
The functional design of a generalized
vehicle flight simulation program

by VILAS D. HENDERSON
Logicon, lnc.

Redondo Beach, California

INTRODUCTION

Aerospace missions have become exceedingly complex,
requiring correspondingly complex vehicles in order to
fulfill them and necessitating thorough analysis of the
total mission/vehicle combination during the design,
development, and testing phases. An important part of
this analysis and synthesis concerns the behavior of the
vehicle as it travels a flightpath toward the fulfillment of
its mission. This behavior is so important that it actually
may have considerable impact upon original mission
objectives, over-all vehicle design, and various subsys-
tem functions.

The dynamical process which describes a vehicle's
flight has a solid foundation based upon the laws of the
universe. A factor that characterizes the design of
special-purpose vehicle flight simulation programs is the
degree of realism and sophistication with which these
physical laws are simulated. A prime factor that charac-
terizes the design of a generalized flight simulation
program is the extent to which this design can be made
independent of the degree of realism and sophistication
levels that may be used to model the physical laws. An
elegant way to achieve a large measure of this indepen-
dence is through functional software design.

The virtues of functional software design may be
illustrated by contrasting a three-degree-of-freedom ve-
hicle flight simulation and a six-degree-of-freedom sim-
ulation: there is no over-all functional difference be-
tween these simulations; it is only the degree of realism
and the complexity of mathematical modeling that
distinguishes them. Functional design permits either or
both the three- or six-degree-of-freedom simulation
capability to be incorporated into a generalized vehicle
flight simulation program with little sacrifice or compro-
mise in either simulation from the viewpoint of effi-
ciency and flexibility.

It should be stated at the outset that specific simula-
tion languages are not given attention in this paper.
Functional design is considered all important; the

simulation languages are considered a means of imple-
menting a design, but in no way should they influence it.
For this reason the design presented here is concep-
tually independent of simulation language, operating
system, and computer design.

The genesis of the program described here was an
Aerospace Corporation effort, undertaken in 1963, to
develop a generalized digital flight simulation program
for use principally on Titan III missions. The initial
development effort, in which the author participated,
was in assembly language on the IBM 7094. Subse-
quently this program has been developed by Logicon,
Inc. for the Univac 1107/1108, using a mix of assem-
bly and FORTRAN languages. Preparation of an all-
FORTRAN-IV version of the program for the GE 625/
635 and CDC 3600 computers is nearing completion.

The basic program has been extended into a system
called the Modularized Simulation System. At least a
hundred different applications have already been made
of this system; these include studies in such areas as

Trajectory design and targeting
Open- and closed-loop guidance simulations
Three- and six-degree-of-freedom vehicle

simulations
Error analysis
Radar tracking
Environmental effects
Flight mechanics and performance analysis
Sensor simulations, and
Digital autopilots.

Major mission applications have included Titan III,
several satellites, a large-payload test vehicle, and
advanced ballistic missile systems.

MATHEMATICAL PROBLEM DEFINITION

The description of a vehicle's flight involves the
definition of a complex dynamical system. Mathemat-
ically this system can be concisely described by a vector
differential equation of the form

109

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800256.810687&domain=pdf&date_stamp=1966-01-01

110 Proceedings - - A.C.M. National Meeting, 1966

where
x(t) -- F[x(t), p(t) , c (t) , t] (1)

x (t) - - the system kinematic state vector
p(t) -- the system vector parameter function
e(t) ~ the system vector control function

t - - the independent variable, time.

The kinematic state vector x(t) is assumed to be of
dimension twelve, consisting of three-dimensional com-
ponents in velocity, position, attitude rate, and attitude.
The vector parameter function p(t) includes parameters
such as vehicle weight, engine specific impulse, vehicle
cross-sectional area, gravitational constants, and aero-
dynamic drag. A good many of the parameters may be
time varying and perhaps even a solution to a differen-
tial equation; many others may be constant for a
particular mission or vehicle. It should be noted that for
different mission/vehicle combinations, p(t) may vary
in dimension, functional form, or both. As an example,
an Apollo mission involves physical and gravitational
parameters for both the earth and the moon, whereas a
near-earth ballistic missile mission need only involve the
physical and gravitational parameters of the earth.

