in a geographically local environment of small and
medium scale machines. Such a computing environment
is frequently found today in many industrial,
commercial, and university areas and therefore seems
to be an ideal target for research on this type of
networking and distributed computing. Bringing to
such groups the cost advantages and performance
improvements of the computer systems architecture of
the 1980's [7] will be a very important achievement.

For the purpose of this research, DLCN's stated
goals can be broken down into five major design
objectives:

i) to provide an efficient, low-cost loop
communication network which can simultaneously and

*Currently in data communications development with the
Burroughs Corporation, 25725 Geronimo Rd., Mission
Viejo, California, 92675.

directly transmit variable-length messages between a
variety of attached devices (computers, terminals,
and peripherals) without the use of any centralized
control;

2) to construct an inexpensive loop interface
between each such attached device and the network
which can automatically buffer, transmit, acknowledge,
and control messages without the need for software
supervision;

3) to design an appropriate message communica-
tion protocol for this network and interface which
will facilitate their operations while also providing
a vehicle for implementing many distributed, low-level
primitives for network operating system functions;

4) to specify the design requirements and
implementation techniques for a distributed network
operating system which is to feature interprocess
communication by name, remote program calling,
alterable process control structures, distributed
resource management, generalized data transfer,
logical I/0 transmission, and control of a distributed
file system; and finally,

5) to integrate the results of the preceding
four objectives into a Distributed Loop Computer
Network (DLCN) which will give the network user
access to a powerful, flexible and unified distributed
computing system which he can use to meet his expanding
processing needs without sacrificing his local autonom~

There are many important keywords stressed in
DLCN's design objectives, but possibly the most
significant is integration -- integration of hardware,
software and communcation technologies to produce
a unified distributed computing system (see Figure 2).
Many distributed functions in DLCN are made possible
because of the close integration of the network's
hardware, software and communication systems. The
term distributed computing is used here in a rather
special sense to denote the interconnection of inde-
pendent computer systems, terminals and peripheral
devices into a common, unified computing system
whose total resources may be shared by all. Further-
more, it ~s hoped that the network can be constructed
in such a manner that its users will see only a
single, integrated computing facility with great
power and many available resources. In the ideal
case, the users would not even be aware of the system's
actual organization and method of operation.

In order to accomplish all these design objectives
for DLCN, many new techniques must be applied, and
some new concepts have to be developed. Previous
DLCN research concentrated on the communication
network and on hardware design of a loop interface
which implements a superior message transmission
mechanism [1,2,4]. The functioning of the communica-
tion network was also modeled [3], and the advantages
of the new transmission mechanism were verified
through computer simulation using GPSS. These
results are summarized in Section II.

Section III presents the message protocol to
be used by DLCN (called DLMCP, for Distributed Loop
Message Communication Protocol). It is a bit-
oriented message protocol with a distributed control
discipline and is specially designed to exploit the
unique properties of a loop network. Four message
types are supported by DLMCP under one common format:
information, acknowledgment, control and diagnostic.

193

http://crossmark.crossref.org/dialog/?doi=10.1145%2F633615.810670&domain=pdf&date_stamp=1977-03-01

Finally, Section IV provides a brief overview of the
design requirements and implementation techniques for

the network operating system, called DLOS (for
Distributed Loop Operating System), which must
transform a loosely coupled collection of semi-
autonomous computing systems into a distributed
computing system. As may be guessed, the latter task
is far from an easy one.

II. SUMMARY OF PREVIOUS RESEARCH ON DLCN

As mentioned above, previous research on DLCN
has been mainly in the area of communication network
and hardware design. In this regard, a new message
transmission mechanism has been developed for use in
DLCN [1,2,4] which is faster and more efficient
(multiple messages, variable length) than that used
in Newhall loops (single message, variable length)
[8,9,10] or Pierce loops (multiple messages, fixed
length) [11,12]. The mechanism allows the simul-
taneous and direct transmission of variable-length
messages onto the loop without the use of any
centralized control. By buffering incoming messages
when necessary, it guarantees nearly immediate
access to the loop for infrequent users, regardless
of the level of message traffic on the loop. The
mechanism also provides automatic regulation of the
rate of message transmission in accordance with
observed system load, favoring light, infrequent
users at the possible expense of heavy, frequent
users. Perhaps most importantly, it yields shorter
message transmission times and makes much better
utilization of the loop than any existing technique.

The detailed operation of this transmission
mechanism (see Figure 3) has been reported elsewhere
[1-5] already, so only a brief su=mmry will be given
here. Basically, a message can be placed onto the
loop whenever no other message transmission is
already in progress, provided that space exists
locally (of a size at least as large as the message
to be inserted) to delay any incoming messages that
might arrive. Once an incoming message has been
delayed in this manner, it is then transmitted
ahead of any more incoming messages (which are in
turn delayed, etc.). During the period when no
incoming messages arrive, the space occupied by
the delayed messages can be gradually reduced and
finally eliminated.

