
COMPIL ING ROUTINES
By

Richard K. Rid~way
Eckert-Mauchly Division of Remington Rand Inc., Philadelphia

Since the advent of automatic
computation, programmers hsve devoted
much of their time and energy to look-
ing up, adjusting, and transcribing
material previously programmed. This
has proved a most inefficient method
of program preparetlon. Within the
experience of the programming staff of
Eckert-Mmuchly, such manipulation and
transcription has been a major source
of programming errors.

In an attempt to lighten the
load on the programmer, and to elim-
inate such errors, members of the
Computational Analysis Laboratory
have devised programs called "com-
pilers". A compiler looks up sub-
routines, adjusts them, and assembles
them, as a complete program. The
fruitfulness of the compl]er method
of program preparation is now clearly
evident. One immediate result is a
considerable saving in time in the
preparation of programs for the
solution of mathematical problems,
At present, compilers are capable of
handling scientific problems, and in
the near future, they will be avail-
able to treat commercial problems.

Data has been collected on the
time required for the solution of
simple problems. For example, it was
required that a table be prepared of
the values of the function
y= e-XZsin(x/2), for the range IxJ<l,
and the tabular interval ~x= U.Ol.

The program for solving this
problem was prepared on UNIVAC by a
compiler some three months ago. The
component operations were timed. The
results permit a comparison between
the compiler method, and the conven-
tional method of program preparation.

By the conventional method,
I) The programmer analyzed the prob-

lem in twenty minutes.
2) Fcur hundred and eighty minutes

were required to prepare and
write the program.

3) Checking the program required
240 man-mlnutes.

4) Forty-five minutes were required
to transcribe the program on
tape.

5) Twenty minutes were devoted to
typing out the tape.

6) Proofreading the tape required
forty minutes.

7) Sixteen minutes were needed to
correct the tape on UNIVAC.

8) Fifteen minutes were spent check-
ing the program on UNIVAC.

9) Four minutes were required to
solve the problem on UNIVAC.

Thus, 740 programmer-mlnutes, 3~

Univac-minutes, and 105 auxiliary-
manpower-and-equipment-minutes,
were required to program and solve
the problem.

For the compiler methods
i) The programmer analyzed the

problem and prepared an informa-
tion sheet. Time required,
twenty minutes.

2) The information sheet was trans-
cribed on tepe in ten minutes.

3) The information on the tape was
printed in five minutes.

4) Five minutes were required for
proofreading.

5) UNIVAC compiled the program in
one and one half minutes.

(The output of the compiler was a
tape to be used as the instructiont
or program, tape for solving the
problem.)
6) The problem was solved on UNIVAC

with a time expenditure of
five minutes.

Thus, twenty programmer-minutes, eight
and one-half UNIVAC-minutes, and twenty
auxiliary-manpower-and-equipment-
minutes were required to prepare and
solvG the problem.

Mathematically, the problem is
trivial and the use of UNIVAC for its
solution is analogous to killing a fly
with a sledge hammer. Considered as
illustrative of time factors, however,
the problem yields information.

Minutes Conventional Compiler Batio

Programmer 740 20 37:1

Auxiliary man-
power and 105 20 5.3:1
equipment

UNIVAC 35 8.5 4.1,1

Thus, while more UNIVAC time may be
required for the numerical solution of
a problem as programmed by UNIVAC, more
UNIVAC time, ~ to$@, is consumed by
the conventional method. This remains
true until the entire problem including
its self-contalned repetitions is to be
repeated, in this case at least eight-
een times.

If the total preparation time is
consldered, the problem~ust be repeat-
ed some 800 times before the conven-
tional programming method overtakes
the compiler method. In this case~
the compiler used was the "antique" 9
or A-O, the first to be constructed
and the most inefficient. Later com-
pilers not only "squeeze" the coding t
but also minimize the latency tine.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800259.808980&domain=pdf&date_stamp=1952-06-01

If the staff of a computer in-
stallation expects to process a number
of different problems, a set of com-
piling routines, and of service and
diagnostic routines, is essential to
the efficient and economical opera-
tion of the computer.

The first diagram represents the
method of problem solution convention-
ally employed. In phase one, the pro-
grammer analyzes the problem, breaking
it down into arithmetic steps which
are reduced to the instruction code of
the computer. The programmer refers
to tables and formulas during the
analysis, and to the instruction code
during the programming. In phase
two, the program is fed to the com-
puter, and instructs the computer to
operate upon the "input data" to
produce the desired results.

