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INTRODUCTION 

Aerospace missions have become exceedingly complex, 
requiring correspondingly complex vehicles in order to 
fulfill them and necessitating thorough analysis of the 
total mission/vehicle combination during the design, 
development, and testing phases. An important part of 
this analysis and synthesis concerns the behavior of the 
vehicle as it travels a flightpath toward the fulfillment of 
its mission. This behavior is so important that it actually 
may have considerable impact upon original mission 
objectives, over-all vehicle design, and various subsys- 
tem functions. 

The dynamical process which describes a vehicle's 
flight has a solid foundation based upon the laws of the 
universe. A factor that characterizes the design of 
special-purpose vehicle flight simulation programs is the 
degree of realism and sophistication with which these 
physical laws are simulated. A prime factor that charac- 
terizes the design of a generalized flight simulation 
program is the extent to which this design can be made 
independent of the degree of realism and sophistication 
levels that may be used to model the physical laws. An 
elegant way to achieve a large measure of this indepen- 
dence is through functional software design. 

The virtues of functional software design may be 
illustrated by contrasting a three-degree-of-freedom ve- 
hicle flight simulation and a six-degree-of-freedom sim- 
ulation: there is no over-all functional difference be- 
tween these simulations; it is only the degree of realism 
and the complexity of mathematical modeling that 
distinguishes them. Functional design permits either or 
both the three- or six-degree-of-freedom simulation 
capability to be incorporated into a generalized vehicle 
flight simulation program with little sacrifice or compro- 
mise in either simulation from the viewpoint of effi- 
ciency and flexibility. 

It should be stated at the outset that specific simula- 
tion languages are not given attention in this paper. 
Functional design is considered all important; the 

simulation languages are considered a means of imple- 
menting a design, but in no way should they influence it. 
For this reason the design presented here is concep- 
tually independent of simulation language, operating 
system, and computer design. 

The genesis of the program described here was an 
Aerospace Corporation effort, undertaken in 1963, to 
develop a generalized digital flight simulation program 
for use principally on Titan III missions. The initial 
development effort, in which the author participated, 
was in assembly language on the IBM 7094. Subse- 
quently this program has been developed by Logicon, 
Inc. for the Univac 1107/1108, using a mix of assem- 
bly and FORTRAN languages. Preparation of an all- 
FORTRAN-IV version of the program for the GE 625/ 
635 and CDC 3600 computers is nearing completion. 

The basic program has been extended into a system 
called the Modularized Simulation System. At least a 
hundred different applications have already been made 
of this system; these include studies in such areas as 

Trajectory design and targeting 
Open- and closed-loop guidance simulations 
Three- and six-degree-of-freedom vehicle 

simulations 
Error analysis 
Radar tracking 
Environmental effects 
Flight mechanics and performance analysis 
Sensor simulations, and 
Digital autopilots. 

Major mission applications have included Titan III, 
several satellites, a large-payload test vehicle, and 
advanced ballistic missile systems. 

MATHEMATICAL PROBLEM DEFINITION 

The description of a vehicle's flight involves the 
definition of a complex dynamical system. Mathemat- 
ically this system can be concisely described by a vector 
differential equation of the form 
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where 
x(t)  --  F[x(t),  p( t ) ,  c ( t ) ,  t] (1) 

x ( t )  - -  the system kinematic state vector 
p(t)  --  the system vector parameter function 
e(t) ~ the system vector control function 

t - -  the independent variable, time. 

The kinematic state vector x(t)  is assumed to be of 
dimension twelve, consisting of three-dimensional com- 
ponents in velocity, position, attitude rate, and attitude. 
The vector parameter function p(t)  includes parameters 
such as vehicle weight, engine specific impulse, vehicle 
cross-sectional area, gravitational constants, and aero- 
dynamic drag. A good many of the parameters may be 
time varying and perhaps even a solution to a differen- 
tial equation; many others may be constant for a 
particular mission or vehicle. It should be noted that for 
different mission/vehicle combinations, p(t)  may vary 
in dimension, functional form, or both. As an example, 
an Apollo mission involves physical and gravitational 
parameters for both the earth and the moon, whereas a 
near-earth ballistic missile mission need only involve the 
physical and gravitational parameters of the earth. 