Inexpensive shift-register insertion hardware
has been designed which allows this message trans-
mission mechanism to be implemented totally in the
loop interface [3,4]. This interface hardware has
several highly significant features. It can transmit
a message to a specific process executing on a
particular machine, or it can broadcast the message to
all active processes in one machine or in the entire
network. In addition, it can automatically generate
and transmit the proper acknowledgment response for
any information message it receives (if so directed),
can detect and remove lost messages, can prevent
lockout of a node from accessing the loop, and can
do all of these functions without any software
supervision. A description of the hardware needed
to accomplish these functions has been published
elsewhere [3,4,5] and therefore will not be repeated
again here.

The superior performance of DLCN's message
transmission mechanism was verified by an extensive
computer simulation study [3,5]. Simulation models
were written in GPSS for three types of loop networks -
DLCN, Pierce, and Newhall - so that relative
performance could be easily judged. As just one
result of this study, Figure 4 graphs mean message
transmission time in each of the three networks vs.
message traffic rate and clearly shows the better
performance of DLCN's transmission mechanism. This

fact is not surprising, since the DLCN mechanism,
when constrained appropriately, can be reduced to
operate like either the Newhall or the Pierce mechanism.
By exploiting their weaknesses while retaining their
advantages, the DLCN mechanism is able to be better than

either.

III. MESSAGE COMMUNICATION PRoTOcoL

The communication protocol used by DLCN for
message transmission on the loop is called the Distri-
buted Loop Message Communication Protocol (DLMCP) [4,5].
It is a bit-oriented protocol with a distributed
control discipline. It is similar in many respects
to the modern, bit-oriented protocols now being
developed, like IBM's SDLC, ANSI's ADCCP or
ISO's HDLC, which all use a centralized control
discipline. One important feature of DLMCP is that
messages are addressed specifically to user processes
executing on particular machines in the network, thus
facilitating interprocess communication by process
name. Another significant feature of DLMCP is that
four types of messages are provided under one common
format; besides user information transfer, these
messages support automatic hardware-generated
acknowledgment, error detection and recovery, and
network control and distributed operating system
functions. Thus DLMCP is much more than just a data
link control protocol, as it is designed with easy
interprocess communication and network control in mind.

DLMCP's overall message format is shown in
Figure 5. The flag is a special bit-sequence which
denotes the start or end of a message frame. Either
the bit-stuffing technique (as in SDLC) or the more
efficient bipolar violation technique (as in the
Newhall [8] loop) can be used to ensure that the flag
sequence never occurs elsewhere in the bit stream
so as to achieve data transparency. The two 12-bit
address fields are each decomposed into 7-bit loop
interface addresses and 5-bit process numbers for
identifying the source and destination processes.
The first two bits of the message control field are
used to encode the message type -- information (00),
acknowledgment (01), control (i0) or diagnostic (ii).
The next bit allows for broadcast message transmission,
whereby a message is copied by every interface on the
loop but is not removed; this technique has considerable
application in inquiry situations when the address of
the desired receiver is not known. The following
3-bit subfield is interpreted differently for each
message type (i.e., function code, response code, etc.).
The next 3 bits are used for lost message detection
and lockout prevention. The final 7-bit subfield of
the control field also has different uses for different
types of messages (i.e., sequence number, function
modifiers, etc.). The final field of the message
frame is the CRC-CCITT (Cyclic Redundancy Check) error
checksum field in which a 16-bit checksum is stored
by each message transmitter. Note that not only the
user information field but also the address and control
fields are checked by this technique, thus ensuring
their integrity as well.

Information and Acknowledsment Messases

Little need be said about information messages.
They exist solely to carry transparent, user-defined
text between communicating processes. Their contents
are completely ignored by the loop communication

network.
Since information messages may not be received

properly for a variety of reasons, it is necessary
that each be acknowledged in some manner. In a loop
network, the receiver can simply copy the message,
set a field in it to indicate reception, and return
the entire message to the transmitter (as in DCS [9]).
However, because message frames in DLCN may be of
arbitrarily great length, it is more efficient to

194

remove the information text at the receiver and to
generate a very short acknowledgment message for
return to the transmitter.

DLMCP implements two kinds of message acknowledg-
ments. Each information message transmitted can be
individually acknowledged, or only messages which
require an exception response may elicit an acknowledg-
ment, the rest being implicitly accepted through use
of a single 7-bit sequence number. In either case,
the interface hardware is so constructed that it can
automatically generate the proper acknowledgment
message (if one is required) from the information
message received and can return the response to the
sender, all "on the fly" and without the need of
any software assistance [5].

