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I N T R O D U C T I O N  

In this paper, we investigate the evaluation and 
reduction of error probability, when statistical decision 
functions are used for computer character recognition. 
Suppose that the given alphabet consists of m characters, 
O 1 ,  O 2 ,  • • • , O m ,  and that a character O is to be identified 
by the observed value of a random vector X = (X1, X2, 
. . .  , Xn), where each Xk is associated with a certain 
feature of O. Let p~ be the probability that 0 = Oi, i = 
1,2 . . . . .  m; and f i(x) ,  where x = (Xl, x2 , . .  •, xn) is a 
real vector, be the pdf (probability density function) of 
X given that 0 = oi. In order to minimize the proba- 
bility of error, i.e., incorrect recognition, it is well 
known [3] that Bayes decision functions should be used. 
Namely, one identifies O as Oi, if the observed value 
x of X is in 

Ti -~- {X: P i f i ( x )  = max pjf j(x) ,  j = 1 , 2 , . . .  , m}.  
(1) 

In case x belongs to more than one Tl, 0 may be 
identified as the one corresponding to that T~ with the 
smallest subscript i. 

When PL and f~(x) are all given, a Bayes decision 
function is simple to apply, since all that one has to do 
is to observe X and compare for different i the value of 
p~f~(x). On the other hand, the corresponding error 
probability is generally difficult to evaluate. Further- 
more, the X~'s and n which depend on the types and 
number of features used for recognition, are usually not 
given at the start. One would then like to know how 
they should be chosen so as to reduce the error 
probability of the recognition system below a certain 
level. These problems of evaluating and reducing the 
error probability are obviously of importance in appli- 
cations. However, general solutions to such problems 
have been so far lacking. 
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In this paper, we shall see that some solutions of a 
general nature can be obtained by the use of the Bayes 
majority decision functions defined in Section 3. Upper 
bounds for the error probability are derived in terms of 
the "differences" between pairs of fi(x) and fik(Xk) 
respectively, where f~k(Xk) is the pdf of Xk given O = O~. 
From there, we obtain the main result that if a sufficient 
number of features is used in a recognition system, and 
corresponding to each and every feature Xk, the f~k(Xk) 
have positive "differences" among themselves, then the 
error probability of the Bayes decision function can be 
made arbitrarily small. Hence, to set up a character 
recognition system, the following procedure may be 
considered: : 

(a)  Select a set of features having the largest possible 
"differences" among the corresponding pdfs. 

(b)  Determine the number of features to be used by 
the requirement on error probability and /or  
cost consideration. 

(c) Use Bayes decision functions to identify the 
characters. 

On the other hand, for a given recognition system, the 
upper bounds mentioned above may be used as conserv- 
ative approximations to the error probability. 

The details are presented in separate sections. In 
Section 2, we define the "difference" between fi(x) and 
f j(x)  and obtain relations between '~difference" and 
error probability. In Section 3, we introduce the majori- 
ty decision functions from which an upper bound for the 
error probability is derived. In Section 4, we discuss 
various kinds of applications and give illustrative ex- 
amples where the pdfs are binomial and normal respec- 
tively. Some numerical comparisons are also made. 

A special case 

Consider first the case where the alphabet contains 
only two characters, i.e., O = O1 or Oz. Then the Bayes 
decision function given in (1) recognizes o as oi if x 
Si, i = 1,2, where $2 = S ' ,  the complement of $1, and 
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Sa = {X: plfl(X) ~ p2f2(x)}. (2) 

The corresponding error probability is given by 

Pe : f P2f2(x) dx + . f p l f l ( x )  dx. 
$1 $2 

To simplify the notations, we shall from now on write fl 
instead of fi(x) and delete "dx" from integration, 
whenever there is no danger of confusion. 

Intuitively, it seems clear that the more different fl 
and f2 are, the less P~ should be. In the following, we 
shall see that this is indeed the case. 