The vector control function c(t) is also dependent 
upon the particular mission/vehicle combination. The 
number and functional form of the control variables 
may vary from vehicle to vehicle depending upon the 
energy sources available and the number of system 
constraints that must be satisfied. Thus an accurately 
guided vehicle may utilize pitch, yaw, and roll steering 
policies to achieve a desired thrust vector direction. In 
contrast, a vehicle subject to no accuracy requirement 
may only utilize thrust termination time as a control 
variable; a free-fall mission may simply require a null 
control function. 

The digital simulation of the dynamical system repre- 
sented by ( 1 ) involves obtaining a solution of the form 

t 

-= I-F(r) dr -)- X(to) (2)  x( t )  

to 

For a given set of initial conditions and the functional 
form of p(t)  and c ( t ) ,  the problem of obtaining a 
solution to (2)  becomes immensely simplified. There- 
fore, a simulation program designed to give a particular 
solution or a restricted class of solutions is not very 
difficult to design. It is a different matter, however, to 
design a generalized vehicle flight simulation program 
for which very few assumptions are made about the 
explicit form of p(t)  and c(t).  The functional design 
principles presented in this paper preserve the generality 
of ( 1 ) and (2) to a remarkably high degree. 

MISSION P R OFILE  SPECIFICATION 

The term trajectory is used to denote the time history 

of a vehicle's dynamic state. This state is only com- 
pletely known when x( t ) ,  p( t ) ,  and c ( t )  are all known. 

A trajectory phase denotes a part of the total 
trajectory and as such it is initiated by some event and 
terminated by some later event. 

An event is a discrete point in time along a trajectory. 
It represents the terminating point of the preceding 
trajectory phase and the initiation point of the ensuing 
trajectory phase. The occurrence of an event will 
usually imply a discontinuity in p( t ) ,  in c ( t ) ,  or in 
both. 

An event criterion is a policy for the determination 
of an event. Multiple criteria for a single event are 
admissible. 

Mission profile is used in connection with a family of 
trajectories, all of which are characterized by the same 
sequence of events and trajectory phases. 

Each trajectory consists of at least starting and 
terminal events which define the boundary points for 
the intervening trajectory phases. The trivial trajectory 
consists of a trajectory phase of zero time duration and 
concurrent starting and terminal events. 

Recall that the solution to the dynamical system 
described by (2) involves a set of differential equations. 
If p(t)  and c(t) are subject to change during the course 
of a trajectory, and if these changes are identified with 
the occurrence of an event, then a trajectory can be 
thought of as the solution of a set of piecewise 
continuous differential equations which require initiali- 
zation at each event. It then follows that the digital 
simulation of this dynamical system is, in effect, contin- 
uous over each trajectory phase. This establishes the 
basis for the criterion that all initialization can be 
performed at eyents, and therefore an event essentially 
defines the nature of the ensuing trajectory phase. 

Each event is given a t-, t °, and t + interpretation: the 
t- interpretation pertains to the end of the preceding 
trajectory phase; the t + interpretation to the initiation 
of the subsequent trajectory phase; and the t o interpre- 
tation to initialization. It is noteworthy that for any 
given mission profile, the first event has no t- associated 
with it while the last event encountered has no t o or t + 
associated with it. 

Event Classifications 

All events are classifiable in terms of whether they 
can be ordered absolutely with respect to each other. If 
all the possible events for a given mission profile are 
defined, then there is always a starting event and a 
desired terminating event. In the .trajectory interval 
between the start and end of the mission profile, there 
will usually exist a sequence of events, most of which 
may be expected to occur in some predetermined order. 
All those events which must occur in absolute order with 
respect to each other are called ordered events. Any 
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event that cannot be given an absolute order is classi- 
fied as a roving event. 