The advantages of this method of message
acknowledgment should be clear. First, acknowledgments
are generated totally by the loop interface hardware,
without host intervention or supervision, in the
minimum possible time. Thus correct message trans-
mission is the sole responsibility of the communica-
tion network. This method will work even when the
attached host is not operational or in cases where
there is no intelligent host (as when a peripheral
device is attached directly to the loop). Second, the
transmitter can regulate exactly how and when
messages are acknowledged, either for each individual
message or only when an exception is noted. By using
a combination of these two methods, the transmitter
can send a block of messages, only the last of which
requests a definite response, thus implicitly
acknowledging the entire block of messages with one
return message. This method can be used aspart of
message flow control on the transmitting side; pacing
on the receiving side is handled by another mechanism.

Control Messages

The control message, as its name implies, is used
partly to control the operation of the loop communica-
tion network. Its primary purpose, however, is to
implement privileged low-level primitives for
accomplishing some of the basic functions of the
Distributed Loop Operating System (DLOS). Table i
lists various control message types and their control
functions. Their use in the loop executive DLOS
will be discussed in the next section.

Diagnostic Messages

Diagnostic messages are used for error detection
and recovery during normal operations and for system
initialization and bootstrap loading at start-up time.
Four basic modes of diagnostic messages exist -- normal,
diagnostic, recovery and initialization. Normal mode
is the usual setting when no errors have been detected;
periodic status checking is still performed, just to
be certain that all components are working properly.
Once an error is suspected, diagnostic mode is entered
to pinpoint the cause of the problem. When the cause
is located, recovery mode is entered to attempt to
solve the problem and to continue despite it. Finally,
initialization mode is the state entered when an
interface is powered up for the first time or which
follows reconfiguration. In this mode, not only the
interface is initialized for operation, but even
the host software can be bootstrap loaded from another
source.

Lost Message Detection and Lockout Prevention

The lost message detection and the lockout
prevention mechanisms are completely distributed and
performed by all interfaces in the network on all
messages. They were reported fully in [4,5] and will
not be repeated here, due to lack of space.

I l drJ l I Plag Contro l I n f o r m a t i o n
• (8) (8) (8) (Variable) (16) , (8)

(a) SDLC Message Format

Orlgl. ̂ddr. C l X n , o ~ . t t o ~ cuc-~T"~;7"!
I (8) I (12) (12) (16) (Variable) (IS) t (g) j

(b) DLMCP Message F 0 c m a t

Address F i e l d S p e c i f i c a t i o n :

B i t P o s i t i o n s - S p e c i f i c a t i o n

0 - 6 Loop i n t e z f a c e addres s (0 - 127)

7 - 11 Process nm~ber (0 - 31)

Contro l F l e l d S p e c i f i c a t i o n :

B i t P o s I c l o n (s) S p e c t f l c e t f o n

0 - 1 Message tYpe:
CO I n f o r m l t t o n
O1 Acknowledgement
I0 Contro l
ii D i a g n o s t i c

2 Broadcast message

3 - 5 Funct ion , re sponse o r o t h e r (depe~dlng On
message type)

6 - 7 L o s t message d e t e c t i o n

8 Lock-out p r e v e n t i o n

9 - 1 5 Sequence number (0 - 1 2 7) o r f u n c t i o n m o d i f l e r
(depending on message type)

Fig. 5. Message Formats for (a) SDLC and (b) DLMCP

G r o u p C o x m a n d Subcos~and F u n c t i o n

O PACE

RESPONSE

I LOCATE

CALL

RETURN

2 PRIVILEGE

3 RESOURCE

4 ~EGUIATE

5 TRANSFER

6 SYNCHRONIZE

7 EXPANSION

I n q u i r e

Request

Grant

Revoke

Test

O b t a i n

Allocate

Deallocate

D a t a

Parameter

Message f l o w c o n t r o l

C o n t r o l A c ~ m o w l e d g m e n t

Locate a p r o c e s s o r program b y name

C a l l a remote p r o g r ~ on a n o t h e r m a c h l n e

R e t u r n from a remote program

E s t a b l i s h p r o c e s s - t o - p r o c e s s c o n t r o l s t r u c t u r e

