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Since the advent of automatic 
computation, programmers hsve devoted 
much of their time and energy to look- 
ing up, adjusting, and transcribing 
material previously programmed. This 
has proved a most inefficient method 
of program preparetlon. Within the 
experience of the programming staff of 
Eckert-Mmuchly, such manipulation and 
transcription has been a major source 
of programming errors. 

In an attempt to lighten the 
load on the programmer, and to elim- 
inate such errors, members of the 
Computational Analysis Laboratory 
have devised programs called "com- 
pilers". A compiler looks up sub- 
routines, adjusts them, and assembles 
them, as a complete program. The 
fruitfulness of the compl]er method 
of program preparation is now clearly 
evident. One immediate result is a 
considerable saving in time in the 
preparation of programs for the 
solution of mathematical problems, 
At present, compilers are capable of 
handling scientific problems, and in 
the near future, they will be avail- 
able to treat commercial problems. 

Data has been collected on the 
time required for the solution of 
simple problems. For example, it was 
required that a table be prepared of 
the values of the function 
y= e-XZsin(x/2), for the range IxJ<l, 
and the tabular interval ~x= U.Ol. 

The program for solving this 
problem was prepared on UNIVAC by a 
compiler some three months ago. The 
component operations were timed. The 
results permit a comparison between 
the compiler method, and the conven- 
tional method of program preparation. 

By the conventional method, 
I) The programmer analyzed the prob- 

lem in twenty minutes. 
2) Fcur hundred and eighty minutes 

were required to prepare and 
write the program. 

3) Checking the program required 
240 man-mlnutes. 

4) Forty-five minutes were required 
to transcribe the program on 
tape. 

5) Twenty minutes were devoted to 
typing out the tape. 

6) Proofreading the tape required 
forty minutes. 

7) Sixteen minutes were needed to 
correct the tape on UNIVAC. 

8) Fifteen minutes were spent check- 
ing the program on UNIVAC. 

9) Four minutes were required to 
solve the problem on UNIVAC. 

Thus, 740 programmer-mlnutes, 3~ 

Univac-minutes, and 105 auxiliary- 
manpower-and-equipment-minutes, 
were required to program and solve 
the problem. 

For the compiler methods 
i) The programmer analyzed the 

problem and prepared an informa- 
tion sheet. Time required, 
twenty minutes. 

2) The information sheet was trans- 
cribed on tepe in ten minutes. 

3) The information on the tape was 
printed in five minutes. 

4) Five minutes were required for 
proofreading. 

5) UNIVAC compiled the program in 
one and one half minutes. 

(The output of the compiler was a 
tape to be used as the instructiont 
or program, tape for solving the 
problem.) 
6) The problem was solved on UNIVAC 

with a time expenditure of 
five minutes. 

Thus, twenty programmer-minutes, eight 
and one-half UNIVAC-minutes, and twenty 
auxiliary-manpower-and-equipment- 
minutes were required to prepare and 
solvG the problem. 

Mathematically, the problem is 
trivial and the use of UNIVAC for its 
solution is analogous to killing a fly 
with a sledge hammer. Considered as 
illustrative of time factors, however, 
the problem yields information. 

Minutes Conventional Compiler Batio 

Programmer 740 20 37:1 

Auxiliary man- 
power and 105 20 5.3:1 
equipment 

UNIVAC 35 8.5 4.1,1 

Thus, while more UNIVAC time may be 
required for the numerical solution of 
a problem as programmed by UNIVAC, more 
UNIVAC time, ~ to$@, is consumed by 
the conventional method. This remains 
true until the entire problem including 
its self-contalned repetitions is to be 
repeated, in this case at least eight- 
een times. 

If the total preparation time is 
consldered, the problem~ust be repeat- 
ed some 800 times before the conven- 
tional programming method overtakes 
the compiler method. In this case~ 
the compiler used was the "antique" 9 
or A-O, the first to be constructed 
and the most inefficient. Later com- 
pilers not only "squeeze" the coding t 
but also minimize the latency tine. 
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If the staff of a computer in- 
stallation expects to process a number 
of different problems, a set of com- 
piling routines, and of service and 
diagnostic routines, is essential to 
the efficient and economical opera- 
tion of the computer. 

The first diagram represents the 
method of problem solution convention- 
ally employed. In phase one, the pro- 
grammer analyzes the problem, breaking 
it down into arithmetic steps which 
are reduced to the instruction code of 
the computer. The programmer refers 
to tables and formulas during the 
analysis, and to the instruction code 
during the programming. In phase 
two, the program is fed to the com- 
puter, and instructs the computer to 
operate upon the "input data" to 
produce the desired results. 

