COMPILING ROUTINES

, By
Check for
Updates

Richard K. Ridgway
Eckert-Mauchly Division of Remington Rand Inc., Philadelphia

Since the advent of automatic
computation, programmers have devoted
much of thelr time and energy to look-
ing up, adjusting, and transcribing
material previously programmed. This
has proved a most inefficient method
of program prepareticn. Within the
experience of the programming staff of
Eckert-Mauchly, such manipulation and
transeription has been a major source
of prograrming errors.

In an attempt to lighten the

load on the programmer, and to elime
inate such errcrs, members of the
Computational Analysis Laboratory
have devised programs called "com-
pilers”. A compller lcoks up sube
routines, adjusts them, and assembles
them, as a complete program. The
fruitfulness of the compller method
of program preparation is now eclearly
evident. One immedlete result 1s &
considerable saving in time in the
preparation of programs for the
solution of mathematical problems,
At present, compilers are capable of
handling scientific prodblems, and in
the near future, they will be avail-
able to treat commerciaml problems.

Data has been collected on the
time required for the solution of
simple problems. For example, 1t was
required that a table be prepared of
the values of the funetion
¥= e-X<sin(x/2), for the range |xj<{1,
and the tabular interval Ax=0,01,

The program for solving this
problem was prepared on UNIVAC by a
compller some three months ago. The
component operaticns were timed. The
results permit a comparison between
the compiler method, and the conven-
ticnal method of program preparation.

By the conventicnal method:

1) The programmer analyzed the prob-
lem in twenty minutes,

2) Fcur hundred and eighty minutes
were required to prepare and
write the program.

3) Checking the program reguired

" 240 man-minutes,

)

Forty-.five minutes were required
to transeribe the program on
tape.

5) fTwenty minutes were devoted to
typing out the tape.

6é) Proofreading the tape required
forty minutes.

7) Sixteen minutes were needed to
correct the tape on UNIVAC.

8) Fifteen minutes were spent check-
ing the program on UNIVAC.

¢) Fcur minutes were required to
solve the problem on UNIVAC.

Thus, 740 programmer-minutes, 35

Univac-minutes, and 105 auxiliary-
manpower-and-equlipment-minutes,
were required to program and solve
the problem.

For the compiler methodi

1) The programmer analyzed the
problem and prepsred an informa-
tion sheet. Time required,
twenty minutes,

2) The information sheet was trans-
eribed on tezpe in ten minutes.

3} The information on the tape was
printed in five minutes,

4) Five minutes were required for
proofreading.

5) TUNIVAC complled the program in
one and one half minutes,

{The output of the compller was &

tape to be used as the instruction,

or program, tape for solving the

problem.)

6) The problem was solved on UNIVAC
with a time expenditure of
five minutes.

Thus, twenty programmer-minutes, eight
and one-half UNIVAC-minutes, and twenty
auxiliary-manpower-and-equipment-
minutes were required to prepare and
solve the problem.

Mathematically, the problem is
trivial and the use of UNIVAC for its
golution is analogous to killing a fly
with a sledge hammer., Considered as
illustrative of time factors, however,
the problem ylelds infermation.

Minutes Conventional Compiler Ratio

Programmer 740 20 37:1
Auxilizry man-

power and 105 20 5.3:1
equipment

UNIVAC 35 8.5 4.1:1

Thus, while more UNIVAC time may be
required for the numerical solution of
a problem as programmed by UNIVAC, more
UNIVAC time, in toto, is consumed by
the conventional method. This remains
true until the entire problem 1ncluding
its self-contained repetitions is to be
repegted, in this case at least eight-
een times,

If the total preparation time is
considered, the problem sust be repeat-
ed some 800 times before the conven-
tionel programming method overtakes
the compller method. In this case,
the compiler used was the "antique”,
or A-0, the first to be constructed
and the most inefficlent. Later com-
pilers not only "squeeze" the coding,
but also minimize the latency tine.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800259.808980&domain=pdf&date_stamp=1952-06-01

If the staff of a computer in-
stallation expects to process a number
of different problems, a set of com-
piling routines, and of service and
diagnostic routines, 1s essential to
the efflcient and economical opera-
tion of the ccmputer.