There are instances when a designated event may be 
superseded by another event. The superseded event is 
classified as a secondary event; all others are called 
primary events. Hence there are four classes of events 
which may be specified: 

Ordered primary 
Ordered secondary 
Roving primary 
Roving secondary. 

Event Sequences 

An ordered primary event must occur during the 
course of a complete and successful simulation, and its 
occurrence must take place in absolute order with 
respect to all other ordered primary events. An ordered 
secondary event may or may not occur, but if it does 
occur, the occurrence must be in the interval bounded 
by two consecutive ordered primary events. To illus- 
trate, let P1 and Pu designate two consecutive ordered 
primary events, and let S, and $2 designate two consecu- 
tive ordered secondary events which must occur in the 
interval separated by Pi and P2 if they are to occur at 
all. Then the following three sequences of events are 
possible, given appropriate event criteria and the spec- 
ified input shown as Sequence 1: 

1. Px, St, $2,/'2 
2. P1, $1, P2 
3. Px, F2 

It should be noted that event criteria must be reasonable 
in order to achieve a given sequence. For example, if 
Sequence 2 is to occur, then the criterion for the 
occurrence of Sx must be reasonable relative to the 
criterion for P2; if it is not, Pz will supersede it. 

A roving primary event can occur at any time in an 
event sequence after the last ordered primary event it 
follows. If such an event, say Pt', is inserted into the 
previous sequence between Pa and St, then the following 
event sequences are possible, again given appropriate 
event criteria: 

1. P1, PI', $1, $2, P2 
2. P1, $1, Pt', $2 P2 
3. P1, $1, 52, Ft t, P2 
4. P1, $1, $2, P2, PI' 
5. P1, PI', S1, P2 
6. P1, $1, Px', P2 
7. P1, $1, P2, PI' 
8. P1, PI', P2 
9. P1, P2, PI" 

Since an ordered primary supersedes all roving ptima- 
ties, Sequences 4, 7 and 9 will not include event Pt '  
whenever P2 is the last event in the entire input 

sequence. Thus it is possible that a roving primary event 
may not occur at all in the course of a simulation. 

A roving secondary event must be specified when 
there are two secondary events that cannot be abso- 
lutely ordered with respect to each other. Let SI" be a 
secondary event whose order of occurrence is unknown 
with respect to St and Sz, and let Pt and P~ designate 
ordered primary events. The possible event sequences, 
assuming appropriate event criteria, are: 

1. Px, SI', $1, S~, P~. 
2. PI, St', St, P2 
3. P1, $1', P2 
4. P1, $1, $1', $2, P2 
5. Pt, St, $2, St', Pz 
6. Pt, S1, SI', P2 
7. Pt, St, $2, P2 
8. P1, S1, P2 
9. P1, P2 

From this discussion, it is readily apparent that there 
are frequent occasions when a number of event criteria 
must be monitored simultaneously if secondary and 
roving primary events appear in the sequence. Use of 
multiple criteria also imposes this requirement. To 
illustrate, consider the input sequence shown in Figure 

t 

I I I I I 
Pl S~ PI Sl P2 

Figure 1 - -  Typical input sequence 

1. All the criteria associated with events St', Pt', $1, and 
/)2 are monitored as soon as Pt occurs. If event Pz is 
encountered, then all criteria associated with St' and St 
are immediately dropped from the sequence, as well as 
the criteria associated with P2. If PI' is not encountered 
by the time P2 occurs, then its event criteria will be 
further monitored, providing P2 is not the last event in 
the total input sequence. 

Each event criterion produces a time-to-go-to-an- 
event parameter. The occurrence of an event is trig- 
gered when one or more of the time-to-go parameters 
come within a specified tolerance of zero. 

