
AN IMPLEMENTATION OF I P L - V ON A SMALL COMPUTER

by Ned Chapin, Ph.D
Data Processing Consultant

Menlo Park, Calif.

Abstract

An implementation of IPL-V has been made
that can be run on the computer most widely used
by schools and colleges. This can facilitate
the teaching of heuristic as well as the al-
ready available algorithmic oriented programing
languages. For this implementation, the seven
objectives selected lead to making the eight
major choices that shaped this one-pass imple-
mentation. These choices mostly reflect deci-
sions common to the implementation of any pro-
graming language. But in contrast to common
practice, list processes were used in the im-
plementation itself. Comparisons have been made
of this implementation and other IPL-V implementa-
tions.

Ob~,ectives

The programing language IPL-V (I~iformatlon
Processing Language--Vth versicn) is an heuristic
list processor. The language, which is an out-
growth of work done at Carnegie Institute of
Technology and the RAND Corporation, has in the
past been implemented almost exclusively on
large computers such as the IBM-7090. But most
schools and colleges which offer courses in
programing d~ not have such large computers
available; most have only a small computer.

Schools and colleges having only a small
computer are limited therefore to teaching with
algorithmic oriented languages, such as FORTRAN,
ALGOL, and simple symbolic assemblers. No heuris-
tic oriented languages are available. This limits
the experience students of programing can acquire
and largely precludes some stimulating and worth-
while problem areas, such as artificial intelli-
gence.

In deciding to undertake an implementation
to help fill this lack, objectives were given
first attention. First, since the implementation
was to be on a small computer, the prime objective
selected was to provide as many,cells" as pos-
sible (terms with special meaning in IPL-V such
as "cells" are discussed briefly in the Appendix
to this paper). The experience of IPL-V users
even with large computers has been that storage
space is typically at a premium. To be able
therefore to run even a small IPL-V program on
a small computer would require the implementation
to provide as many cells as possible.

The second objective selected was to specify
a common computer configuration. The most widely
used small computer on college campuses at pre-
sent is the IBM-i620 with 20,000 positions of

core storage, card input and output (250 and £25
cards per minute), and indirect addressing, but
with no index registers, no printer, and no
disk file. This is a variable word length com-
puter, whereas all the IPL-V implementations to
date had been made on fixed word length machines.
In order to make a widely useable implementation,
the implementation would have to be kept within
the limits of the commonly found configuration
of the small computer.

The third objective selected was to provide
upward compatibility. A person who had tried
out his iPL-V program on the smail computer
might wish to run it either in the same or in
an e~panded version on some Larger computer. It
was feat that if the user had to make few or no
changes in his source language in Going to the
larger computer, then upward compatibility would
be achieved. This would allow, in other words,
anything which could be run on the proposed im-
plementation to also be runable on an impls_menta-
tion on a larger computer with the same results,
but wou£d not necessarily provide the ability
to run on the small computer implementation any-
thing r~nable on the larger computer implementa-
tions.

The fourth objective selected was to assure
the absence of any major impairment in the im-
plementation. That is, the i:~iplementation should
be essentially complete with no major parts of
the IPL-V language Lacking. It was correctly
anticipated that it would not be possible or
economic to implement all facets of the language
on the small computer, but it was decided to
attempt to implement as much of the iPL-V as
the configuration would make possible.

The fifth objective selected was to provide
a "programer-proof" implamentation. In an aca-
demic environment, beginning and inexperienced
progr&mers are common, and typically make many
programing mistakes. To help such programers
avoid wasting machine time arid their own time,
the decision was made to build in Protection
against and detection of co,non source language
mistakes.

The sixth objective selected was to seek
speed of operation, when all else was equal, as
a desired feature of the implementation. Speed
of operation typically is not a prime considera-
tion when working with a small computer in an
academic environment, but where it was possible
to choose alternative modes of implementation,
the decision was made to favor those modes yield-
ing the faster operating tine, such as using a
"one-pass" approach.

Di.2-1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800257.808895&domain=pdf&date_stamp=1964-01-01

The seventh and last objective was to develop
some experience on whether list processes were
any mere necessary or convenient in implementing
a list processing language than in implementing
an algorithmic language, which is also primarily
a symbol manipulator, such as COBOL. Since a
"one-pass" approach was used in this implementa-
tion, the comparison for fairness should be made
with some other "one-pass" programs such as the
CDC-160~ COBOL compiler.