Theorem 1. If f [ Plfl -- p2f2 ] i> 8, then Po 
(1- -8) /2 ,  and equalities correspond. 

Proof. By assumption, Si pifi - P~ f> 8. $ i n c e ~  
i=1 i=1 

+ Pe = 1, the assertions follow immcdiatcly. 

Theorem 2. If f [  fl -f2] /> 2 8, then Po ~< 1/2  - 8 / 4 .  
Proof. Let  R1 -~ {x: f l (x )  >i f2(x)} and R1, the 

complement of RI. Assume that Pl ~> p2. Then 1 -- Pe = 
f plfl  + f p2f2 >/ f plfl + f Plfl + f plfl. 
S l  $2 R1 SiR'i $2 

By assumption, f (fl -- f2) ~ 8, hence f Pl fl >/ Pl 8 -~- 
R1 R1 

f Pl f2 /> pl 8 -Jr- f p2 f2. Furthermore, f pl fl /> 
R1 R1 SlRPl 
f P2 f2. It follows that 1 -  P~ /> px ~ + P~. Hence, 
SiR'i 
P~ ~ 1 /2  -- Pi 8 / 2  ~ 1 /2  - 8/4.  In a similar way, we 
show that the theorem holds for pl ~ p2. 

The integral f [ pl fl - p2 f2 ] may he viewed as a 
weighted difference between fl and f2- Theorem 1 says 
that if the weighted difference is 8, then Po = (1 -- 
8 ) /2 .  Furthermore, in order to reduce Pe below a given 
level o~, one must select X such that the corresponding 
weighted difference is at least 1 -- 2 o~. The ideal case is 
that the weighted difference is 1, since then Po = 0. 
The integral in Theorem 2 may be viewed as an 
unweighted difference between fi and f2 and plays a 
similar role. But the result of Theorem 2 is somewhat 
weaker in tha t  equalities do not correspond, that 8 = 1 
does not imply P~ = 0, and that for Pl = P2 = 1/2,  
Theorem 1 provides a better upper bound. 

We have just seen that the evaluation and reduction 
of error probability depend very much on the differ- 
ences between the pdfs of X. However, these differences 
are in general not easy to obtain. In the next section, we 
shall derive an upper bound for the error probability in 
terms of the differences between the pdfs of each and 
every Xk which should be much easier to find. 

Majority decision Junctions 

By the use of the Bayes majority decision functions 
defined below, upper bounds for the error probability Pe 

can be derived in terms of the differences between the 
pdfs Fik(Xk). For simplicity, we shall assume that the 
Xk's are statistically independent. However, similar 
results can also be obtained for dependent random 
variables, provided that the Central Limit Theorem 
holds. One type of dependence encountered in practice 
is the so-called M-dependence, i.e., Xr and X~ are 
independent if s - r > M. For  reference, we cite ([  1 ], 
p. 14) and [5]. 

In general, a decision function for character recogni- 
tion is a function d(x)  which maps every x into one of 
the Oi's. If d (x)  = Oi, it means that if x is the observed 
value of X, then the decision is that O = Ol, i.e., O is 
recognized as Oi. For  the case where the alphabet 
consists of only two characters, say O1 and O2, we define 
a majority decision function as follows: 

Definition 1. Let  d(x)  = ( d l ( x i ) , . . . , d 2 n + l  
(X2n+i)), i.e., the kth component decision depends only 
on the observed value Xk of Xk; and dk(xk) = O1 or 02, 
k = 1 , . . . ,  2 n + l .  Then d(x)  is called a majority 
decision function if it follows the decision of the major- 
ity. (Note that we use 2 n + l  to avoid the minor com- 
plication caused by 2n.) 