PROGRAM STRUCTURE AND ORGANIZATION 
Flight Dynamics Elements 
A vehicle's flight involves, of course, vehicle dynam- 

ics and an external environment. Superimposed upon 
these are the navigation, guidance, and control func- 
tions that together provide the means by which a vehicle 
is directed to its intended terminal point. Figure 2 
illustrates the functional relationships between these 
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Figure 2 - -  Functional  relationships in flight dynamics 

basic elements. Vehicle dynamics can further be divided 
into kinematics and kinetics. Kinematics can then be 
subdivided into translational and rotational elements; 
and kinetics can be divided into aerodynamics, propul- 
sion, and structure. 

Navigation, guidance, and control functions are more 
effectively dealt with in a simulation if the software- and 
hardware-oriented functions are separated. Navigation 
involves sensors (hardware) and data processing (soft- 
ware); guidance is a software function; and control is 
mostly a hardware function. The sensor, guidance and 
data processing, and control elements are therefore 
chosen in preference to the navigation, guidance, and 
control elements. 

The division of flight dynamics into the set of 
functional elements just described has been found to be 
optimum for a wide class of simulation problems. The 
functional interaction of these elements is shown in 
Figure 3. 

Peripheral Elements 

A generalized vehicle flight simulation program must 
consist of much more than the flight dynamics dements 
just described if it is to be of any utility. Some major 
additional factors that must be considered are the means 
by which a numerical solution to (2) is to be imple- 
mented, the sequencing and controlling requirements, 
and provisions for input and output. The approach 
taken here is that there exists a set of peripheral 
functional elements which complement the nine mathe- 
matically oriented elements; collectively,~they form the 
basis for the structure and organization of the total 
program. Descriptions of the peripheral elements follow. 

The division of a trajectory into trajectory phases 
suggests a hierarchy of three executive dements for the 
control of flight profile sequencing: 

A trajectory executive element to control the simula- 
tion on a total trajectory basis; 

A trajectory phase executive element to control the 
simulation on a trajectory phase basis; 

A cycling executive element to control the simulation 
on an integration cycle basis. 

The cycling executive element forms the hub from 
which the major simulation computations are per- 
formed. Three subservient elements complete the execu- 
tive network as shown in Figure 4: 

A data processing and guidance executive element to 
control the data processing and guidance flight 
dynamic element and certain special functional 
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Figure 3 - -  Principal elements of flight dynamics 
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Figure 4 - -  Executive elements for vehicle simulation 

elements required for moqitoring event criteria and 
for providing generalized open-loop steering tech- 
niques; 

A dynamics executive element to control the integra- 
tion process and the eight elements of flight 
dynamics other than the one given above; 

An information executive element to perform the 
what, how, and when functions for all information 
output processing. 

Four  more peripheral functional elements complete 
the basic set: 

A master program executive element to provide the 
control for trajectory computation or other simula- 
tion functions and also to control input and output 
processing functions; 

A service element to provide service features com- 
mon to all elements; 

An input processing element to enter and process all 
input; 

An output processing element to edit, process, and 
output all special data formats such as that re- 
quired for plotting. 

At this point we have arrived at a set of functional 
elements which comprise the simulation program. Each 
of these elements appears in the simulation program as 
a software unit called a module. 

Module~Model Relationships 

Although the functional relationship between mod- 
ules is inherently invariant, the character of the 
function that must be performed by a given module may 
vary considerably. This leads to the module/model 
concept, which can be expressed mathematically as 
follows: Let S represent the total set of functional ele- 
ments which will comprise the vehicle flight simulation 
program. Thus S can functionally be written as 

S : S(M1, M2 . . . . .  M , )  (3) 

where M~ designates the ith functional element and i : -  
1 , . . . ,  n. Similarly, a given module M~ can be described 
functionally in the form 

M~ : Mi)mil ,  m i 2  . . . .  , mi z~) (4)  

where m~ denotes the kth particular description of the 
function assigned to module M~ and k = 1 , . . . ,  l~. 
The M~ appear in the simulation program as software 
units called models and are always affiliated with a 
module. 