F i n d out w h i c h p r i v i l e g e s a r e g r a n t e d

Ask f o r a s p e c i f i e d p r l v l l e g e

Give a specified privilege

Take away e specified privilege

D i s t r i b u t e d r e s o u r c e management

T e s t a v a i l a b i l i t y o f r e s o u r c e

Ask f o r a r e s o u r c e to be a l l o c a t e d

A l l o c a t e a r e s o u r c e t o r e q u e s t e r

D e a l l o c a t e a r e s o u r c e from h o l d e r

U n s p e c i f i e d s y s t e m c o n t r o l / r e s p o n s e

C o n e r a l i z e d d a t a / f i l e t r a n s f e r

Psrameter passlng for re~ote calls

Expllelt pEocess synchronization

Reserved for future expanslon

Table I. Control Messages

IV. DISTRIBUTED NETWORK OPERATING SYSTEM

The Distributed Loop Computer Network (DLCN)
is envisioned as a loosely coupled, heterogeneous
network, consisting of many different computer systems
(both small and medium size), each operating for the
most part independently and under local control, yet
occasionally sharing data and programs with or borrowing
resources from other computer systems in the network.
In order to make such cooperative resource and data
sharing possible in a uniform manner, it is necessary
that all processors in the network execute components
of a commonly structured Distributed Loop Operating
System (DLOS). Each local component of DLOS is
responsible for converting between local and network-
wide representations for all forms of information
(both user and system) that must be exchanged through
the network. Thus the primary job of DLOS at the
system design level is to define a standard, universal
representation for all network information transfer;
each local component then serves to map this universal
representation to that of its particular host. By
requiring only that the data structures and operating
protocol be identical on all machines, each local

195

component of DLOS can be implemented differently,
according to local requirements. It is hoped that DLOS
can be added between existing local operating systems
and the network with relatively minor changes.

Control of the network as a unified distributed
computing system is made easier to achieve by the
close cooperation of the message communication protocol,
DLMCP, and the design of DLOS, since all the required
low-level operating system functions are implemented
using the interchange of control messages through the
loop communication network. Having a loop for the
communication network, which makes message routing,
broadcast transmission and distributed control so
easy, has had a profound effect on the structure and
design of the network operating system.

Features of DLOS

To reiterate, the philosophy of DLOS is that
DLCN, even though actually a collection of separate
computer systems connected by communication links,
should be viewed by its users as a single, unified
distributed computing system. Consequently, all
functions in DLOS have been implemented with this idea
in mind. Interprocess communication is by process
name, not address. Remote programs (procedures
located in another machine) are "callable" by a
global network process also by name, not by location,
using a generalized parameter transfer mechanism.
Similar capabilities are provided for alterable,
multi-linked process control st ructures and for
distributed resource management. Even generalized
data transfer and logical I/O transmission at the
file record level is possible with DLOS for a
distributed file system formed from separate,
heterogeneous file systems. Thus, by using the
facilities specifically designed for it in the hardware
and communication network, DLOS can give the distri-
buted computing user the illusion of executing on a
single, powerful machine with a great number of
available resources.

Interprocess Communication

The message communication protocol used on the
loop network (DLMCP) requires that physical addresses
be given in every message to identify both the
receiver and the sender, since messages (unless
broadcast) are directed to a particular user process
executing on a particular machine in the network.
In order to accomplish this objective, every process
address is broken down into two components: a
7-bit physical loop interface address (LIA) for
locating the proper machine in the network and a 5-bit
process number (PN) which identifies the process
itself.

While this method of physical addressing was
chosen for transmission efficiency, it is desirable
that user processes be able to communicate with each
other by logical process name, without having to know
the actual physical locations of other processes.
If interprocess cummunication by_name is to be
supported, while physical addressing of message
frames is to be required for message transmission on
the loop network, then DLOS must translate from
process name to process address (and vice versa) for
every message transmitted or received. This transla-
tion must be both dynamic (since the location of a
process may change) and efficient. To see how this
translation is done by DLOS, consider the following
problem and its step-by-step explanation.

Suppose that process A in machine 1 wants to send
a message to process B in machine 2. Process A does
not know the physical location of process B (nor does
it wish to know) and thus it will send its message to
process B by name. The action of transmitting this

message from process A to process B can be explained
in four steps (see Figures 6, 7, and 8).

i) First, DLOS must set up a logical connection
between the two named processes. A LOCATE control
message is put on the loop in broadcast mode from
machine i, giving the address of process A and the
names of processes A and B. Every machine on the
network receives the LOCATE command and checks its
local list of process names to see if process B is
located there. If found, that machine (2 in this case)
copies the physical address and logical name of
process A into its Process Name-to-Address Translation
Table (PNATT, see Figure 6b), then sends a LOCATE
control message back to machine i to give it the
physical address and logical name of process B.
Machine i copies that information into its own PNATT
(see Figure 6a). Should the location of either process
ever change, a single LOCATE control message can
cause the appropriate translation table to be updated.

2) Next, a communication (talk) path must be
established between processes A and B. Thus process A
must request permission to talk to process B by issuing
a Request Talk Privilege command to process B (either
explicitly, or implicitly by executing a Send Message
command with process B as the destination). Further-
more, process B must also issue a Grant Talk Privilege
command to process A (again explicitly, or implicitly
by executing a Receive Message command with process A
as the origin) in order to complete the talk connection.
Once this communication path is established (and until
it is broken by either party), process A is free to
send messages to process B (see Figure 6).