Let d(x)  be a majority decision function defined 
above and 

Sik : {Xk: dk(Xk) "~- Oi},  and aik = f f ik(Xk)  dXk, 

Sjk 
(3) 

where i ~ j, i, ] = I, 2, and k = I, 2,..., 2n+I. 
Theorem 3. Let Uk = 0 or I, k = 1 .... ,2n+ I, and 

x* denote the summation (of a function of the ui's) 
2 n + l  

over all Uk such that ~ Uk ~> n + l .  Then, the error 
k=l 

probability associated with the majority decision func- 
tion d(x)  in (3) is given by 

Pc(d) = Pi X* rr aiu (1 --~ik) 
i=1  k ~ l  

(4) 

( ) ~ ~ p ie  n + l ,  ~2 ~i~, ~2 ~ik(l--~i~) 
i~l k~l k~l 

(5) 
where 

to 

q) (x, ~, q2) = t (2~a2) -1 /2  e-(y-~)e/2a2 dy, 
x 

(6) 

and a N b  means that a and b are approximately equal 
to each other if n is large. 

Proof. Define random variables 

Uk = 0, Vk = 1, if dk(Xk) = O1 and 
Uk = 1 ,  Vk = 0, if dk(Xk) = O2. 

Let Uk and Vk be the observed values of Uk and Vk 
2 n + l  
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respectively. Then by definition, d(x)  -= ol  if x Vk >f 
k=l  

2n+l 
n + l ;  and d(x)  _= 02, if x Uk >t n + l .  Since P(Uk -= 

k=l  
Ukl O = 01) =- aak (1 -- Oak)l-u~, where P(AIB)  is the 
probability of A given B, we have Pc(d) = P ( d ( x )  = 
02, o ---- O l ) + P ( d ( x )  --~ ol,  o ---- 02) = pl P 

2n+1 ) ( 2 n + 1  
kX__a Ok ~ n + l  Io = Ox + p2 P k=lX Vk t> n + l l  

) 2 I 2.+~ u, ] O : O2 = 1~=1 pi 2~* kZ1 aik (1 --O~ik) 1-Uk " 

By the Central Limit Theorem for the sum of random 
variables that are independently but not necessarily 
identically distributed ( [4 ] ,  215-218),  we see that for 
large n, Pc(d) may be approximated by (5) .  

Corollary if Oak = fli, i = 1, 2, k =- 1 , . . . ,  2 n + l ,  

then 

2n+1 2 n + l  2n + 1-k 1 Pe(O)= iEP, KZ÷I( k (1--f l , )  
2 

N ~ pi O ( n + l ,  ( 2 n + l ) f l , ,  ( 2 n + l ) f l ,  (1-- f l0)  (7)  
i= l  

From Theorem 3 and its Corollary, we see that if the 
aik'S are known, it will not be difficult to evaluate Pc(d).  
The special case where "~k ---- /3i is easy to handle, since 

2n+1 
each X in (7) is a cumulative binomial distribution 

k=n+ l  
and tables are available for computing its valueY 
In general, for small n, we use (4) to obtain Pc(d) ,  
since the value of a x* can be found by direct tabula- 
tion. For large n, we use the approximation in (5) ,  
where the value of a ¢ also may be found from tables. 6 

The remaining problem is then how to find aiR. From 
(3) ,  it is obvious that aik depends on S~k and Sjk• One 
type of SiR is the following. 

Definition 2. A Bayes majority decision function is a 
majority decision function such that for every k = 1, 2, 
• . . ,  2 n +  1, the sets S~k in (3) are given by 

Slk = (Xk: q lk f lk (Xk)  ~ q '  f2k(Xk)}, 
and  S2k = S t , ( 8 )  

where qlk, q2k/> 0, and qXk + q2k = 1. 

Note that the qik'S may be different from p~, and are 
not necessarily the same for different k's. For  given q~k, 
the corresponding a~k are not difficult to find in most 
applications• This is because fxk and f2k often have the 
same functional form; consequently, the sets S~k are easy 
to handle. (See examples in Section 4.) A type of q,k, 
known as the least favorable distribution, ([2] p. 154),  
is of specific interest to us. For  each k, q~k and q2k are 
said to be the least favorable distribution of O with 
respect to flk(Xk) and f2k(Xk) if a,k = a2k. 