If a compiler is used, there 
are three phases to the problem 
solution, Fig. 2. In phase one, 
the programmer analyzes the pro- 
blem, and breaks it down into 
steps, each of which can be per- 
formed by a subroutine. The pro- 
grammer writes each step as an 
item of information with the aid 
of a catalogue. In phase two, 
this information is fed to the com- 
puter, which,operating under the 
direction of the compiler, looks up 
subroutines in the library and 
assembles them, properly translated, 
into a program. In phase three, 
the program is fed to the computer 
along with the input data, and the 
program instructs the computer to 
operate upon the input data to 
produce the desired results. 

The basic element of the com- 
piled program is the subroutine. Fig. 
3 showsan operational diagram of a 
subroutine. The input consists of 
arguments and the output of results; 
control may be received from one or 
more subroutines and transferred to 
one or more other subroutines. 

A subroutine must be coded so 
that it requires a minimum both of 
memory space and of computer time. 
Hence, it should be expressed in 
minimum latency coding. Ideally, the 
kernel of a subroutine should not be 
required to compute on quantities 
which exceed computer unity in 
magnitude. If this is the case, the 
kernel can be used in subroutines 
designed for floating decimal and 
other special calculations, as well 
as in subroutines designed for fixed 
or stated decimal calculstlons. Thus, 
the subroutine must be a neat, effic- 
ient, and compact little package of 
potential computation. The kernel of 
the subroutine should be even nearer, 
more compact, and more efficient. 

Subroutines are stored on tape 
in the form shown in Fig. ~. Particular 
attention should be paid to the section 
at the beginning of the subroutine, 
labeled "information abcut the sub- 
routine". The first word of the 
information is the "call number" iden- 
tifying the subroutine. The next 
information locates the position of 

the arguments in the subroutine. The 
next words designate the position of 
the results which are to be trans- 
ferred out of the subroutine. Finally, 
transfers of control are specified. 
These indicate the destinations of the 
exits from the subroutines. 

After the subroutine has been 
adjusted and sent t o  the program by 
A-O, it is in the form shown in Fig. 5. 
Sections are reserved for instructions 
which will transfer arguments from 
working storage into the subroutine 
and results from the subroutine into 
working storage. In more efficient 
compilers, these transfers, together 
with much of the temporary storage 
within the subroutine have been elim- 
inated. However, working storage 
still constitutes a common pool from 
which quantities are drawn by the sub- 
routines and into which quantities are 
placed by the subroutines. This form 
was defined arbitrarily for subroutine 
descriptions and can be changed pro- 
vided the necessary elements are in- 
cluded. However, such a change 
entails a new compiler. 

There are certain logical inter- 
connections among subroutines in a 
complete program. These are control 
transfers and are not simple to present. 
The operations in a given problem are 
assigned numbers in an increasing 
sequence. If it is desired to trans- 
fer from operation #7 to operation #5 
(Fig. 5), and subroutine #7 is being 
processed, then subroutine #5 has 
already been processed by the compiler. 
Hence, the entrance of #5 can be found 
listed ~n the record the compiler 
maintains of its entries. From the 
record information, a transfer of 
control from #7 to #5 can be gener- 
ated and placed in #7. 

If, however, subroutlre#~ is 
being processed (Fig. 6) and a trans- 
fer of control from operation #5 to 
operation #7 is indicated, A-O, the 
antique compiler, does not know where 
the entrace of #7 is going to be 
since #7 has not yet been processed. 
Control is transferred from #5 to a 
temporary storage location. The 
compiler records the fact that a 
transfer to #7 is required. When 
#7 is processed, a transfer is 
generated and placed in the temporary 
storage which will transfer control to 
#7. 

Thus it may be seen that the 
essential information required to make 
use of compiling routines and a library 
of subroutines for UNIVAC, or any large 
scale, self-checking, automatic comput- 
er with a large secondary storage must 
includes 

i) definition of the operation, call 
number of the subroutine; 

2) specification of the input, 
arguments; 

3) destination of the output, results; 
and 

~) statement of logical sequence, 
controls. 

In mathematics, a "function" can 
be defined as "a law which transforms 



one set into another set. If the 
first set be given, the second set is 
determined". The functional relation 
between the two sets is not, in general, 
symmetrical. It is possible to spec- 
ify a function and to specify a 
resulting set, and to be unable to 
derive the first set from this data. 
If a function is written: y = F(x) , 
three things are specified, 

I) a set, x, which is acted upon by 
the law, 

2) y, a set which is the result of 
action by the law on i) 

3) a law, F (). 