3) When process A later prepares a message it
wishes to send to process B, it can transmit it by
executing a Send Message command. DLOS uses the
parameters (see Figure 7) of the Send Message command
to construct a Message Queue Element (MQE) for the
message, which is then linked to the Send Queue chain
pointed to by process A's PCB (Process Control Blocks,
see Figure 8). If process B were in machine i, ,then
the Message Communication Handler for DLOS would
simply transfer the MQE just formed from the Send
Queue of process A to the Receive Queue of process B.
However, since process B is assumed to be in machine 2,
the MQE is instead removed and ~dded to the Send
Queue of the Loop Communication handler for machine i.

The Loop Communication Handler forms an informa-
tion message frame from the MQE (using the PNA~T
addresses for processes A and B), and transmits the
frame out onto the loop. The MQE is then removed from
the Send Queue and is saved on a Wait-for-Acknowledg-
ment Queue while the Loop Communication Handler
waits for a Positive response to be returned from the
receiving end. If a negative acknowledgment (or no
response at all within a certain timeout period) is
returned, then the MQE is used to form a new message
frame, which is then retransmitted onto the loop. If,
however, the message was received correctly, the MQE
is removed and destroyed, its message buffer space is
released, and the appropriate status is reported to
process A (see Figure 7).

4) At machine 2, where the received message
frame is removed from the loop by its own Loop Communi-
cation Handler, the message frame is dismantled, the
message text is placed into a system buffer, and an
MQE is formed for the message which is added to the
Receive Queue chain of process B's PCB. The message
sender (process A) has now been located in the PNATT,
and the MQE is associated with process B. It will
simply wait there on the Receive Queue until process
B executes a Receive Message command specifying process
A by name as the desired sender. The first (oldest)
MQE associated with process A will be removed from the
qhain, the message text will be copied into the user's

196

buffer area, proper status will be reported, and the
MQE will be destroyed.

The data structures and operations upon them which
have been presented in the preceding paragraphs
should explain how interprocess communication b~name
is to be achieved under DLOS. The explanation of this
feature was rather detailed, since the same design
philosophy and kinds of operations are found throughout
DLOS. Thus, the features to be presented hereafter
will not be discussed in quite so much depth.

Remote Program Calling

DLOS introduces the concept of ~lobal process
control in the sense that a process can be considered
an entity whose existence and scope of control is
global to the entire distributed computing network,
just as the latter is regarded as a single, unified
computing system. The idea is that a single user
process should (logically) be able to control the
sequential execution of programs or procedures that
are physically scattered among several heterogeneous
machines (processors) in the network.

What will be explained here is essentially a
generalized method of remote subroutine calling,
whereby a piece of code (program X) being executed
by a process A in machine 1 can call (transfer
control to) another piece of code (program Y) located
in machine 2, but still under the supervision of
process A. The actual transfer of control (the call)
from program X to program Y is effected by a Call
command in program X. If programs X and Y are both
in the same machine, then the call is handled in the
normal manner. Otherwise, a CALL control message is
sent to machine 2 (which contains program Y),
specifying the name of program Y and the address of
process A which is (logically) to control it. What
acutally happens is that a new process A' is created
in machine 2; and it is actually this new process,
acting as the remote agent of process A, that
controls the execution of program Y in machine 2.

Thus process A which controlled the execution of
program X in machine 1 is deactivated by the remote
call, for machine 1 has no work to perform for
process A until the called remote program finishes
and returns control to program X again. When that
event occurs (signalled in DLOS by the execution of
the Return command in program Y and the transmission
of a corresponding RETURN control message to machine
i), several actions will be performed: process A will
be reactivated, the specially created process A' will
be destroyed, and execution of program X will be
resumed.

Thus, the remote program call mechanism is easy
to implement and totally transparent to its users.
A user process need never know if a called program is
local or remote, for DLOS handles all the location
and linkage details. The transfer of parameters
between such remote programs is considered next.

Generalized Data Transfer

Data transfer between a local calling program and
a remote called program (or between two processes) is
in general extremely difficult, since the two programs
may reside in different machines that have completely
different internal data representations. However, all
machines are capable of outputing information in
human-readable form as character strings in some
standard code (EBCDIC, ASCII, etc.) and can accept
input expressed in the same general format. There-
fore, one solution to the data transfer problem is to
establish a network-wide, standard character string
representation for all data and to map output into this

standard form on transmission and input from it on
reception. Na~ura%l[~ the mappings will be different

for each machine.