Theorem 4. Let d(x)  be the Bayes majority decision 
function such that for each k -= 1 , . . . ,  2 n +  1, qlk and 

q2k are the least favorable distribution of O. Suppose 
that for every k, f I fxk - f2k I >/ 2 8 > 0. Then for 
large n, 

Pc(d) ~ ,I, ( n + l ,  ( 2 n + l ) e ,  ( 2 n + l )  ~ ( l - - r ) ) ,  (9)  

where e ---- 1 /2  - 8/4;  consequently, Pc(d) --> 0 as n 
----> o0. 

Proof. From Theorem 2, we see that Oak = o~2k ~ e. 
NOW the function y = x ( 1 - - x )  increases as x increases 
from 0 to 1/2. Hence, an upper bound is obtained if the 
Oqk'S in (5)  are replaced by e. But ,I~(n+l,  ( 2 n + l ) e ,  
( 2 n + l ) ~ ( 1 - - ~ ) )  ~,I , (a  n 1/2, 0, 1) where a > 0. Since 
the latter tends to 0 as n ---> oo, we see that Pc(d) ---> 0. 

Applications and examples 

For the general case where the alphabet consists of 
O x , . . . ,  Om, it is well known 3 that if the Bales decision 
function defined in (1)  is used, the corresponding error 
probability is 

where 

Pe= [fp, f,+fp,fi] < ,<,x Pe(i,j), 
T, Tj 

Pe(i, i) = f PJfJ + fp f,, 
S~j S',j 

(10) 

and Slj = {x: pif,(x) /> pflj(x) }. If for every pair i and 
j, Pe(i,j) ~ 0 as n ~ oo, then Pe ~ 0 as n ~ oo. From 
Theorem 4, we have 

Theorem 5. If for all i ~= j; i,j = 1 , . . . ,  m; and 
k =. 1 , 2 , . . . ,  2n -4- 1, f Ifik -- fjk] /> 2 8 > 0, then Pe ~< 

( 7 ) A ,  where A i s t h e  bound given in (9 ) ;  conse- 

quently Pe ~ 0 as n ~ co. 
The following are some applications of the results 

that we have so far obtained for the design of a char- 
acter recognition system. 

(a)  Feature Selection. The difference between 
ftk(Xk) and fjk(Xk) depends, among other things, the 
type of Xk that is selected. In dealing with an alpha- 
bet consisting of 01 and 02 only, it is obvious that we 
should first rank the Xk'S into a sequence X1, X2 . . . .  , 
in descending order of f I flk -- f2k l' and select the 
Xk'S one by one from the beginning of the sequence. 
In general, we suggest that the Xk'S be ranked accord- 
ing to min f ]f,k -- fjkl, for i ~4= j; and i,j _-- 1 , . .  •, m. 

(b)  Error Reduction. To reduce Pe below a re- 
quired level o~, one way is to select an X ---- (XA . . . .  , 

X2n+l) such that ( 7 )  A ~< a, where zx is the bound 

given in (9) .  In case where A1 =- min f Ip~fi- PJfJl 
t ...B..4 

of Theorem 1 or A2 = min J" I f t -  fig-of Theorem 2 
~tJ 

is not difficult to obtain, we may also select X such 
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that ( 7 )  A~ or ( r ; )  A2 ~ a. On the other hand, if 

cost is of primary importance, then the following 
method may be used. Suppose that a loss c is incurred 
whenever an error is made and that CR is the unit cost 
associated with Xk. Then, the optimal n is the one 

( 7 )  2n-4-1 
which minimizes A c + ~ Ck. 

k = l  
(c) Decision Functions. In should be emphasized 

that after X is chosen and the corresponding f~(x) 
are found, then the Bayes decision function as 
defined in (1) rather than the majority decision 
functions, should be used for actual recognition. This 
is because Bayes decision function minimizes the 
error probability. The actual value of the error 
probability is not known, but we know that it is 
below the required level a, and may be conservatively 
estimated by the various upper bounds. 