Nature of the Lmpl~mentatlon

The decision to attempt an implementation
was made in February 1963 and was registered
with the IPL-V secretary at the RAND Corporation.
The RAND Corporation generously provided a list
of the J routines, an annotated listing of the
IBM-7OgO implementation, a more extended version
of the flow diagram for the interpreter than
had appeared in the published manual, and up-
dated copies of the RAND manual describing IPL-V
(I). The work was then begun on the implementa-
tion.

A few months after this, a group at the
Statistical Laboratory of the University of Ore-
gon in Eugene, Oregou, also began an implementa-
tion of IPL-V for a larger (4OK) and not as
widely available configuration of this computer.
Then, in the fall of 1963, the Department of
Psychiatry at the University of Toronto also
began an implementation for the same computer.

The personnel who undertook the here-reported
implementation under the writer's general di-
rection and active contribution, consisted of
undergraduate and graduate students at San Fran-
cisco State College and at the College of San
Mateo. With the exception of the author, none
were at the start professional programers, none
had held progr~ming Jobs for pay, and all had
been recently introduced to the art of progrem-
ing. Those who contributed the most actively to
the implementation have been Mrs. Margaret R.
Buhn, a physicist with an interest in programing;
Mr. Stanley Mazor, who is now a progrs~mer with
Fairchild Instrument Co. ; Mr. Michael Roos, a
graduate student in English with an interest in
programing; and Mr. Larry Selmer, an undergradu-
ate student in engineering; and the author.

All those who worked on the project contri-
buted their efforts on a volunteer basis and
received no pay since the effort was not sup-
ported financially from any source. The group
elected to use the IBM-1620 symbolic programing
language and to meet as a group only when there
were major issues to be discussed or major items
of progress to report.

In their early discussions, the group decided
that some basic decisions had to be made to limit
and to define the character of the implementation
to be made. Among the ideas that were debated
and then discarded were making the cells of vari-
able length (this would have precluded upward

compatibility), working within the computer in
IPL-V source language as closely as possible
(this would have been prodigal with storage in
this small computer), and changing the philosop~
of implementation from that of an interpreter to
that of a compiler (this would have altered part
of the heuristic utility of the language).

The first major decision made by the group
was to attempt a "one-pass" implementation but
to break it into two overlays consisting of a
loader, and an interpreter. The objective in
doing this was to save storage by having in
storage at the time of interpretation, the small-
est size of interpreter program possible and the
largest number of cells possible. In defining
these overlays, the group recognized the need
for two optional overlays, an editor, and a
translator.

The editor overlay was to check for gross
errors in the use of the IPL-V source language,
such as clerical errors in assigning labels,
to analyze the J routines called to check for
their implementation.s~tus~ and tgl correct some
common format errors. The editor overlay was to
accept the source IPL-V and produce a corrected
IPL-V source deck and a set of diagnostics for
the assistance of the programer. The use of the
editor does not make the implementation into a
"two-pass" system because the editor is not an
essential overlay; it can be omitted entirely if
the programer is careful in his use of the source
language and in observing the operating rules
for the implementation. This overlay is input-
output bound in speed and uses about 5000 posi-
tions of storage.

The loader overlay was to translate IPL'V
source language into a machine language form.
The loader overlay, which is by far the longest
and the most complex of the overlays was also
to supply some redundant indicators with the
translated material to increase the speed of
operation of the following interpreter overlay.
These were to flag additionally the P and Q
digits of the IPL-V cell (see Figure I) in order
to mark a cell as regional, local, internal, or
program; and to insert a T indicator digit (not
called for in the source language) to indicate
the regional, local, internal, or program status
of the symbol in the cell. The loader occupies
nearly one-half of the storage available (i. e.,
about 9700 positions) and for source programs
of hess than 95 source statements, is input-
output bound in speed, although the speed is
influenced by the number of r egionals.