The vector control function c(t) is also dependent
upon the particular mission/vehicle combination. The
number and functional form of the control variables
may vary from vehicle to vehicle depending upon the
energy sources available and the number of system
constraints that must be satisfied. Thus an accurately
guided vehicle may utilize pitch, yaw, and roll steering
policies to achieve a desired thrust vector direction. In
contrast, a vehicle subject to no accuracy requirement
may only utilize thrust termination time as a control
variable; a free-fall mission may simply require a null
control function.

The digital simulation of the dynamical system repre-
sented by (1) involves obtaining a solution of the form

t

-= I-F(r) dr -)- X(to) (2) x(t)

to

For a given set of initial conditions and the functional
form of p(t) and c (t) , the problem of obtaining a
solution to (2) becomes immensely simplified. There-
fore, a simulation program designed to give a particular
solution or a restricted class of solutions is not very
difficult to design. It is a different matter, however, to
design a generalized vehicle flight simulation program
for which very few assumptions are made about the
explicit form of p(t) and c(t). The functional design
principles presented in this paper preserve the generality
of (1) and (2) to a remarkably high degree.

MISSION P R OFILE SPECIFICATION

The term trajectory is used to denote the time history

of a vehicle's dynamic state. This state is only com-
pletely known when x(t) , p(t) , and c (t) are all known.

A trajectory phase denotes a part of the total
trajectory and as such it is initiated by some event and
terminated by some later event.

An event is a discrete point in time along a trajectory.
It represents the terminating point of the preceding
trajectory phase and the initiation point of the ensuing
trajectory phase. The occurrence of an event will
usually imply a discontinuity in p(t) , in c (t) , or in
both.

An event criterion is a policy for the determination
of an event. Multiple criteria for a single event are
admissible.

Mission profile is used in connection with a family of
trajectories, all of which are characterized by the same
sequence of events and trajectory phases.

Each trajectory consists of at least starting and
terminal events which define the boundary points for
the intervening trajectory phases. The trivial trajectory
consists of a trajectory phase of zero time duration and
concurrent starting and terminal events.

Recall that the solution to the dynamical system
described by (2) involves a set of differential equations.
If p(t) and c(t) are subject to change during the course
of a trajectory, and if these changes are identified with
the occurrence of an event, then a trajectory can be
thought of as the solution of a set of piecewise
continuous differential equations which require initiali-
zation at each event. It then follows that the digital
simulation of this dynamical system is, in effect, contin-
uous over each trajectory phase. This establishes the
basis for the criterion that all initialization can be
performed at eyents, and therefore an event essentially
defines the nature of the ensuing trajectory phase.

Each event is given a t-, t °, and t + interpretation: the
t- interpretation pertains to the end of the preceding
trajectory phase; the t + interpretation to the initiation
of the subsequent trajectory phase; and the t o interpre-
tation to initialization. It is noteworthy that for any
given mission profile, the first event has no t- associated
with it while the last event encountered has no t o or t +
associated with it.

Event Classifications

All events are classifiable in terms of whether they
can be ordered absolutely with respect to each other. If
all the possible events for a given mission profile are
defined, then there is always a starting event and a
desired terminating event. In the .trajectory interval
between the start and end of the mission profile, there
will usually exist a sequence of events, most of which
may be expected to occur in some predetermined order.
All those events which must occur in absolute order with
respect to each other are called ordered events. Any

The Functional Design of a Generalized Vehicle Flight Simulation Program 111

event that cannot be given an absolute order is classi-
fied as a roving event.

There are instances when a designated event may be
superseded by another event. The superseded event is
classified as a secondary event; all others are called
primary events. Hence there are four classes of events
which may be specified:

Ordered primary
Ordered secondary
Roving primary
Roving secondary.