If a compiler is used, there
are three phases to the problem
solution, Fig. 2. In phase one,
the programmer analyzes the pro-
blem, and breaks it down into
steps, each of which can be per-
formed by a subroutine. The pro-
grammer writes each step as an
item of information with the aid
of a catalogue. In phase two,
this information is fed to the com-
puter, which,operating under the
direction of the compiler, looks up
subroutines in the library and
assembles them, properly translated,
into a program. In phase three,
the program is fed to the computer
along with the input data, and the
program instructs the computer to
operate upon the input data to
produce the desired results.

The basic element of the com-
piled program is the subroutine. Fig.
3 showsan operational diagram of a
subroutine. The input consists of
arguments and the output of results;
control may be received from one or
more subroutines and transferred to
one or more other subroutines.

A subroutine must be coded so
that it requires a minimum both of
memory space and of computer time.
Hence, it should be expressed in
minimum latency coding. Ideally, the
kernel of a subroutine should not be
required to compute on quantities
which exceed computer unity in
magnitude. If this is the case, the
kernel can be used in subroutines
designed for floating decimal and
other special calculations, as well
as in subroutines designed for fixed
or stated decimal calculstlons. Thus,
the subroutine must be a neat, effic-
ient, and compact little package of
potential computation. The kernel of
the subroutine should be even nearer,
more compact, and more efficient.

Subroutines are stored on tape
in the form shown in Fig. ~. Particular
attention should be paid to the section
at the beginning of the subroutine,
labeled "information abcut the sub-
routine". The first word of the
information is the "call number" iden-
tifying the subroutine. The next
information locates the position of

the arguments in the subroutine. The
next words designate the position of
the results which are to be trans-
ferred out of the subroutine. Finally,
transfers of control are specified.
These indicate the destinations of the
exits from the subroutines.

After the subroutine has been
adjusted and sent t o the program by
A-O, it is in the form shown in Fig. 5.
Sections are reserved for instructions
which will transfer arguments from
working storage into the subroutine
and results from the subroutine into
working storage. In more efficient
compilers, these transfers, together
with much of the temporary storage
within the subroutine have been elim-
inated. However, working storage
still constitutes a common pool from
which quantities are drawn by the sub-
routines and into which quantities are
placed by the subroutines. This form
was defined arbitrarily for subroutine
descriptions and can be changed pro-
vided the necessary elements are in-
cluded. However, such a change
entails a new compiler.

There are certain logical inter-
connections among subroutines in a
complete program. These are control
transfers and are not simple to present.
The operations in a given problem are
assigned numbers in an increasing
sequence. If it is desired to trans-
fer from operation #7 to operation #5
(Fig. 5), and subroutine #7 is being
processed, then subroutine #5 has
already been processed by the compiler.
Hence, the entrance of #5 can be found
listed ~n the record the compiler
maintains of its entries. From the
record information, a transfer of
control from #7 to #5 can be gener-
ated and placed in #7.

If, however, subroutlre#~ is
being processed (Fig. 6) and a trans-
fer of control from operation #5 to
operation #7 is indicated, A-O, the
antique compiler, does not know where
the entrace of #7 is going to be
since #7 has not yet been processed.
Control is transferred from #5 to a
temporary storage location. The
compiler records the fact that a
transfer to #7 is required. When
#7 is processed, a transfer is
generated and placed in the temporary
storage which will transfer control to
#7.

Thus it may be seen that the
essential information required to make
use of compiling routines and a library
of subroutines for UNIVAC, or any large
scale, self-checking, automatic comput-
er with a large secondary storage must
includes

i) definition of the operation, call
number of the subroutine;

2) specification of the input,
arguments;

3) destination of the output, results;
and

~) statement of logical sequence,
controls.

In mathematics, a "function" can
be defined as "a law which transforms

one set into another set. If the
first set be given, the second set is
determined". The functional relation
between the two sets is not, in general,
symmetrical. It is possible to spec-
ify a function and to specify a
resulting set, and to be unable to
derive the first set from this data.
If a function is written: y = F(x) ,
three things are specified,

I) a set, x, which is acted upon by
the law,

2) y, a set which is the result of
action by the law on i)

3) a law, F ().