The interpreter overlay was to control the
execution of the IPL-V program. The build-ln
trace specified in the IPL-V manual was to be
also provided in the implementation. The in-
terpreter reads in the J routines to be called,
and provides execution of the program. The
maximum number of ceils on the space available
list (H2) possibl e at the start of execution is
866. Each interipretation cycle requires an

DI.2-2

average of 18 milliseconds for basic operations,
plus the time to execute the J routine or other
process called. The shortest of these is less
than half a millisecond, the average excluding
output routines is about 60 milliseconds, except
for the basic J routines which average about 20
milliseconds.

The fourth overlay, the translator, was to
convert back from machine Language into IPL-V
source language. The reason for not incorpora-
ting these features into the interpreter was to
shorten the interpreter and thus provide for more
cells during the interpretation phase. This
means that the output during the interpretation
overlay and the trace output if any is in machine
language, and has to be used as input for the
translator overlay if the user desires to obtain
an IPL-V source language output. This overlay
uses about 5000 positions of storage, and is
input-output board in speed. This overlay is
not essential because the user can read the ma-
chine language output with the aid of the loader-
produced symbol table.

The second major decision that the group made
was to save storage by separating the IPL-V re-
gions and the actual allocation of storage. The
implementations of IPL-V on the large computers
permit the IPL-V programer to reserve areas of
storage. In the present small computer imple-
mentations, the loader overlay loads only those
regions to the extent which are actually used,
and saves storage by floating the storage al-
locations actuaAly made. Since the configura-
tion of the small computer includes no auxiliary
storage, and since the cells are licked, this
can be done with no violence to the IPL-V com-
patibility.

The third major decision made by the group
was to eliminate private termination cells and
to alter the traditional character of the IPL-V
termination cells. Since space was at a premium
and since private termination cells are a&mitted
to be wasteful of storage space, their elimina-
tion appeared desirable although it entailed
some modification of a few J routines.

A true termination cell in the other im-
plementations is a cell with zeros in it, but
this is a prodigal use of storage. To avoid
this, a way was found to additionally mark the
T digit in the cell. Then any handling of such
a marked cell is sensedby the computer as a
list termination indication. Then, those J
routines which can create or detect private
termination cells were altered to return instead
"thecells to the H2 list aedmove the terminal
indicstion up the list.

A fourth major decision made by the group was
to redefine the IPL-V came of a cell. This was
forced upon the group by the variable word
length character of the small computer. In this
implementations a cell has several possible
addresses; the question is which one is to be

selected to serve as the came of the cell. The
group decided that it would yield a faster opera-
ting interpreter to make the name of the cell act
as the address of the lick portion of the ceil.
This decision lead to real economies in certain
commonly executed IPL-V operations, such as pre-
serve and restore.

A fifth major decision made by the group
was to include redundant data in the cells, in
order to buy some faster speed of operation, even
at the expense of Lengthening them beyond the
minimum necessary. This was a decision born
mostly from the specific features of the small
computer used~for example, a comparison cannot
be made on a single character. The redundancy
chosen was not used to displace data traditional-
ly incorporated in the IPL-V cells, and there-
fore involved no loss of compatibility. The
nature of this redundancy was noted above in
describing the loader overlay (the T digit).

A sixth decision made by the group was to
incorporate into the IPL-V cell specific indi-
cations of the status of the cell beyond those
specified in the IPL-V manual. For example,
the implementation provides a notation of the
type of cell, be it regional, local, program,
data term, etc. These specific indications are
again over and beyond those required by the IPLaV
manual but they do not violate compatibility,
and were noted above in describing the loader
overlay (the flag markings).

A seventh decision made by the group was
to provide for continual changes in the form and
length of the J routines. Some of the J routines
are themselves written in IPL-V source language.
Those not thus written must be implemented by
other programing, and those in IPL-Vmay eventual-
lybe also implemented by other progr~mlug. Those
written in IPL-V operate more slowly but occupy
less storage space. As user needs change, some
users may wish to change the J routines used to
gain either speed or storage. To permit users
to exercise this option has required providing
for continued variation in the J routines.

An eighth decision made by the group and
closely related to the previous one was to make
all the J routines automatically relocatable
upon loading~ and to load only those J routines
which actually are to be called by the interpre-
ter. The decision to accept or reject a J routine
is made in the editor overlay and finalized in
the interpreter overlay. This leads to a con-
siderable saving of storage space.

