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The equation
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in the unit strip 0<x <1, t>D represents the transient motion of a2 finite beam
according to the Euler-Bernoulli theory. Approximate solutions can be obtained by
covering thé domain by & rectangular network with spacing Ax and At and marching

out & finite difference approximetion to (1). An explicit recurrence forwula for
this process was given by Collatz [17] a.nﬂ.’mplicit formula was given by Crandall[ 2].
Both of these formules had truncetion errors proportionsl to (Ax)z. In this note
we consider e more general class of recurrence formulas which contein those

(1)

previously considered but also contain formulas which have truncation errors pro-
portionsl to (Ax)l' and (Ax)6

Description of the formulas. Let the dimensions of the network be Ax =h = 1/¥
and At = r/uz Let the value of ¢/ at the point PJ k With coordinates (j 4x,k At)
be denoted by l/)j k+ We then consider approximations to (1) which meke use of the
15 values in the rectangle whose corners are Pj -2,k-11 Pj+2,k—l’ Pj+2 k+1» and
Pj_2,ke+1" In the explicit recurrence formula of Collats [,1] the fourth x-derivative

in (1) is epproximated zlong the line E and the second t-derivative is epproximeted
along the line j. The implicit formula [2] is similer except that the average of
approximetions to the fourth derivative along the lines k + 1 and k - 1 is used.

Let us now consider an averesge of approximations to the x-derivative in which

the k + 1 and k - 1 lines are weighted with the fector @ and the line k is weighted
with (1 - 20). 4 t the same time we use an averege of approximations to the t-
derivative in which the lines j + 1 and j - 1 are weighted with the factor (3 and
the 1line j 1s weighted with I - 2@. In this wey we are led to the following
approximation to (1)
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where the partisl difference operators are defined as usual; e.g.,

4
8 x sbj,k = %-2,1: ~4Yjax * 6%# "j*‘*%ﬂ,k*%z,k

2 (3)
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If in (2) we set 0 = 3 = 0 we get the formula of[l]a.ndii'we set 0 = 1/2,
(=0 we got the formula of [2]. A1l formulas are implicit except the case
6= =o.

Truncetion error. We assume that the solution to (1) haes continuous derivatives of
ell orders up to 8 in x and 4 in t. Let the derivative O ®'2¢// /3 YMJtM evaluated
at Pj i be demoted by _(n,n). In this notation the geverning equation (1) is
simply

(4,0) = =(0,2) (4)

By repeated differentiestion of (4) we have the following identities.

(6,0) = —(2,2)
(8,0) = —(4,2) = (0,4)
If thermeighboring values such as 42,k thich asppear in (2) are expressed in

terms of the Tsylor's serles centered &t P_-] ,k it is e stralghtforward matter to
obtain

(1+ 0&2) Si%,k . (1 +(5§;2) Si([}i.k_

(Ax)4 ( At)2

(5)

i

= [(4,0) + (o,z)_] +

h2(6,0) [% - (3 ] (6)
+ 14(8,0) [%5 A - (1-120)]

+ 0(h6)



by using (5) to simplify. This shows that (2) is ordinarily anr approximation to
(1) with D(hz) truncation error but that when @ = 1/6 the truncation error is
o( hl') . If, moreover

re (1 - 120) = (7)
the truncation error is O(h6).

Stepility. If we assume a solution to (2) of the form

. rﬂﬁ
‘pj,k = sin-g%l COB "2 (8)

end if for all n setisfying 0 <n<M we obtain a real value for..Q'n the recurrence
formula (2) is stable (See discussion in [2]). Solving for 'ﬂ'n we find

a2 R
Q= ot {400 (9)
1+0 AT :
where 41 - cos ,ni_![) 2

A n- _ (10)
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The stability limit occurs when the argument of the arc &in becomes unity and this
occurs first for the largest ln' In the 1limit as M -»00 we see from (10) that ‘
(Ay) > 16(1 - 43)"L. BSetting the arc sin equal to unity for ( An)  gives
the ét:%{lity limit for large M. max

A 2 ()

The. combinations of r and O for stability and 0(h6) truncation error are shown in
Fig. I for the case (3= 1/6 which gives O(hl*) truncation error.

Solution error. The discretization error in the solution of (2) as compared with (1)
depende essentially on how faithfully the lower space modes and their effective

frequencies are modelled. This can be studied by returning to (8) and shifting the
emphagle from large n to smell n. If the beam is hinged at its ends the boundary

conditions }0= 32W312 = Q can be approximeted by Sﬂo,k: ¢][,1; =0 and ‘p.l,k = - i,k



’bll-l-l,k = '¢I—1,k end (8) is an exact solution. From (9) we find

2.2 2.2 1 hyd T
‘Q'n - P {1 + ;_21[._ (B =D + 12‘-4-;4—- [rz(l - 120) -515] + 0(;%—) } (12)

whereas the corresponding solution to (1) is

('b = gin ntrx cos Wy (13)

withw = n*m2. Note that the finite difference space modes are identical with the
continucus modes. Note that the conditions for agreement of wn with‘ﬂ-n for large
M are the same as those obtained for the truncation error. Even for small M there is
considerable adventage in using optimum values for @ and @. The following table
compares the frequencies of the first three modes for the case M = 8, r = 1/3 (this
guarantees stability for &1l of the formulas).

Finite Difference Approximations

Exact Solution =0, 0=0 8= é, °=% B=, o212

Gy 9.8696 9.7445 9.8673 9.8696
) 39.4784 37.5501 39.3278 39.4769
Wy 88.8264 79.5850 87.1365 88.7905

The first finite difference formula is explicit. The second has O(b%#) truncation
error and the third 0(h6) truncetion error,
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