Controls ma~ also be inserted: i.e.
y = F(x), x=<l if x2> i, stop. '

The information form used by a
compiler contains all four elements:
arguments, results, a law, and
controls. Hence it follows that, a
compiler can deal with operations that
fall under the definition previously
given. Thus, the compiler manipulates
functions in symbolic form rather than
numerical data. The implications of
this line of thought are not complete-
ly apprehended at present. It does
seem possible to make a compiler that
would deal with problems in a multi-
valued propositional calculus.

Also noteworthy, is the fact
that compilers can apply linear
operators to information. Thus, new
information can be generated which
specifies the symbolic result of
operating upon the old information.
For example, one compiler has been
constructed which will replace the
information specifying a function by
information specifying the function
and its derivative. This can be
extended to the application of
"infinite series" of linear operators
to the information-functions. For
example; if the solution is desired
of the differential equation,
y'#y = P(x) , where P is a polynomial,
it can be found by this means:

y'ly = (nfl)y
So y = (i/D)-ip(x)=
(I-D,~D2-D3,tD 4)P (x) .

A point which should be mentioned
briefly, is that by using the ability
of UNIVAC to write large masses of
instructions in a short time it is
possible to attain an appreciable
reduction in the time required for
the solution of certain classes of
problems. If it is desired to re-
peatedly sweep a two- or three-
dimensional mesh, performing a set
of operations at every point, it is
conventional practice to write the
instructions once, then increase
these instructions to refer to the
next point, and again act on the
same set of instructions. If the
operations are at all complicated, a
disproportionately large amount of
time may be consumed in altering the
instructions. Time can be saved by
using UNIVAC to generate the instruc-
tions for a suitably large portion of
the mesh, or the entire mesh, then
transferring the data and the
generated instructions to and from
secondary storage as required.
Compilers providing this service
are particularly suited to problems
involving relaxation methods, auto-
correlation, and vector algebra.

In conclusion, if many problems
other than a few base-load problems
are to be solved, compilers have a
distinct advantage over the conven-
tional method of programming. They
open, therefore, a large field of
effort, barely scratched by the crude
compilers Just described.

For those entering this field, a
reading of Dr. Wilkes' book on pro-
gramming for an automatic computer is
essential. I wish to express deep
indebtedness to Dr. Grace Murray Hopper
for her ideas on the "education of a
computer". I also wish to express my
appreciation to the programming and
operational staffs of Eckert-Mauchly
for the help I have received from them.

PROGRAMMER

1
PROBLEM ~ BRAIN

T
FORMULAS

TABLES
CODE

[__.____

PH. #1

, PH. # 2
P R O G R A M

I , [INPUT
DATA u.,v.o]

T
I STANDARD
KNOWLEDGE I

Fig. at-CONVENTIONAL METHOD

PH. #1 AT M HEMATICIAN

T

PH. -/t2

I COMPILING
ROUTINE
TYPE A

UNIVAC

i T
I' SUBROUTINES

J

i,
INPUT
DATA

" PROGRAM i
PH. ~3

H NIVAC ~ RESULTS

T
STANDARD

KNOWLEDGE

Fig. #2-COMPILER METHOD

I CONTROL

ARGUMENTS !.~.JSUBROUTINE ~ RESULTS
x,n 17 u=xn u

I
CONSTANTS

Fig. #'3- SUBROUTINE

INFORMATION ABOUT
SUBROUTINE

ENTRANCE LINE

EXITS

STORAGE FOR
ARGUMENTS

STORAGE FOR
RESULTS

SUBROUTINE
ACTION
LINES

Fig. # 4 - SUBROUTINE
IN STORAGE

ARGUMENT TRANSFERS

ENTRANCE LINE

EXITS

STORAGE FOR
ARGUMENTS

STORAGE FOR
RESULTS

SUBROUTINE
ACTION
LINES

RESULT TRANSFERS

Fig. # 5 - ADJUSTED
SUBROUTINE

ENTRANCE LINE

EXITS

SUBROUTINE #5

ENTRANCE LINE

EXITS

SUBROUTINE #6

ENTRANCE LINE

EXITS

SUBROUTINE #7

Fig. #6

ENTRANCE LINE

EXITS

SUBROUTINE #5

ENTRANCE LINE

EXITS

SUBROUTINE #6

ENTRANCE LINE

EXITS

SUBROUTINE #7

Fig. #7

