of subroutines permits the coder to think
in terms of functions that are complex
combinations of the elementary arithmetic
and logical operations of the machine,
This i8 in effect a different structure
than that permitted by the basic machine.
The trauslation problem in this case is
the replacement of the coder's expression
for the complex cperation by the equivalent
structure in the machine terminology. A
system is now under development at the
Naval Research Laboratory to perform this
translation for a single-address computer,
the NAREC, For purely arithmetic operations
this system will permit the coder to specify
in each instruction, written using a re-
dundant dictionary, up to six arguments
for a subroutine, designation of the sub-
routine, where to store the results of the
subroutine and an arbitrary transfer of
contrcl if necessary. The translation
process uses only an 1BM sorter and re-
producer and takes place in two steps:

(1) translation of the structure, and

(2) translation of the words. In the
first step the deck containing the in-
structions is sorted by subroutines and
the number of occuirences of each sub-
routine is counted, Standard sets of
cards are prepared for each subroutine,
These contain the complete coded pattern
of the subroutines with constapts in re-

dundant form and with blanks left for

the positions occupied by the arguments.
In addition, the subroutine decks contain
punches that control the read feed of the
reproducer and the timing of selectors
that punch the arguments into the
appropriate positions in the subroutine
deck, The instruction deck is placed in
the read feed, the subroutine decks in the
punch feed. As each instruction card
passes under the reading brushes the in-
formation is punched into the first card
of the subroutine deck. This inforamation
is gang-punched back into successive cards
of the subroutine deck while the read feed
is held, Selesctors then transfer the
symbols from the gang-punched cclumns

into appropriate positions on the sub-
routine cards. When a subroutine is
completed the next instruction card is
read. This process results in & deck
containing a set of instructions in terms
of the elementary cperations of the com-~
puter but with symbols still from a re-
dundant dictionary. The second step of
word translation is performed as described
praviously,

The computer itself can obviously per-
form the processes describsd above, Only
a careful analysis can determine whether
or not any advantage would be gained by
using the computer for this purpose in-
stead of the elementary machinery now in

use.

COMPUTER AIDS TO CODE CHECKING

By

Ira C. Diehm
National Bureau of Standards, Washington

When a complex routine 1s tried on
a computer for the first time, it is seldom
found to be free from errcr. The trend
toward automatic performance of the clerical
Parts of the coding process should reduce
the number of coding errors. This mechan-
lzation of occding ie the subjlect of several

19

papers at thies conference. Nevertheless,
a slgnificant amount of valuable ocamputer
time will continue to be devoted to the
gearch for ocoding errora.

Careful proofreading and clerical
checking are obvious but important

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800259.808984&domain=pdf&date_stamp=1952-06-01

methods of eliminating errore before going
to the computer. On the other hand, our
machines are intended to help to eliminate
suoh drudgeries, ec that we are interested
in how the machines themsslves can be

used to analyze coding errors.

In the first place, moat computers
have convenient bullt-in featuresa which
are ugeful to this end. The term "break-
point* is uaed to mean a speclal programmed
halt which may be overridden by a manual
awiteh., Many machines have breakpoint
provisions, meane for determining the
contenta of particular memory locations,
and means for determining what instruction
is beling executed. In addition to thease,
SEAC, the Natlonal Bureau of Standards
Esetern Automatic computer, for example,
has a device called the "automcnitor',
which will automatioally record each
instruction and its result. Thie device
was not originally on the machine. OCne
of the rfirst diagnostic routlnes we used
was a routine of the interpretive type
which recorded each instruction and its
repult, while the routine was apparently
being executed in the normal manner. The
engineers noted that this could be done
sutomatically with a very few englneering
changes, so they added the "automonitor.”
The device can alsc be used to reocord
the instruction and result only on pre-
determined inetructions, in fact it ie
most valuable when used in thie way.

Such bullt-in features are cconvenlent,
but in their asbeence one can program
equivalent meaaures or better ones, on
any adequate general purpose computer,

It is these auxilisry routines, and the
philosophy embodied in them, that
chiefly determine the efficliency with
which the machine 1s used in finding
coding errors.

The important principles to be followed,
I believe, are that the procedures to be
used at tﬁe computer should be planned in
advance and mechanized as much as posslble.
There should be no attempt at human
analyais of srrors while at the computer.
It le my feeling that the computer ghould
not be operated by the programmer, rfor he
will not follow a predetermined plan, but
will make on-the-spot improvisationa which
are usuelly regretted later, and will leave
the machine idle while he apeculatea onh
posalble causes of errors. The operatlon ie
beat done by another person, preferably
one who devotes moat of hia time to computer
operation and i1s, therefore, completely
familiar with the controls and has an
intuitive feeling, gained from experience,
of poassible machine errors.

Cperations which can be done auto-
matically by auxiliary routinea should be
done automatically rather than by manual
operation of the controls; first, because
operator errors are very common, and second
because the compubter could do hundreds of
operations while a human being 1s reaching
for & ewitch. Those operatione which mmset
be done manuslly should be specified
ocimpletely by means of written etep-by-
step instrueticne tc the operator.

In fact these principles should apply
to ocomputer programming and operation in
goneral, and not just to code checking.

For moat efficlent use of both ocomputer

20

time and preparation time, the sesslion at
the computer should be short. On SEAQ,

a few hours each week are devoted excluslive-
1y to cede checking perlocds of roughly

ten minutes each, ons routine after another
beilng put on the computer for testing.

One can usually get enough information

to isolate one coding error in & ten

minute period.