Actual data transfer might well use two separate
pieces of information: i) the data itself, expressed
as an ASCII (or perhaps EBCDIC) character string, and
2) the format description of that data, also represented
as a character string (similar to a FORTRAN or PL/I
format statement), extended to include all necessary
device control information. By having such a gener-
alized format capability to describe the data and its
treatment, it is possible to transmit any kind of data
between two machines, without having any prior agree-
ments as to its exact format and interpretation. By
having the data itself expressed as a character string,
it is possible to ignore internal data representation
differences and to use a standard external representa-
tion which most systems already use for communicating
with the outside world. With such a powerful and
generalized data transfer mechanism at its disposal, it
should be possible for DLOS to support parameter
transfers between remote programs (or even file
transfers between remote file systems).

Unquestionably, this method is inelegant, inef-
ficient and somewhat restrictive. Yet it is entirely
workable, can be implemented fairly easily, and is
quite general in nature. Every computer system that
uses FORTRAN or similar languages already has elaborate
data conversion and formatting routines for the input
and output of data. In these cases, it should be as
easy for programs to exchange data as it is to read or
punch a card. The data transfer component of DLOS in
each machine could even be written to perform all
needed conversion automatically, so that individual
programs need not be concerned with the data conversion
at all.

Process Control Structures

In most systems in which processes can be created,
controlled and destroyed by other processes, a tree-
like hierarchical process control structure is formed.
Every kind of process control function is then bound
to this single, unchangeable control structure. Such
a static, regulated environment makes life easy for
the operating system, but it can unduely hamper and
restrict user processes. Why cannot a process have
control over its creator, as long as both are willing
to swap roles? Why cannot two or more independent
processes agree to cooperate and help each other (form
coroutines)? Why cannot a process permit a group of
other processes (instead of just one) to exercise
joint control over it? The philosophy of DLOS is that
all these forms of control (and others) are reasonable
and should be possible, especially in a distributed
computing system.

Such an environment as found in DLCN virtually
demands that a dynamically alterable, multi-linked
process control structure he permitted. Furthermore,
the kind of structure suitable for one kind of process
control may be entirely inappropriate for another,
thus requiring a separate control structure for each
kind of process control to he allowed. Therefore,
DLOS provides a Privilese command which allows user
processes (by mutual agreement) to change and extend
their process control structures (for such things as
communication with other processes, status monitoring,
error recovery, etc.). With such freedom and power
available to user processes, the potential for misuse
is very great. But if adequate safeguards are imposed
such that potential damage is limited to the cooper-
ating processes themselves and such that ultimate
control still lies within DLOS, then the resulting
benefits should be tremendous. Almost any kind of
complicated interaction of cooperating processes could
be formed to achieve a distributed computing goal,

197

limited only by the imagination and talents of the
problem solvers.

Distributed Resource Management

In order to accomplish distributed resource
management (see Figure 9) under DLOS, it is envisioned
that all resource requests in each machine will be
made through the local Resource Manager. If the
resource request can be satisfied locally, the
Resource Manager will simply pass control over to the
appropriate local resource allocator; otherwise,
the Resource Manager will issue a RESOURCE control
message in broadcast mode to determine if some other
machine in the network has the requested resource and
is willing to allocate it. No response may be
obtained, in which case the resource is simply not
available now, or perhaps several replied will be
obtained from different machines. In the latter case,
the Resource Manager can choose the one it feels is
"best" in some appropriate sense and will pass the
request on to that machine's Resource Manager so
that it can handle the allocation of its own resources.

All usage of the allocated resource would also
have to pass through the local Resource Manager. For
local resources, the appropriate local routines would
directly service all requests, as usual. Otherwise,
a control message describing the type of resource
access requested is passed through the network to the
remote Resource Manager and thence to the remote
access routines. The resulting reply, if any, is
passed back by the same method to the original
requestor.

This method of resource management is workable
and attractive for a distributed computing system,
since it still allows local management to work without
change. As far as the local operating system is
concerned, the Resource Manager is just another
program to which it assigns resources -- if the Re-
source Manager wishes to reallocate them to remote
programs, that is entirely its buisness. Moreover, it
should also be possible to suballocate and exchange
resources among processes, while still maintaining
ultimate control over them. Obviously, there are many
difficult problems to solve in an actual implementation
of this approach, such as resource accounting, dead-
lock avoidance, or just ordinary resource access and
usage. However, since resources are allocated and
ultimately controlled by local Resource Managers, each
under control of a local operating system, it seems
likely that these problems can be overcome and that a
powerful, flexible and easy to use resource management
system can be obtained.