The first dlagram represents the
method of problem scolution convention-
ally employed., In phase ome, the pro-
grammer analyzes the problem, breaking
it down Intc arithmetic steps which
are reduced to the instruction code of
the computer., The programmer refers
to tables and formulas during the
analysis, and to the instruction code
during the programming. In phase
two, the program 1s fed to the com-
puter, and instructs the computer to
operate upon the "input data" to
produce the desired results,

If a compller is used, there
are three phases to the problem
solution, Fig. 2. In phase one,
the preogrammer analyzes the pro=-
blem, and breaks it down into
steps, each of which can be per-
formed by a subroutine, The pro-
grammer writes each step as an
item of information with the ald
of a catalegue. In phase two,
this information 1s fed to the com-
puter, which,operating under the
direction of the cempiler, looks up
subroutines in the library and
assembles them, properly translated,
into a program. In phase three,
the program 1s fed to the computer
along with the Input data, and the
program instructs the computer to
operate upon the Input data to
produce the desired results.

The basle element of the com-
plled program is the subrecutine. Fig.
3 shows ‘an operational disgram of a
subroutine. The input consists of
arguments and the output of results;
control may be received from cne or
more subroutines and transferred to
one or more other subroutines,

A subrcutine must be coded so
that 1t requires a minimum both of
memory space and of computer time.
Henece, it should be expressed in
minimum latency coding. Ideally, the
kernel] of & subroutlne should no% be
required to compute cn quantities
which exceed computer unity in
magnitude. If this is the case, the
kernel can be used in subroutines
designed for floating decimal and
other special calculations, as well
as in subroutines designed for fixed
or stated decimal ealculations, Thas,
the subroutine must be & neat, effic-
ient, and compact 1little package of
petential computation. The kernel of
the subroutine should be even neater,
more compact, and more efficlent.

Subrcutines are stored on tape
in the form shown in Fig. 4. Particular
attention should be paid to the seetion
at the beginning of the subroutine,
labeled "information abcut the sub-
routine®, The first word of the
information is the “call number" iden-
tifying the subroutine. The next
information locates the position of

the arguments in the subroutine, The
next words designate the position of
the results which are to be trans-
ferred out of the subroutine., Finally,
transfers of contrecl are specified.
These indicate the destinations of the
exits from the subrocutines.

After the subroutine has been
adjusted and sent to the program by
A-Q, 1t 1s in the form shown in Fig. 5.
Secéions are reserved for instructions
which will transfer arguments from
working storage into the subroutine
and results from the subroutine into
working storage. In more efficient
compilers, these transfers, together
with much of the temporary storage
within the subroutine have been elim-
inated. However, working storage
still constitutes a common pool from
which quantities are drawn by the sub-
routines and intc which guantities are
placed by the subroutines. This form
was defined arbitrarily for subroutine
descriptions and can be changed pro-
vided the necessary elements are in-
cluded. However, such a change
entalls a new compiler.

There are certain loglical inter-
connections among subroutines in a
complete program. These are control
transfers and sre not simple to present,
The operations in a given problem are
assigned numbers in an increasing
sequence., If it 1s desired to trans-
fer from operation #7 to operation #5
(Fig. 5), and subroutine #7 is being
precessed, then subroutine #5 has
already been processed by the ccmpller,
Hence, the entrance of #5 can be found
listed in the record the compiler
maintains of its entries. From the
recerd information, a transfer of
contrel from #7 to #5 can be gener-
ated and placed in #7.

If, however, subroutine#5 is
being processed (Fig. 6) and a trans-
fer of control from operation #5 to
cperation #7 is indicated, A-0, the
antigue compiler, does not know where
the entrace of #7 is going to be
since #7 has not yet been prccessed.
Contrcl is transferred frcom #5 to a
temporary storage location. The
compiler records the fact that a
transfer to #7 is required. When
#7 is processed, a transfer is
generated and placed in the temporary
storage which wlll transfer control to

Thus it may be seen that the
essential information required to make
use of complling rcutines and a library
of subroutines for UNIVAC, or any large
scale, self-checking, automatic comput-
er with a large secondary storage must
includes

1) definition of the operation, csll
nmunber of the subroutine;
2) specification of the input,

arguments;

3) destinatlion of the output, results;
and

4) statement of logical sequence,
controls,

In mathematics, & "function" can
be deflined as "a law which transforms

one set into another set, If the
first set be given, the second set is
determined”, The functional relation
between the two sets 1s not, in general,
symmetrical. It 1s possible to spec-
ify a function and to specify a
resulting set, and to be unable to
derive the first set from this data.

If a function is written: y = F(x) ,
three things are specified,

1) =a set, x, which is acted upon by
the law,

2) vy, a set which 1s the result of
action by the law on 1)

3) alaw, F ().