Event Sequences

An ordered primary event must occur during the
course of a complete and successful simulation, and its
occurrence must take place in absolute order with
respect to all other ordered primary events. An ordered
secondary event may or may not occur, but if it does
occur, the occurrence must be in the interval bounded
by two consecutive ordered primary events. To illus-
trate, let P1 and Pu designate two consecutive ordered
primary events, and let S, and $2 designate two consecu-
tive ordered secondary events which must occur in the
interval separated by Pi and P2 if they are to occur at
all. Then the following three sequences of events are
possible, given appropriate event criteria and the spec-
ified input shown as Sequence 1:

1. Px, St, $2,/'2
2. P1, $1, P2
3. Px, F2

It should be noted that event criteria must be reasonable
in order to achieve a given sequence. For example, if
Sequence 2 is to occur, then the criterion for the
occurrence of Sx must be reasonable relative to the
criterion for P2; if it is not, Pz will supersede it.

A roving primary event can occur at any time in an
event sequence after the last ordered primary event it
follows. If such an event, say Pt', is inserted into the
previous sequence between Pa and St, then the following
event sequences are possible, again given appropriate
event criteria:

1. P1, PI', $1, $2, P2
2. P1, $1, Pt', $2 P2
3. P1, $1, 52, Ft t, P2
4. P1, $1, $2, P2, PI'
5. P1, PI', S1, P2
6. P1, $1, Px', P2
7. P1, $1, P2, PI'
8. P1, PI', P2
9. P1, P2, PI"

Since an ordered primary supersedes all roving ptima-
ties, Sequences 4, 7 and 9 will not include event Pt '
whenever P2 is the last event in the entire input

sequence. Thus it is possible that a roving primary event
may not occur at all in the course of a simulation.

A roving secondary event must be specified when
there are two secondary events that cannot be abso-
lutely ordered with respect to each other. Let SI" be a
secondary event whose order of occurrence is unknown
with respect to St and Sz, and let Pt and P~ designate
ordered primary events. The possible event sequences,
assuming appropriate event criteria, are:

1. Px, SI', $1, S~, P~.
2. PI, St', St, P2
3. P1, $1', P2
4. P1, $1, $1', $2, P2
5. Pt, St, $2, St', Pz
6. Pt, S1, SI', P2
7. Pt, St, $2, P2
8. P1, S1, P2
9. P1, P2

From this discussion, it is readily apparent that there
are frequent occasions when a number of event criteria
must be monitored simultaneously if secondary and
roving primary events appear in the sequence. Use of
multiple criteria also imposes this requirement. To
illustrate, consider the input sequence shown in Figure

t

I I I I I
Pl S~ PI Sl P2

Figure 1 - - Typical input sequence

1. All the criteria associated with events St', Pt', $1, and
/)2 are monitored as soon as Pt occurs. If event Pz is
encountered, then all criteria associated with St' and St
are immediately dropped from the sequence, as well as
the criteria associated with P2. If PI' is not encountered
by the time P2 occurs, then its event criteria will be
further monitored, providing P2 is not the last event in
the total input sequence.

Each event criterion produces a time-to-go-to-an-
event parameter. The occurrence of an event is trig-
gered when one or more of the time-to-go parameters
come within a specified tolerance of zero.

PROGRAM STRUCTURE AND ORGANIZATION
Flight Dynamics Elements
A vehicle's flight involves, of course, vehicle dynam-

ics and an external environment. Superimposed upon
these are the navigation, guidance, and control func-
tions that together provide the means by which a vehicle
is directed to its intended terminal point. Figure 2
illustrates the functional relationships between these

112 Proceedings - - A.C.M. National Meeting, 1966

~ '~NAVIGATIONI~"IGu,DANCE ~ CONTROL

t VEHICLE DYNAMICS 6~

EXTERNAL I
ENVIRONMENT

Figure 2 - - Functional relationships in flight dynamics

basic elements. Vehicle dynamics can further be divided
into kinematics and kinetics. Kinematics can then be
subdivided into translational and rotational elements;
and kinetics can be divided into aerodynamics, propul-
sion, and structure.

Navigation, guidance, and control functions are more
effectively dealt with in a simulation if the software- and
hardware-oriented functions are separated. Navigation
involves sensors (hardware) and data processing (soft-
ware); guidance is a software function; and control is
mostly a hardware function. The sensor, guidance and
data processing, and control elements are therefore
chosen in preference to the navigation, guidance, and
control elements.