The following are some illustrative examples: 
(a) Binomial Distributions. The use of binary 

random variables in character recognition is quite 
common. For example, Xk = 0 and 1 may indicate 
that the k th "region" of a character is black and white. 
respectively. The corresponding probability density 
function given o = o~ is 

Xk 
f~k(Xk) : O~k (1--O~k) ~-~, Xk : O, 1, 0 < O~k < 1. 
The difference between fik and fjk is 

1 xk xk 
Io~. ( 1 - o ~ 0  ~ . . . .  e ~  ( 1 - o ~ ) x - x q  

Xk~O 
= 2 [ O i k - -  Ojk[.  

Therefore, to select Xk, a simple criterion is min 
{[O~k- Ojk[, i - ~ j , i , j = l , . . .  ,m). The probabilities mk 
and ajk can also be found, but they do not provide as 
clear a picture as the differences do; hence, will not 
be discussed. 

(b) Normal Distributions. Consider the case 
where the Xk's have normal distributions, i.e., 

2 2 
f ~ ( x . )  = (2~-0.~k)-~/~ . - ( x ~  - m D 2 / 2 6 ~ ,  

i -~l  . . . .  , m ; a n d k =  1 . . . .  , 2 n + 1 .  (11)  

For  simplicity of notation, we shall omit the sub- 
script k unless there is confusion. It is easy to verify 
that for i = 1, 2 only, the set $1 of (8)  is that of all 
x for which 

x 2 ( 1  1 )  ( m  ~ )  
621 ~2" + 2x + 0.2 2 621 

/~zl ~2 2 log ql0.____~ ~ 0. (12) 
0.21 0"22 q261  

Let a and b be the solutions of the quadratic equation 
corresponding to (12) .  Then, S~ is either the set 
{x: a < x < b} or {x: x < a or x >  b). Hence, o~1 
and o~2 of (3) and the corresponding P~(d) may be 
found. 

Now suppose that al = a2 ~ 6. Then (12) can be 
simplified and if a = oa + a2, then 

a = ¢  ( w / 2 + q / w ) + l - ~  ( - w / 2 + q / w ) ,  (13) 

where w = It'2 -- /z11/0., q = log ql/q2, and ~I, (x) - -  
,I, (x,0,1) of (6) .  Furthermore, da /dw ~ 0, if and 
only if - ( 1  + eq) /2  ~ q ( e q - 1 ) / w  2. The latter 
inequality holds for all w and q, since the right and 
left hand sides are respectively non-negative and non- 
positive. Hence, da /dw ~ 0, and is a decreasing func- 
tion of w. If ql and q2 are the least favorable distribu- 
tion, we know that ax ---- ~2 = a. Therefore, the larger 
w is, the smaller al, 62, and the corresponding Pc(d) 
are. This suggests that in order to reduce Pc, one  
should choose those Xk for which 1~2k- mk[/6k are 
large. 

Finally, consider the special case of (11) where 
2 

t q k =  m, m k =  6 2 , a n d p i =  ½ ,  f o r a l l i =  1 ,2and  
k = 1 , . . . ,  2 n + l .  From (13) ,  aik = ,~(w/2)  for 
all i and k. Hence, (7)  may be used to compute 
Pc(d).  Now it is easy to see that the exact value of 
the error probability Pe is OO(w(2n-[-1)a/z/2). For  
comparison, we give the following table where w = 1. 

Table: Error probability and upper bound 
n Pe Upper Bound 
1 .3086 .3086 
3 .1933 .2269 
5 .1318 .1747 

11 .0486 .0883 
31 .0027 .0127 
51 .0002 .0010 

101 .0000 .0000 

Note that proportionally the upper bounds are not 
close to the actual probabilities. But this is to be 
expected, since the bounds are valid for any kind of 
distribution. 
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