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In certain problems of applied mathematics it is necessary to obtain

numerical solutions of expressions of the form:
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where G is finite, real and continuous on the interval (91, 02), and
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are the Incomplete Elliptic Integrals of the First and Second Kinds, respec-
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tively., @ is defined as the amplitude and k as the modulus. In equation (1),
both ¢ and k are functions of 0 and [Oﬁﬂsg-, Osksl] . This essentially a
special type of double integration problem; the integration of G will be dis-
cussed later.

There are three basic computer methods of evaluating the elliptic
integrals:

1. Table look-up and interpolation
2. BSeries expansion
3. Polynomial approximation

For the first method the clagsic tables of I..egendre1 are available
which give functional values of both ‘integrals, to 9 decimal digits of accuracy,
by one degree increments of the amplitude and the modulus. For a very re-
stricted range of ¢ and k, table look-up with linear interpolation is feasible.
For any amount of generality, a rather large table must be stored and non-
linear interpolation used. This can become quite costly in both space and
time in computers with 2000 (or fewer} word capacity.

There are several series expansions available for the second method?" 3
Two serious faults exist; the series in general converge rather slowly, and
they involve high order terms of both k and some f(#}, which necessitates
rather complex and extensive programming. It is probable that this method

might be feasible on a large scale computer,
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Apart from the disadvantages mentioned, neither of the above methods
can be utilized in the integration of G. It would be desirable to find a meth-
od which also could be applied to the entire problem. This suggests the use
of polynomials.

Of the several polynomial approaches available, only Gaussian inte-
gration possesses the unique advantage that for integration on the interval
(-1, 1), if the n abscissae chosen are the zeroces of the Legendre polynomial
Pn(x), the difference between the approximating polynomial and the function

is a minimum for the corresponding n ordinates. Thus
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contains 2n arbitrary constants. For all functions of degree £ Zn-1, the
error is zero. An exact expression for the error involves evaluating the
2nth derivative of f[x);4 this appears to be somewhat heroic, Tables of the
zeroes (xi) and the corresponding weight coefficients (ai) are found in ref-
erence (4}, to 15 decimal digits for n=1 to 16,

A transformation on the interval (0, 1} is desirable for computer applica-

tions, hence
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where
xj +1 aj
xj = - Aj = 7

Tables 1 and 2 give the transformed roots and coefficients for n=6 to ten

decimal digits.

Table 1 Table 2
Xl = 0.0337652429 X4 = 0,6193095930 Al = Ab = 0,0856622462
XZ = 0.1693953068 X5 = 0.8306046932 AZ = A.5 = 0, 1803807865
X3 = 0, 3806904070 X6 = 0.9662347571 A3 = A4 =0,2339569673
Applying equation (Z) to the elliptic integrals gives
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It is seen from equations (3) that if the radicals for each Xj are com-
puted and stored, the remaining evaluation of either elliptic integral in-
volves only a summation of n quotients or n products. This tends to ap-
preciably reduce both computing time and programming. However, a com-
promise is necessary. F(0,k} has no upper bound and in general is of higher
degree (polynomial-wise} than E(@#,k). Computation of both from the same
polynomial will give greater accuracy for E(f,k}). Therefore, it is neces-
sary to investigate only how the accuracy of F{#, k) varies, In the partic-
ular problem which gave rise to this investigation, it was found that for
n=6 (11th degree polynomial, Tables 1 and 2} six decimal digit accuracy is
obtained over @ for [05 k<. 5] . For [ 5<ksg. 7] , it is necessary to
divide the range of ¢ into two equal parts, i.e., two iterations of the poly-
nomial are required for at least’the same accuracy. Similarly, for
[. T<kg. 9] , @ is divided into three equal intervals. The range
[. 9< k<. 99] was not investigated; a large number of iterations would
probably be necessary. (If only E(¢,k}) is desired, the same polynomial
with only one iteration gives an error of 2 in the 8th decimal place over §
for [OS ks 1].) For greater accuracy, either increase n, decrease the
initial range of k, or both. Excluding double precision routines, n=10 is
the largest practicable polynomial to use in this problem with machines of
10 decimal digit word length., All of the foregoing assumes that the neces-
sary accuracy is available in the sine and square root subroutines used.

The elliptic integral program uses only 115 words of storage? exclu-
sive of the subroutines. An expression for the approximate time (t} in

seconds to compute both integrals is

t = [.6 +.35n]i,*

where n{ % 10} is the polynomial taken and i the number of iterations. This
Presupposes minimurn access programming and subroutines with a fixed
number of terms® The simplicify of programming makes the method easily
adaptable to any internally stored program machine and, with some restric-

tions, to card-programmed calculators,
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Now to consider the integration of G, Using the same equation {2)
as for the elliptic integrals, equation (1) may be written as
ng m n
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where Fi and Ei are the same as equations {3) except that # and k are now
functions of the Xi. For m=n, the same polynomial is used, further con-
serving total storage space. A separate program, of course, is written
for the integration of G.

It is suggested that a graph of G be drawn if its approximate behavior
is not known. The range (9, 02) can always be divided into sub-intervals

if G is quite irregular.
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