The division of flight dynamics into the set of
functional elements just described has been found to be
optimum for a wide class of simulation problems. The
functional interaction of these elements is shown in
Figure 3.

Peripheral Elements

A generalized vehicle flight simulation program must
consist of much more than the flight dynamics dements
just described if it is to be of any utility. Some major
additional factors that must be considered are the means
by which a numerical solution to (2) is to be imple-
mented, the sequencing and controlling requirements,
and provisions for input and output. The approach
taken here is that there exists a set of peripheral
functional elements which complement the nine mathe-
matically oriented elements; collectively,~they form the
basis for the structure and organization of the total
program. Descriptions of the peripheral elements follow.

The division of a trajectory into trajectory phases
suggests a hierarchy of three executive dements for the
control of flight profile sequencing:

A trajectory executive element to control the simula-
tion on a total trajectory basis;

A trajectory phase executive element to control the
simulation on a trajectory phase basis;

A cycling executive element to control the simulation
on an integration cycle basis.

The cycling executive element forms the hub from
which the major simulation computations are per-
formed. Three subservient elements complete the execu-
tive network as shown in Figure 4:

A data processing and guidance executive element to
control the data processing and guidance flight
dynamic element and certain special functional

.J SENSORS w I

I TRANSLATIONAL
KINEMATICS

I ROTATIONAL
KINEMATICS

DATA PROCESSING I
AND GUIDANCE

J
-I

CONTROL

I

I
I
I
i
i

i

I --~ STRUCTURE i

KINEMATICS

1

I

' I T I
_I EXTERNAL I
q ENVIRONMENT

PROPULSION

KINETICS

t
I
i
i
I

Figure 3 - - Principal elements of flight dynamics

The Functional Design of a Generalized Vehicle Flight Simulation Program 113

TRAJECTORY

EXECUTIVE

INFORMATION

EXECUTIVE

TRAJECTORY

PHASE EXECUTIVE

CYCLING

EXECUTIVE

DATA PROCESSING AND

GUIDANCE EXECUTIVE

DYNAMICS

EXECUTIVE

Figure 4 - - Executive elements for vehicle simulation

elements required for moqitoring event criteria and
for providing generalized open-loop steering tech-
niques;

A dynamics executive element to control the integra-
tion process and the eight elements of flight
dynamics other than the one given above;

An information executive element to perform the
what, how, and when functions for all information
output processing.

Four more peripheral functional elements complete
the basic set:

A master program executive element to provide the
control for trajectory computation or other simula-
tion functions and also to control input and output
processing functions;

A service element to provide service features com-
mon to all elements;

An input processing element to enter and process all
input;

An output processing element to edit, process, and
output all special data formats such as that re-
quired for plotting.

At this point we have arrived at a set of functional
elements which comprise the simulation program. Each
of these elements appears in the simulation program as
a software unit called a module.

Module~Model Relationships

Although the functional relationship between mod-
ules is inherently invariant, the character of the
function that must be performed by a given module may
vary considerably. This leads to the module/model
concept, which can be expressed mathematically as
follows: Let S represent the total set of functional ele-
ments which will comprise the vehicle flight simulation
program. Thus S can functionally be written as

S : S(M1, M2 M ,) (3)

where M~ designates the ith functional element and i : -
1 , . . . , n. Similarly, a given module M~ can be described
functionally in the form

M~ : Mi)mil , m i 2 , mi z~) (4)

where m~ denotes the kth particular description of the
function assigned to module M~ and k = 1 , . . . , l~.
The M~ appear in the simulation program as software
units called models and are always affiliated with a
module.

A major goal was to design a generalized program
that would permit the execution of a very specific
program. This requirement has been satisfied by provid-
ing a mechanism by which the m~k can be selected
through input at run time. (For example, among the m~.1~
for module M~ is the unity transfer model which causes
M,~ to perform a null function.) The nature of any

114 Proceedings m A.C.M. National Meeting, 1966

particular simulation is thus dependent upon a model
selection process that is placed in the hands of the
program user. This feature also provides both flexibility
and computational etficiency.