Results of the Implementation

In tee more than a year's time since the
implementation was started, a number of changes
and reworkings have been made of this ~mplementa-
tion of IPL-V. At present, the implementation is
running on a field test basis.

Some comparisons may assist in viewing the

DI.2-3

FIGURE 1. FORMAT OF AN IPL-V CELL

P is one digit
Q is one digit

Symbol is five digits
Link is five digits

T is one digit
$ is one digit

Total is fourteen digits

FIRST ALTERNATIVE
MOVE KEY AND PLACE TO WO AND Wl
PUSH DOWN LIST NAMED IN W9
MOVE KEY INTO HO
INSERT KEY ON LIST NAMED IN W9
PUSH DOWN LIST NAMED IN W?
MOVE PLACE INTO HO
INSERT PLACE ON LIST NAMED IN W9
CLEAN WO AND Wl LISTS

SECOND ALTERNATIVE
MOVE KEY AND PLACE TO WO AND Wl
PUT NAME OF LIST INTO HO
PUT NAME OF FRONT CELL IN HO
GET KEY FROM Wl LIST
INSERT KEY ON LIST
PUT NAME OF LIST INTO HO
PUT NAME OF FRONT CELL IN HO
GET PLACE FROM WO LIST
INSERT PLACE ON LIST
CLEAN WO AND Wl LISTS

1
FIGURE 2o ALTERNATIVE IPL-V SOURCE 1

VERSIONS OF LOADER UNFOUND 1
SYMBOL SAVE OPERATIONS 1

1 NAME PQSYMBL LINK
L1 00J51

41W9
l l W l
21W9
41W9
llWO
21W9
O0J31 0

1
I NAME PQSYMBL LINK

L2 OOJS1
llW9
OOJ60
11Wl
00J63
11W9
OOJ60
11W0
00J63
00J31 0

DESCRIPTION LIST {
Local head cell

Ill b II
Attribute cell~"~

III i II
Value cell (te~al~ "~

Ill I ,,, I-I

MAIN LIST

Regional head cell

I11 [11
Front list cell

ill i 11
List cell

i r

ill , i li

List cell (termlnal~).

ill i ~ I-I
FIGURE 3, FORMAT OF A LIST STRUCTURE IN IPL-V

DI.2-4

results of the implementation atte~mpt. The Uni-
versity of Oregon group which began field test
of its implementation in November, 1963, makes
available a maximum H2 list of 121 cells. This
means that IPL-V problems of larger size can be
run on the present implementation than on the
University of Oregon implementation. In spite of
its being more "programer-proof," the present im-
plementation is also faster, for some of the wore
that must be done in the University of Oregon in-
terpreter phase already has been done in the pre-
sent implementation in the loader or editor over-
lays, at the cost of a lengthened run set-up tim~.
Also, because of its translator overlay, the pre-
sent implementation reduces the s~ount of work
to be performed by the interpreter.

In the present implementations the IPL-V
source language statements are screened twice s
once by the editor overl~y and a second time by
the loader overlay. These editing checks are
more extensive than those in the University of
Oregon implementation. But the additional
pha=oz included in the present implementation
involve more card handling than the University
of Oregon implementation, and the convenience
of IPL-V source language output directly from
the interpreter overlay is lacking from the pre-
sent implementation.

A comparison with the IBM-7090 implementa-
tion is also illuminatory. The accuracy of the
implementation of each of the J routines in the
present implementation has been checked by com-
parisons of traces of the same routines in the
IBM-7090 implementation. Where differences have
been detected s the present implementation has
been changed to conform to the results obtained
with the IBM-7@90 implementation. Of the nearly
200 J routines commonly available with the IBM-
7090 implementation s not all are included in the
present implementation. The J routines omitted
are those requiring magnetic tape units s auxi-
liary storage, or a high speed printer on line.

In the IEM-7090 implementation, the computer
apparently executes in the non-trace mode approx-
imately 55 instructions per average interpre-
tation cycle exclusive of J routine execution.
In the present implementation s the small computer
executes approximately 50 instructions per av~r-
age interpretation cycle, but this includes some
instructions which are required only in the trace
mode. These are executed even though the trace
mode is not specified in order to make a shorter
interpreter at the expense of a longer execution
time. This is clearly an operating inefficiency
but is consistent with the choice of objectives
noted earlier.