Logical I/O Transmission

The last feature to be considered is the way
DLOS will go about achieving logical I/O transmission
at the data record level in a distributed file system.
In each machine in the network which has its own file
system, with its own special data formats, device
characteristics and I/O conventions, DLOS will estab-
lish a Logical I/O Handler. This local program will
be capable of exchanging logical data records with
user processes in response to standard read/write
requests and file commands. It will also be able to
handle all the intricacies of physical I/O to the local
file system, including file naming and location, access
protection, update interlocking, directory lookup,
record searching, device dependent functions, actual
I/O operations, error recovery, blocking/deblocking,
code translation, formatting, and data movement. In
short, the Logical I/O Handler must be able to isolate
user processes from the real file system and to allow
them to regard file I/O as nothing more than the
exchange of data messages with a special I/O process.

The advantages of handling all I/0 in this manner
are clear. First, the burden of physical I/O opera-
tions and control is removed from the user process.
Second, the Logical I/O Handler has complete control
over the local file system, since all requests are made
through it. Thus it can enforce access protection
and can establish proper interlocks during file updates.
Third, its functions can later be implemented in a
special microprogrammed I/O controller, without any
changes being necessary to user processes. Finally,
and perhaps most importantly, since all data transfer
is at the logical data record level, all that is needed
is a standard data representation together with a set
of standard file commands and conventions to make it
possible to exchange data records between any two
Logical I/O Handlers in the network. Since such a
generalized data transfer mechanism was considered
earlier in this section, it can be concluded that a
user process can access any file in the entire network,
so long as its request is sent to the proper Logical
I/O Handler using standard file commands and conventions.

Thus DLOS is able to provide access to a network-
wide distributed file system that is composed of
multiple heterogeneous, local file systems. When a
user process wishes to access this distributed file
system, it always sends its request to its local
Logical I/O Handler for initial processing. If the
desired file cannot be found locally, the Logical
I/O Handler puts the user's request into standard form
and passes it around the loop to its proper remote
counterpart. That remote Logical I/O Handler then
accesses its own file system to satisfy the user's
request, converts the results of the operation back into
standard form, and passes them back around the loop to
the local Logical I/O Handler and thence to the origi-
nal requestor.

Design Philosophy of DLOS

As shown by Figure 9, the design philOsoPhY
DLOS has been to handle requests locally if possible;
otherwise, they are put in a standard form and broad-
cast through the loop to a corresponding remote
component which services the requests and returns the
results to the local component. Any necessary data
conversions are performed by the request handlers.
Since requests are always made to the local component
and all responses are obtained from it, the end user
sees no difference in local and remote requests.
Instead, he sees only a single, unified distributed
computing system which can easily and efficiently
meet all his distributed processing needs.

At the same time, this design philosophy makes
implementation of DLOS as a separate component on
each machine much easier, since each local component
can operate almost independently of all others. All it
need do is accept local requests, service them locally
if possible, otherwise transform them into standard
form and ask for remote help from anyone that can give
it. Thus control of DLOS as a set of logically identi-
cal, cooperating components which make up a global,
distributed operating system is greatly simplified.

V. CONCLUSIONS

The preceding sections have considered various
facets of the message transmission protocol and network
operating system design for the Distributed Loop
Computer Network (DLCN), a distributed computing
system envisioned as a means of investigating funda-
mental questions in distributed networking and computing.
Research concerning DLCN is primarily directed toward
geographically local communities of semi-autonomous
midi/mini/micro-computer users, who occasionally
have need of computing services or resources which are
present elsewhere in the group, yet which are not
available locally. Such a computing environment is

198

is typlcal of that frequently found today in many
industrial, commercial~ and unvierslty settings,
Bringing the cost advantages and performance improve-
ments of distributed computer networking to such
computing groups would be a very significant achieve-
ment and is, therefore, one of the major design goals
for DLCN.

A university campus, which already contains dozens
of minl/mldi-computer facilities scattered among many
academic departments, seems a logical place to test
the feasibility of this goal. Thus, a proposal is now
being made which may lead to the implementation of an
experimental prototype version of DLCN. In support of
this effort, additional research on distributed
processing is now being conducted in the areas of
distributed network operating systems, distributed
data base management, abstraction and formalization
of protocols, analytic modeling of computer networks,
and fault-tolerant distributed computing. As new
results are obtained from these projects, additional
reports can be expected. It is to be hoped that
through these efforts and with its careful integration
of hardware, software and a loop communication network,
the Distributed Loop Computer Network can meet its
expectations and be the fore-runner for future
distributed computing systems of this type.

ACKNOWLEDGMENT

The authors wish to express their appreciation to
Dr. Marshall C. Yovits for his encouragement and
constant support during the period of this research.

REFERENCES

i. C. C. Reames and M. T. Liu, "Variable-length
message transmission for distributed loop computer
networks," Tech. Rep. OSU-CISRC-74-2, Department
of Computer and Information Science, The Ohio
State University, June 1974.