Module Characteristics

This program design discussion has now reached the
point where the simulation program has been structured
and organized about a set of functional elements called
modules. A module M~ has well defined inputs and
outputs and can be considered somewhat analogous to a
system transfer function. Module M~ can be viewed in
terms of Figure 5, in which

z~ - - output vector of module M~

z~ = output vectors from the Mj modules, j ~ i

p~ - - externally supplied parameter input vector for
module M~

pj = parameter input vector to the M s modules,
j ~ i .

l
~j;j #i

P j ; j # i

._I I -1 Mi
L

V

Figure 5 - - Module input/output

To permit each module to be as autonomous as
possible, it is necessary to very carefully define module
interfaces. These interfaces are grossly known by the
nature of the function assigned a module but are only
precisely known when p~ and z~ are completely specified.
Such detail is withheld from this paper but can be
obtained from the formal program documentation/,2

A physical structure for module' M~ is now easily
deduced which preserves the entity of each module in
the simulation program. The segments which comprise
this structure are the

Control segment
Input segment for p~
Model segment
Output segment for z~
Subroutine segment.

Additionally, a dictionary segment may be required
depending upon the mechanization employed.

The control segment provides each module with a
model selection capability. The input segment contains
all the single-piece data components of p~. In the case of

variable-length-table or array input data, only a param-
eter which locates the data appears in the input
segment. The model segment contains concise repre-
sentations of the subfunctions assigned to a module, i.e.,
each model of any complexity primarily controls a set of
subroutines appearing in the subroutine segment of that
module or in the service module. The output segment
contains all of the components of z~; these components
may be required for use by the module in which they
reside, they may be necessary inputs to another module,
or they may be required for information purposes. Each
module subroutine segment contains a collection of
building block material that may be used to construct a
model unique to that module.

One of the most important characteristics of each
module is that it is designed to initialize itself. A
mechanism is included in the module control segment
for selecting initialization models versus mainstream
computational models. Recall that initialization is trig-
gered only at an event when t ----- t °. At this time each
module reinitializes the components of p~, which then
remain constant for the subsequent trajectory phase.
Certain computations may then be required to reinitial-
ize the components of z~ also.

The models of module M~ are constrained by the
requirement that they cannot alter the components of
pj and z i for j ~ i. As shown previously, these
vectors are available for model computations, in any
module, but the values of the components of pj and z s
are held sacred to the module in which they reside. A
feature of functional design is that it significantly
reduces the number of components of pj and zj which
need to be referenced in module M~

It is of interest to compare the vectors p~ and z~ for
i = 1 , n with the vectors x, p, and e which were
defined by Equation (1) : the p~ vectors are collectively
a subset of p, whereas the z~ vectors collectively contain
all the components of x, x and c and those components
of p not represented by the p~ vectors.

Module Interfacing

Figure 6 shows the total interaction of modules in the
program.

Input Processing Techniques

The following brief summary is indicative of the
input philosophy used in this program. The design
details concerning the input processing techniques
which complement the other program design features
are more thoroughly covered elsewhere. 2

The problem of processing the collection of exter-
nally supplied pi vectors (i = 1 n) is especially
acute for a generalized flight simulation program. First,
there is ordinarily a large amount of data necessary to
identify a vehicle, its environment, and the mission

The Functional Design of a Generalized Vehicle Flight Simulation Program 115

OTHER SIMULATION ~ MASTER PROGRAM ~ INPUT

FUNCTIONS EXECUTIVE PROCESSOR

SERVICE

INFORMATION

EXECUTIVE

TRAJECTORY

EXECUTIVE

TRAJECTORY

PHASE EXECUTIVE

t ,
CYCLING

EXECUTIVE

t
DYNAMICS

EXECUTIVE
AL

FLIGHT DYNAMICS

(8 MODULES)

DATA PROCESSING AND

GUIDANCE EXECUTIVE

DATA PROCESSING AND

GUIDANCE

(5 MODULES)

VEHICLE SIMULATION MODULES

Figure 6 - - Module interaction

profile. Second, much of the data is tabular in form,
creating a problem of efficient storage allocation. Third,
a good number of the input parameters take on a
sequence of discrete values over the course of the

trajectory; consequently there exists a dynamic storage
allocation problem.