Controls may also be ipserted; i.e.,
y = F(x), x2¢1 if x2» 1, stop.

The information form used by a
compiler contains all four elements:
arguments, results, a law, and
controls. Hence it follows that, a
compller can deal with operations that
fall under the definition previously
glven. Thus, the compiler manipulates
functions in symbolic form rather than
numerical data. The 1mplications of
this line of thcught are not complete-
ly apprehended at present. It does
seem possible to make a compiler that
would deal with problems in a multi-
valued propositional caleulus,

Also noteworthy, is the fact
that compllers can apply linear
operators to information. Thus, new
informati on can bte generated whieh
specifies the symbolie result of
operating upen the old informaticn.
For example, one compiler has been
econatracted which will replace the
information specifying a function by
information specifying the funetion
and 1ts derivative, This can be
extended to the application of
"infinite series" of linear operators
to the information-functions., For
example; 1if the solution is desired
of the differential equation,
y'Ay=P(x) , where P is a polynomial,
it can be found by this means:

y'Ly = (DAY)y
So y = (1/M)-1p(x) =
(1-DAD2-D3DM-. ...,)P (%) .

A point which should be mentioned
briefly, is that by using the ability
of UNIVAC to write largae masses of
instructions in a short time it is
possible to attain an appreciable
reduction in the time required for
the solution of certain classes of
problems., If it is desired to re-
peatedly sweep a two- or three-
dimensional mesh, performing a set
of operations at every point, it is
conventicnal practice to write the
instructions once, then increase
these instructions to refer to the
next point, and again act on the
same set of instructions. Ir the
operations are at all complicated, a
disproportionately large amount of
time may be consumed in altering the
instructions, Time can be saved by
using UNIVAC to generate the instruc-
tions for a suitably large portion of
the mesh, or the entire mesh, then
transferring the data and the
generated instructions to and from
secondary storage as required.
Compilers providing this service
are particularly suited to problems
involving relaxation methods, auto-
corrglation, and vector algebra.

In conclusion, i1f many problems
other than a few base-load problems
are to be solved, compilers have a
distinet advantage over the conven-
tional method of programming. They
cpen, therefore, a large field of
effort, barely scratched by the crude
compilers Just described.

For those entering this field, a
reading of Dr. Wilkes' book on pro-
gramming for an sutomatic computer is
escential. I wish to express deep
indebtedness to Dr. Grace Murray Hopper
for her ideas on the "education of a
computer!, I alsc wish to express my
appreciation to the programming and
operaticnal staffs of Eckert-Mauchly
for the help I have received from them.

' PROBLEM

|

FORMULAS

TABLES
CODE

MATHEMATICIAN

Fig. #1-CONVENTIONAL METHOD

COMPILING
RCUTINE
TYPE A

I PROBLEM H BRAIN]—Fl
1

[%3
B
o
Q
(=4
=5
2z
m
w

STANDARD
KNOWLEDGE

e ——

COMPUTER | |
INFORMATIONl UNIVAC I I PROGRAM

i..f44.4
\
|

N

I

Fig. #2- COMPILER METHOD

CONTROL

—

UNIVAC

STANDARD
KNOWLEDGE

RESULTS

ARGUMENTS

x,n

| _|SUBROUTINE | | RESULTS
usy" u
STANDARD
CONSTANTS |

Fig. #3-SUBROUTINE

INFORMATION ABOUT
SUBROYUTINE

ENTRANCE LINE

EXITS

STORAGE FOR
ARGUMENTS

STORAGE FOR
RESULTS

SUBROUTINE
AGTION
LINES

(ARGUMENT TRANSFERS

ENTRANCE LINE

EXITS

STORAGE FOR
ARGUMENTS

STORAGE FOR
RESULTS

SUBROUTINE
ACTION
LINES

Fig. #4—SUBROUTINE
IN STORAGE

ENTRANCE LINE H

EXITS

SUBROUTINE #5

ENTRANCE LINE

EXITS

SUBRQUTINE #6

ENTRANCE LINE

EXITS

SUBROUTINE #7

Fig. #8

RESULT TRANSFERS

Fig. #5— ADJUSTED
SUBROUT!NE

ENTRANCE LINE

EXITS

SUBROUTINE #5

ENTRANCE LINE

EXITS

SUBROUTINE #6

ENTRANCE LINE

EXITS

SUBRCUTINE #7

Fig. #*7