2. , "A loop network for
simultaneous transmission of variable-length
messages," in Proc. 2nd Annual Symp. on Computer
Architecture, Houston, Texas, January 1975, pp.
7-12.

3. , "Design and simulation
of the distributed loop computer network (DLCN),"
in Proc. 3rd Annual Symp. on Computer Architecture,
Clearwater, Florida, January 1976, pp. 124-129.

4. M. T. Liu and C. C. Reames, "The design of the
distributed loop computer network," in Proc0 1975
International Computer Symp., Vol. i, Taipei,
Taiwan, August 1975, pp. 273-282.

5. C. C. Reames, "System design of the distributed
loop computer network," Ph.D. dissertation,
Department of Computer and Information Science, The
Ohio State University, March 1976.

6. L. G° Roberts and B. D. Wesslar, "Computer network
development to achieve resource sharing," in
Proe. AFIPS 1970 Spring Joint Computer Conference,
Vol. 36, pp. 543-549.

7. R. M. Davis, "The systems of the 1980's -- a U.S.
perspective," excerpts from remarks delivered at
the 35th Diebold Conference, Amsterdam, November
1975.

8. W. D. Farmer and E. E. Newhall, "An experimental
distributed switching system to handle bursty
computer traffic," in Proc. ACM Symposium Problems
in the Optimization of Data Commun. Systems, Pine
Mountain, Georgia, October 1969, pp. 1-33.

9. D. J. Farber, et al., "The distributed computing
system," in Proc. 7th Annual IEEE International
Conference, February 1973, pp. 31-34.

1 9 9

i0. E. G. Manning and R. W. Peebles, "A homogeneous
network for data sharlng -- communications," Tech.
Report, CCNG-E-12, Computer Commun imtions Network
Group, University of Waterloo, March 1974.

ii. J. R. Pierce, "Network for block switching of
data," Bell System Teeh. J., Vol. 51, pp. 1133-
1143, July/August 1972.

12. A. G. Fraser, "Spider -- a data communication
experiment," Computing Science Tech. Rep. #23,
Bell Laboratories, Murray Hill, New Jersey,
December 1974.

H.,,h-Speed Dtgttal I : Interface
Communication Channel

Figure 1. A Oistr|buted Loop Computer" Network

Machine I

[-~'-]'-I ~,o ;, I I~ :.o ~--I , -~

Fig. 2. A Unified Distributed Computing System

o - ~ - ~ ' # ! .. q input L in ,

!-I÷ i . . , l
(rACtlVeblts) - - - (N-r b i t s) j '

~ N-blt

', j ; / i | l / ~ i i ~ ! I i i !] i l (=g)
• ~ f f • e • . , * " 7 ,/ ' / / / , I / ' / ' /

, . I / / i / / / / / / /
~ ,11 , / / ' / / / / (. . . . ~)

, / / " ~ , r ! ~ / i u

S i IE I ' K-blt oj olo o l l l i l t go-.,
M I ; IM[I I [I I (OB)

-- output message _ _ J
(s b i t s) I

Fig. 3. Model of New Transmission Mechanism

MEAN TOTAL TRANSMISSION TIME LOCal User Request
FOR ALL THP, EE NETWORKS for System Service

r*~..

c i .

0 Dt.CN (t4,40 AOC T I P ~ /
/

X IX.ON (I.JITH ACE TIPI~2 /

' : ~=PI .ERC~LCX)P /

E
F~

z ~

eJ-

CO P'"

. 2 ~
MEAN SOURCE ARRIVAL RATE ~1@ ~ze

Figure 4.

I'ICATI 1

r- . " i
i PCB A

] ' 'Q 'B '

t :
(a) f o r Machine 1

P~A~ 2

r - ~ -

L~

L , , , d , ' l ' " ' , Q , , '

(b) f o r Mschlne 2

Fig, 6. Data Structure Created for Talk Prlvilege

200

...................... -i
Distributed Loop Computer Network (DLCN)

LR~eL ~ ~ ' ' ' ' 'Ne tw° rk Loop ,L°cal Form w
Conversion Conversio'n l,.o

i Distributed I

L I t Operating I" "

System 2
[~ Local Form Leo Network I ~ I

System Response
to User Request

Figure 9. Request/Response Handling in DLOS

Send to B User Buffer Azea

D e s t i n a t i o n Proceee Name

S e n d / R e c e i v e Mesease Pa rame te~ Block

Fig, 7. Format of Send/Recelve Msg. Para. Block

MQE A PUB A

, , , , -~| , ,

i System Buffer I I i (, ,
~ T e x t of User Messase ' '

L. .j g

r . J

, PNATI 1 .

li',

Fig, 8, Message Queue Element Format and Linkage