A major goal was to design a generalized program 
that would permit the execution of a very specific 
program. This requirement has been satisfied by provid- 
ing a mechanism by which the m~k can be selected 
through input at run time. (For  example, among the m~.1~ 
for module M~ is the unity transfer model which causes 
M,~ to perform a null function.) The nature of any 
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particular simulation is thus dependent upon a model 
selection process that is placed in the hands of the 
program user. This feature also provides both flexibility 
and computational etficiency. 

Module Characteristics 

This program design discussion has now reached the 
point where the simulation program has been structured 
and organized about a set of functional elements called 
modules. A module M~ has well defined inputs and 
outputs and can be considered somewhat analogous to a 
system transfer function. Module M~ can be viewed in 
terms of Figure 5, in which 

z~ - -  output vector of module M~ 

z~ = output vectors from the Mj modules, j ~ i 

p~ - -  externally supplied parameter input vector for 
module M~ 

pj = parameter input vector to the M s modules, 
j ~ i .  

l 
~j;j  #i 

P j ; j # i  

._I I -1 Mi 
L 

V 

Figure 5 - -  Module input/output 

To permit each module to be as autonomous as 
possible, it is necessary to very carefully define module 
interfaces. These interfaces are grossly known by the 
nature of the function assigned a module but are only 
precisely known when p~ and z~ are completely specified. 
Such detail is withheld from this paper but can be 
obtained from the formal program documentation/,2 

A physical structure for module' M~ is now easily 
deduced which preserves the entity of each module in 
the simulation program. The segments which comprise 
this structure are the 

Control segment 
Input segment for p~ 
Model segment 
Output segment for z~ 
Subroutine segment. 

Additionally, a dictionary segment may be required 
depending upon the mechanization employed. 

The control segment provides each module with a 
model selection capability. The input segment contains 
all the single-piece data components of p~. In the case of 

variable-length-table or array input data, only a param- 
eter which locates the data appears in the input 
segment. The model segment contains concise repre- 
sentations of the subfunctions assigned to a module, i.e., 
each model of any complexity primarily controls a set of 
subroutines appearing in the subroutine segment of that 
module or in the service module. The output segment 
contains all of the components of z~; these components 
may be required for use by the module in which they 
reside, they may be necessary inputs to another module, 
or they may be required for information purposes. Each 
module subroutine segment contains a collection of 
building block material that may be used to construct a 
model unique to that module. 

One of the most important characteristics of each 
module is that it is designed to initialize itself. A 
mechanism is included in the module control segment 
for selecting initialization models versus mainstream 
computational models. Recall that initialization is trig- 
gered only at an event when t ----- t °. At this time each 
module reinitializes the components of p~, which then 
remain constant for the subsequent trajectory phase. 
Certain computations may then be required to reinitial- 
ize the components of z~ also. 

The models of module M~ are constrained by the 
requirement that they cannot alter the components of 
pj and z i for j ~ i. As shown previously, these 
vectors are available for model computations, in any 
module, but the values of the components of pj and z s 
are held sacred to the module in which they reside. A 
feature of functional design is that it significantly 
reduces the number of components of pj and zj which 
need to be referenced in module M~ 

It is of interest to compare the vectors p~ and z~ for 
i = 1 . . . .  , n with the vectors x, p, and e which were 
defined by Equation (1) :  the p~ vectors are collectively 
a subset of p, whereas the z~ vectors collectively contain 
all the components of x, x and c and those components 
of p not represented by the p~ vectors. 

Module Interfacing 

Figure 6 shows the total interaction of modules in the 
program. 

Input Processing Techniques 

The following brief summary is indicative of the 
input philosophy used in this program. The design 
details concerning the input processing techniques 
which complement the other program design features 
are more thoroughly covered elsewhere. 2 

The problem of processing the collection of exter- 
nally supplied pi vectors (i = 1 . . . . .  n) is especially 
acute for a generalized flight simulation program. First, 
there is ordinarily a large amount of data necessary to 
identify a vehicle, its environment, and the mission 
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Figure 6 - -  Module interaction 

profile. Second, much of the data is tabular in form, 
creating a problem of efficient storage allocation. Third, 
a good number of the input parameters take on a 
sequence of discrete values over the course of the 

trajectory; consequently there exists a dynamic storage 
allocation problem. 

