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The equation 

= o (1) 

in the unit strip 0~x~l, t > O  represents the transient motion of a finite beam 

according to the Euler-Bernoulli theory. Approximate solutions can be obtained by 

eoverimg @hd domaim by a rectangular network with spacing Ax and At amd marching 

out a finite difference approx4~tion to (1). An explicit recurrence formula for 

this process was givenby Collatz ~i~ a~plicit formula ~s given by CrandAll ~2~. 

Both of these formulas had truncation errors proportional to (dx) 2. In this note 

we consider a more general class of zecurrence formulas which contain those 

previously considered but also contain formulas which have truncation errors pro- 

portional to (Ax) A and ( 4 x) 6. 

Descr ip t ion . ,  o f  t h e  . formulaR.  L e t  t h e  d i m e n s i o n s  o f  t h e  n e t w o r k  be A x  = h = l ~  

and ~t = r~ 2. Let the value of ~ at the point Pj,k with coordinates (j ~x,kAt) 

be denoted by ~J,k" We then consider approximations to (i) which make use of the 

15 values in the rectangle whose corners are Pj-2,k-l, PJ+2,k-l, Pj+2,k*l, and 

PJ-2pk~l" In the explicit recurrence formula of Collatz ~i~ the fourth x-derivative 

in (i) is approximated along the line k and the second jp-derivative is approximated 

along the line J. The implicit formula ~2] is similar except that the average of 

approximations to the fourth derivative along the lines k + i and k - i is used. 

Let us now consider an average of approximations to the x-derivative in which 

the k + I and k - I lines are weighted with the factor @ and the line k is weighted 

with (i - 2@). A t the same time we use an average of approximations to the t- 

derivative in which the lines J + 1 and j - i are weighted with the factor ~ and 

the line J is weighted with i - 2~. In this way we are led to the following 

a p p r o z J J . a t i o n  t o  (i) 

,k + ( I  ) t ,k = 0  (2) 
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where the partial difference operators are defined as usual;e.g., 

~4x (/JJ,k = ~ - 2 , k  -4~-l,k +6~,k-J'~+l,k÷~2,k 

~ (/Jj,k = ~,k-t -2L//,k + t~'j,k+i 
(3) 

I f  in  (2) we set @ = @ = 0 we get the formula of [ l ] a n d  i f  We set @ = 1/2, 

~= 0 we get the fOrmUla of[2]. All formulas are implicit except the case 

0=~ =0. 

• XX~X. We assume t h a t  t h e  s o l u t i o n  to (1) has  cont inuous d e r i v a t i v e s  o f  

~ ] l  o rders  up to  8 i n  x and 4 i n  t .  Le t  the  d e r i v a t i v e  ~ m + n ~ / a x U ~ t n  eva lua ted  

a t  P J , k  be denoted by (re, n ) .  I n  t h i s  n o t a t i o n  the  gavern ing  equa t ion  (1) i s  

simply 

(4,0) = -(0,2) (4) 

By repeated differentiation of (4) we have the following identities. 

(6,0) = -(2,2) 
(8#0) = - ( 4 , 2 )  = (0,4) 

(5) 
If thermeighboring values such as J+2,k which appear in (2) are expressed in 

terms of the Taylor ~ e series centered at Pj,k it is a straightforward matter to 

obtain 

(i+ Q ~ _ ~ _ +  

( ax)~ 
= + 

+ O(h 6) 



by using (5) to simplify. This shows that (2) is ordinarily an approximation to 

(i) with O(h 2) truncation error but that when ~-- 1/6 the truncation error is 

O(h 4). Ifp moreover 

t h e  t r u n c a t i o n  e r r o r  i s  O(h 6) • 

r ~ ( l  - 1 2 Q )  = ('7) 

~_~.~4~X. If we assume a solution to (2) of the form 

~ ' j , k = S ~ - ~ "  oos 2 (8) 

and if for all n satisfying 0 4n<M we obtain a real value for ~n 

formula (2) is stable (See discussion in [2~ ). Solving fer ~ we find 

where 4 ( I  - cos ) 

- - co !. 

the recurrence 

(9) 

(lO) 

The stability limit occurs when  the argument of the arc ~ becomes unity and this 

occurs first for the largest ~n" In the limit as M-~oo we see from (i0) that 

( R n) * Z6(l - 4(3)-i- Setting the arc sire eq~ to ~ty for (R.) gives 

the s~ity limit for large M. max 

(~) 

The combinations of r and @ for stability and O(h 6) truncation error are shown in 

Fig. X for the case ~-- 1/6 which gives O(h 4) truncation error. 

~olution ~__~. The discretization error in the solution of (2) as compared with (i) 

depends essentially on how faithfully the lower space modes and their effective 

frequencies are modelled. This can be studied by returning to (8) and shifting the 

emphasis from large n to small n. If the beam is hinged at its ends the boundary 

conditions ~= ~/~x2 = 0 can be approx4meted by ~o,k = ~M,k =0 and ~-l,k = -~i,k 



~M+l,k =-~M-l,k ~d (8) is an exact solution. From (9) we find 

+ 2..Z,M 4 
(12) 

whereas the corresponding solution to (i) is 

(~/ = s i n  n~x COS~ n t (13) 

with~n:n2~ 2. Hote that the finite difference space modes are identical with the 

continuous modes. Wore that the conditions for agreement of ~nwith~n for large 

M are the same as those obtained for the truncation error. Even for small M there is 

considerable advantage in using optimum values for ~ and @. The following table 

compares the frequencies of the first three modes for the case M = 8, r = 1/3 (this 

guarantees stability for mll of the formulas). 

Finite Difference 

Exact S o l u t i o n  

Approximations 

9.8696 9.7445 9.8673 9.8696 

39.4784 37.5501 39.3278 39.4769 

88.8264 79.5850 87.1365 88.7905 

The first finite difference formula is explicit. The second has 0(h 4) truncation 

error and the third O(h 6) truncation error. 

i L. Collatz, Zur Stabilltat des Dlfferenzenverfahrens bel der Stabschwin~m~s- 
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