Previous discussions have dwelt heavily upon events
and modules. All initialization occurs at events and all

116 Proceedings - - A.C.M. National Meeting, 1966

modules initialize themselves. It is quite natural, there-
fore, that the components of the p, vector be identified
by the event at which they are first used and by the name
of the module (M0 for which they are to be input.

At execution time all the input data (pi vectors) are
processed and placed into a variable-size data region.
The inputs are compressed and ordered according to the
event and module which identify them. During the
vehicle flight simulation, module Mi extracts the compo-
nents of p, that it requires at the event occurring. The
data are entered into the input segment of the module
and remain therein until replaced at some subsequent
event. An exception is made for tabular data: this type is
never extracted from the variable data region; only the
location is determined and provided to the appropriate
module.

H Y P O T H E T I C A L V E H I C L E SIMULATION
E X A M P L E

The design principles discussed in this paper may be
illustrated by a hypothetical vehicle simulation example.
Assume a four-stage vehicle carrying a payload that is
to be placed into some final orbit after being injected
into an earth-parking orbit. The first three stages burn
consecutively and provide enough energy to place the
vehicle into the parking orbit. The final stage is fired
twice to effect the transfer to the desired final orbit.

The vehicle is guided by three techniques:

1. Zero-lift steering (1 st and 2nd stages)
2. Explicit-velocity-required steering (3rd stage)
3. Constant-attitude steering (4th stage)

Three models can be developed which efficiently imple-
ment these steering requirements for the hypothetical
mission. These models are written for a data processing
and guidance module controlled from the data process-
ing and guidance executive as shown in Figure 6, and
are called Models 1, 2, and 3.

Assume further that the mission profile can be
specified via a sequence of ordered primary events as
follows:

E1 - - liftoff
E2 - - end vertical rise, start zero-lift steering
E3 - - end 1st stage, start 2nd stage
17,4 - - end 2nd stage, start 3rd stage
E~ - - end 3rd stage, start coast
Et, - - end coast, start 1st burn, 4th stage
Er - - end 1st burn, start 2nd coast

E8 - - end 2nd coast, start final burn
E9 - - end final burn, enter final orbit
E ~ 0 - end flight (on basis of time, number of

orbits, etc.).

Although only ordered primary events are shown in
this input sequence, secondary and roving primary
events are conceivable. For example, an event defining a
certain orbital altitude might be specified between E7
and E8. If it were defined as a secondary, then the
designated altitude would have to be reached before
occurrence of Es or it would not occur at all. If it were
defined as a roving primary event at the same point in
the sequence, then it could occur at any subsequent time
up to the occurence of El0.

Returning to the event input sequence listed above:
at El, Model 3 is specified for steering with appropriate
parameters. At E2 Model 1 is called, replacing Model 3.
At E4, Model 2 is called, replacing Model 1; and at Es,
Model 3 is again called with appropriate parameter
values. Thereafter Model 3 is used, possibly with new
initializing parameters at the subsequent events.

If we relate the inputs and outputs required for these
models in terms of x, p, c, the result is that there are no
components of x produced by models in the data
processing and guidance module; p may have compo-
nents (such as vehicle mass, guidance constants, and
vehicle attitude constants) produced in this module;
and c will have its major components (steering com-
mands and engine discretes) generated there.

Other modules can be looked at similarly and models
may be chosen, if available, for the particular mission
functions that are required. Again, for emphasis, models
are specific representations of a general function, and in
this case the general function of vehicle data processing
and guidance is broken into three specific steering
models.

REFERENCES

1 v D HENDERSON

The logicon modularized simulation system
Part I: .4 general description
Logicon Inc
Redondo Beach California May 1966

2 J T A T U M M T U R N E R

The logicon modularized simulation system
Part H: The mechanics of input
Logicon Inc
Redondo Beach California May 1966