Previous discussions have dwelt heavily upon events 
and modules. All initialization occurs at events and all 
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modules initialize themselves. It is quite natural, there- 
fore, that the components of the p, vector be identified 
by the event at which they are first used and by the name 
of the module (M0 for which they are to be input. 

At execution time all the input data (pi vectors) are 
processed and placed into a variable-size data region. 
The inputs are compressed and ordered according to the 
event and module which identify them. During the 
vehicle flight simulation, module Mi extracts the compo- 
nents of p, that it requires at the event occurring. The 
data are entered into the input segment of the module 
and remain therein until replaced at some subsequent 
event. An exception is made for tabular data: this type is 
never extracted from the variable data region; only the 
location is determined and provided to the appropriate 
module. 

H Y P O T H E T I C A L  V E H I C L E  SIMULATION 
E X A M P L E  

The design principles discussed in this paper may be 
illustrated by a hypothetical vehicle simulation example. 
Assume a four-stage vehicle carrying a payload that is 
to be placed into some final orbit after being injected 
into an earth-parking orbit. The first three stages burn 
consecutively and provide enough energy to place the 
vehicle into the parking orbit. The final stage is fired 
twice to effect the transfer to the desired final orbit. 

The vehicle is guided by three techniques: 

1. Zero-lift steering (1 st and 2nd stages) 
2. Explicit-velocity-required steering (3rd stage) 
3. Constant-attitude steering (4th stage) 

Three models can be developed which efficiently imple- 
ment these steering requirements for the hypothetical 
mission. These models are written for a data processing 
and guidance module controlled from the data process- 
ing and guidance executive as shown in Figure 6, and 
are called Models 1, 2, and 3. 

Assume further that the mission profile can be 
specified via a sequence of ordered primary events as 
follows: 

E1 - -  liftoff 
E2 - -  end vertical rise, start zero-lift steering 
E3 - -  end 1st stage, start 2nd stage 
17,4 - -  end 2nd stage, start 3rd stage 
E~ - -  end 3rd stage, start coast 
Et, - -  end coast, start 1st burn, 4th stage 
Er - -  end 1st burn, start 2nd coast 

E8 - -  end 2nd coast, start final burn 
E9 - -  end final burn, enter final orbit 
E ~ 0 -  end flight (on basis of time, number of 

orbits, etc.). 

Although only ordered primary events are shown in 
this input sequence, secondary and roving primary 
events are conceivable. For  example, an event defining a 
certain orbital altitude might be specified between E7 
and E8. If it were defined as a secondary, then the 
designated altitude would have to be reached before 
occurrence of Es or it would not occur at all. If it were 
defined as a roving primary event at the same point in 
the sequence, then it could occur at any subsequent time 
up to the occurence of El0. 

Returning to the event input sequence listed above: 
at El, Model 3 is specified for steering with appropriate 
parameters. At E2 Model 1 is called, replacing Model 3. 
At E4, Model 2 is called, replacing Model 1; and at Es, 
Model 3 is again called with appropriate parameter 
values. Thereafter Model 3 is used, possibly with new 
initializing parameters at the subsequent events. 

If we relate the inputs and outputs required for these 
models in terms of x, p, c, the result is that there are no 
components of x produced by models in the data 
processing and guidance module; p may have compo- 
nents (such as vehicle mass, guidance constants, and 
vehicle attitude constants) produced in this module; 
and c will have its major components (steering com- 
mands and engine discretes) generated there. 

Other modules can be looked at similarly and models 
may be chosen, if available, for the particular mission 
functions that are required. Again, for emphasis, models 
are specific representations of a general function, and in 
this case the general function of vehicle data processing 
and guidance is broken into three specific steering 
models. 
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