Controls ma~ also be inserted: i.e. 
y = F(x), x=<l if x2> i, stop. ' 

The information form used by a 
compiler contains all four elements: 
arguments, results, a law, and 
controls. Hence it follows that, a 
compiler can deal with operations that 
fall under the definition previously 
given. Thus, the compiler manipulates 
functions in symbolic form rather than 
numerical data. The implications of 
this line of thought are not complete- 
ly apprehended at present. It does 
seem possible to make a compiler that 
would deal with problems in a multi- 
valued propositional calculus. 

Also noteworthy, is the fact 
that compilers can apply linear 
operators to information. Thus, new 
information can be generated which 
specifies the symbolic result of 
operating upon the old information. 
For example, one compiler has been 
constructed which will replace the 
information specifying a function by 
information specifying the function 
and its derivative. This can be 
extended to the application of 
"infinite series" of linear operators 
to the information-functions. For 
example; if the solution is desired 
of the differential equation, 
y'#y = P(x) , where P is a polynomial, 
it can be found by this means: 

y'ly = (nfl)y 
So y = (i/D)-ip(x)= 
(I-D,~D2-D3,tD 4 ...... )P (x) . 

A point which should be mentioned 
briefly, is that by using the ability 
of UNIVAC to write large masses of 
instructions in a short time it is 
possible to attain an appreciable 
reduction in the time required for 
the solution of certain classes of 
problems. If it is desired to re- 
peatedly sweep a two- or three- 
dimensional mesh, performing a set 
of operations at every point, it is 
conventional practice to write the 
instructions once, then increase 
these instructions to refer to the 
next point, and again act on the 
same set of instructions. If the 
operations are at all complicated, a 
disproportionately large amount of 
time may be consumed in altering the 
instructions. Time can be saved by 
using UNIVAC to generate the instruc- 
tions for a suitably large portion of 
the mesh, or the entire mesh, then 
transferring the data and the 
generated instructions to and from 
secondary storage as required. 
Compilers providing this service 
are particularly suited to problems 
involving relaxation methods, auto- 
correlation, and vector algebra. 

In conclusion, if many problems 
other than a few base-load problems 
are to be solved, compilers have a 
distinct advantage over the conven- 
tional method of programming. They 
open, therefore, a large field of 
effort, barely scratched by the crude 
compilers Just described. 

For those entering this field, a 
reading of Dr. Wilkes' book on pro- 
gramming for an automatic computer is 
essential. I wish to express deep 
indebtedness to Dr. Grace Murray Hopper 
for her ideas on the "education of a 
computer". I also wish to express my 
appreciation to the programming and 
operational staffs of Eckert-Mauchly 
for the help I have received from them. 



PROGRAMMER 

1 
PROBLEM ~ BRAIN 

T 
FORMULAS 

TABLES 
CODE 

[__.____ 

PH. #1 

, PH. # 2  
P R O G R A M  

I , [ INPUT 
DATA u.,v.o ] 

T 
I STANDARD 
KNOWLEDGE I 

Fig. at-CONVENTIONAL METHOD 

PH. #1 AT M HEMATICIAN 

T 

PH. -/t2 

I COMPILING 
ROUTINE 
TYPE A 

UNIVAC 

i T 
I' SUBROUTINES 

J 

i, 
INPUT 
DATA 

" PROGRAM i 
PH. ~3 

H NIVAC ~ RESULTS 

T 
STANDARD 

KNOWLEDGE 

Fig. #2-COMPILER METHOD 

I CONTROL 

ARGUMENTS !.~.JSUBROUTINE ~ RESULTS 
x,n 17 u=xn u 

I 
CONSTANTS 

Fig. #'3- SUBROUTINE 



INFORMATION ABOUT 
SUBROUTINE 

ENTRANCE LINE 

EXITS 

STORAGE FOR 
ARGUMENTS 

STORAGE FOR 
RESULTS 

SUBROUTINE 
ACTION 
LINES 

Fig. # 4 -  SUBROUTINE 
IN STORAGE 

ARGUMENT TRANSFERS 

ENTRANCE LINE 

EXITS 

STORAGE FOR 
ARGUMENTS 

STORAGE FOR 
RESULTS 

SUBROUTINE 
ACTION 
LINES 

RESULT TRANSFERS 

Fig. # 5 -  ADJUSTED 
SUBROUTINE 

ENTRANCE LINE 

EXITS 

SUBROUTINE #5 

ENTRANCE LINE 

EXITS 

SUBROUTINE #6 

ENTRANCE LINE 

EXITS 

SUBROUTINE #7 

Fig. #6 

ENTRANCE LINE 

EXITS 

SUBROUTINE #5 

ENTRANCE LINE 

EXITS 

SUBROUTINE #6  

ENTRANCE LINE 

EXITS 

SUBROUTINE #7 

Fig. #7 