Sometimes, however, one wisghes to
get 1nformation about as many different
errora as possible in a single run at the
computer. A code checking system suit-
able for this purpose has been designed
by J. H. Wegeteln of the NES Computatlon
Laboratory. In thia method a sequence
of cella called a "control tank" is set
adlde, and at each of several selected
key points in the routine, the control
ia sent to different cells in this fank.
Curing normal operation each of thesge
cells will elmply refer control to the
next part of the routine, without break-
ing the ocntinuity of the caloulation,
but during code checking apecial orders
which print selected quantities are put
into these cells. If these quantities
are Iincorrect, the computer is halted,
and previously prepared correct values
are inserted before continuing.

Quite a few auxiliary routines have
been tried out on warious machines., There
are a great many poasibllities, but all
the ideas invclved ars simple and would
cccur to nearly anyone who devotea a
good deal of time %o the uss of a machine.
The trick is to find useful comblnations
of idess.

Some simples routines which have turned
out to be used on SEAC are:
1l. A routine which maskes 1t easy to
read out any specified sequence of
cells.
2« & routine which automatically inserts
or removes breakpolinta in specifled
locations.

A routine which tranaefers the contenta
of the memory to magnetic wire or

tape. This 1a used to avold repetition
of correct computations while correct=
ing later errors in a routine. It is
aleo useful in bridging interruptions
in normal operation, and may be used,
periodically, =s a precaution against
computer aerrors.

3-

4. A routine which compsres the inform-
ation on the input medium with the
information 1n the memory, and reads
out the addresses and contents of
cella where dlascrepancles occcur,.

This routine has sometimea shown up
computer errorsas well. The pro-
grammers for the Whirlwind have alsc
noted that such a routine was valuable,

Several more involved routines have
been useful in finding well hidden
coding errere. These lnclude:

1. An interprstive routine which provides
a complete history of a specified
cell. Each time an inetruction
affects that cell, the address of

the inatruction and ita result are
read out. Thils routine is usually
applied to a ldcation where an

incorrect quantity 1s known to
appear, to a cell whose sontents

have changed for an undetsrmined
resson, or to an instruction contain-
ing variable addresses; but also

hae inoldental uses, such as looking
&t guccegslve terme of a aserlea
without altering the coding.

2. An interpretive routine which determines

the path which the control has taken
through another routine. At each
compariagon order, thie routine reads
out the addrese of that order, and
the addreas from which the next
order will be taken., This routine
gerves mach the same purpocse as the
EDSAC routine which reads out the
operation aymbol of each instructilon
exeocuted.

3. A routine which determinea the total
affeot, on the high speed memory,
of each of several ohosen sactione of
the routine baing tested. Chesk
pointa in thie latter routine are
piocked by the programmer, and apeci-
I'isd to the computer., The effect of
the operation is that the computer
executes one section of the routine
being tssted, then reads out the
addresses and contents of memory
loocations which have been altered
by that seotion. Then it executes
ancther section and resds out the
changes 1t has made, and so on. The
computer accomplishes this hy first
dupliecating the memory contents on
a mggnetic tape and replaocing the
instructions at cheok points by
instruotions which will transfer
sontrol to the auxiliary rotitine.
Arrangement 1s made, of course,
for the execution of the replaced
instruotions at the proper time.
Then the first section of the maln
routine 1s entered, not in the
interpretive manner, but dlreoctly.
Wken a cheack point is reached, the
information in the memory and on
the magnetic tape are compared, and
the addresses and new contents of
locations whioh have been changed
are read out. Then the present
contents of the memory are duplicated

on magnetic tapes and control
returns to the routine being tosted
until snother check point ias reached,

Effeotively, this auxiliary
routine usesg only the rirst 8 memory
locatione, conventionally reaarved,
on SEAQ, for the initial read-in
instructions. Aoctually 1t temporarlly
useg other parte of the memory by
first transferring their contenta
$o magnetlo tapess and later restoring
then.

What one tries to achisve in design-
ing such auxiliary routines is to program
the machine to select the pertinent in-
formation rather than to read out large
quantites of data which muast be searched
through by a programmer.

I wish to aoknowledge the coniri-
butions of C.J. Bwift and J.H. Wegateln
of the NBE2 Computation Laboratory %o
the ideas presented here.

Note on ‘Computer Aids to Code Checking'
by I.C.. Diehm, N.B.S.

Programmers of the Eckert-Mauchly
Division are using a routine that has
proved helpful in detecting one class of
programming errors -~ errors in the
address portionof instructions, Further-
more, this routine helpa to prevent the
insertion of new errors during the pro-
ceas of correcting old ones.

The ‘codecheck’ routine examines
a program and locates every instruction
referring to each lacation, for example,
537. The references are printed together
with their line numbers for easy identi-
fication. Thus, one list contains every
line of coding which can possibly affect
location 537. Codecheck performs this
operaticon for every location from 000
through 999, In generel, less time on
the computer is required than for atriel
run of the program being tested.

B, Hasbrouek "
Eckert-Mauchly Divisien
of Remington Rand

INPUT SCALING AND OUTPUT SCALING FOR
A BINARY CALCULATOR

By

E. F. Codd and H. L, Herrick
International Business Machine Corp., New York

Input Scaling

Suppose 1) the input for a problem which is to
be solved on & binary calculator is given in deci-
mal form; 2) the programmer desires to speci-
fy in his program the scale factors to be applied
to intermediate results to keep these results

within the capacity of the registers of the calcula-
tor; 3) the scale factors to be applied are powers

of two (this allows advantage to be taken of the

21

shifting operations which may be built into the
calculator).

The following questions may now be asked.
1) Can preliminary scaling of the decimal input
(either by hand or on an auxiliary decimal cal-
culator) be avoided? 2) I the binary calculator
can be programmed to carry out some equiv-
alent form of scaling, how closely does the con-
verted and scaled input approximate to the