A comparison of the present implementation
with the COBOL compiler for the CDC-160~ illumi-
nates the use of list processes in symbol mani-
pulating programs. As an implementation aid s
list processes were found convenient for use in
this implementation only during the loader over-
lay s and there served primarily as compensation
for the lack of a second pass of the IPL-V source

statements. The first pass of a two-pass system
typically is used to create a table of symbol
equivalents. In the loader overlay of the pre-
sent implementation, when a symbol cannot be
found in the symbol table s an entry of the sym-
bol (key) and of the location (place) where its
equivalent is needed is made on a push down list
(IPL-V source equivalents of such an operation
are shown in Figure 2). Then later when the
symbol equivalents are known, the list is suc-
cesslvely popped up and each equivalent deter-
mined from the completed symbol equivalents table
and stored where needed. This proved to be
faster and more economic of storage than establ~h-
ing a "missing equivalent" table.

By contrast, the CDC-160~ COBOL compiler, a
one-pass system s uses no list processes duri~
compilation. To provide for missing symbol
equivalents s a table is set up and stimulated in-
direct (second level) addressing is used. The
closest thing to a list operation is the control
pattern used in generating code for nested IF
statements s but this is done by a table technique
used in a last-in s first-out manner. In the ex-
ecution of a COBOL object program, the CDC-1604
uses a list-like process for maintaining an
inventory of stacked I-O priority requests, and
for controlling the execution of a PERFORM. But
these operations are actually done as a hybrid
between a list process and a table technique.

The present IPL-V implementation is es-
sentially complete for the small computer con-
figuration originally selected. However s many
users of these configurations are acquiring disk
files. This suggests the desirability of pro-
ducing another version of the implementation to
incorporate auxiliary storage operations and to
implement additional J routines that use auxi-
liary storage. Since most users of the disk file
with this small computer have available a monitor
(executive) routine, it would be a convenience
to be able to call from auxiliary storage, the
editor, loader s interpreter s or translator over-
lays as needed.

Appendix on IPL-V

IPL-V is a list processing language that is
usually used in an heuristic manner for seeking
solutions to non-mathematical problems. The lists
are composed of cells each linked to the next dan
on the list (see Figure 3). The first cell on
each list s the head cell s may be given a regional
or local name to identify the list uniquely, and
each list is ended by a terminal cell. Because
of this one-direction-only linkage s deletion of
cells from the end of the list results in the
creation of extra (private) termination cells.

Each cell in an IPL-V list may carry the
nsme of some constant (called a data term in
IPL-V), or the name of some list s or a J routinej
or may carry no name (that is, be empty). Some
lists carry the program to be executed by inter-
pretation; others carry the lists of symbols to
be operated upon. The non-program lists are

DI.2-5

usually list structures. Each of these consists
of a list of cells and one or more associated
description lists. Each description list con-
sists of pairs of cells carrying information
about the characteristics of the basic list.
The program list cells usually name reserved
lists (called H and W lists) to be operated upon,
or J routines to be executed• or routines written
in IPL-V source language to be performed. The
J routines are designed to do such things as to
find symbols on lists to insert and delete sym-
bols on lists• to perform arithmetic operations~
and to create and erase lists.

Two common IPL-V operations are to restore
one list and preserve another. In these opera-
tions, conceptually the top cell on the list to
be restored is removed from the list and the next
cell "popped up" into the top position. The cell
thus freed is then inserted as the new top cell
on the list to be preserved and the other cells
in that list "pushed down." The cell moved has
its contents changed to make it a copy of the
old top cell on the pushed down list.

References

I. Allen Newell, editor, !PL-V Programmer's
Reference Manual Memorandum RM-3739-RC (Santa
Monica, Calif.: RAND Corp., June 1963)• 131 pp.

2. ALlen Newell, editor, Information ProcessinE
Language-V Manual (Englewood Cliffs, N. J.:
Prentice-IIall Inc., 1961), 244 pp.

3. Allen NeweLl and Hugh S. Kelly• editors•
Information Processing Language-V Manual Second
Edition (Engl@wood Cliffs• N. J.: Prentice-Hall,
inc.• 1964), 267 pp.

D1.2-6

