
of subroutines permits the coder to think

in terms of functions that are complex

combinations of the elementary arithmetic

and logical operations of the machine.

This is in effect a different structure

than that permitted by the basic machine.

The translation problem in this case is

the replacement of the coder's expression

f o r t h e c o m p l e x o p e r a t i o n by t h e e q u i v a l e n t

s t r u c t u r e i n t h e m a c h i n e t e r m i n o l o g y . A

s y s t e m i s now u n d e r d e v e l o p m e n t a t t h e

N a v a l R e s e a r c h L a b o r a t o r y t o p e r f o r m t h i s

t r a n s l a t i o n f o r a s i n g l e - a d d r e s s c o m p u t e r ,

t h e NAREC. F o r p u r e l y a r i t h m e t i c o p e r a t i o n s

t h i s s y s t e m w i l l p e r m i t t h e c o d e r t o s p e c i f y

i n e a c h i n s t r u c t i o n , w r i t t e n u s i n g a r e -

d u n d a n t d i c t i o n a r y , up t o s i x a r g u m e n t s

f o r a s u b r o u t i n e , d e s i g n a t i o n o f t h e s u b -

r o u t i n e , w h e r e t o s t o r e t h e r e s u l t s o f t h e

s u b r o u t i n e a n d a n a r b i t r a r y t r a n s f e r o f

c o n t r o l i f n e c e s s a r y . The t r a n s l a t i o n

p r o c e s s u s e s o n l y a n IBM s o r t e r a n d r e -

p r o d u c e r a n d t a k e s p l a c e i n two s t e p s :

(1) t r a n s l a t i o n o f t h e s t r u c t u r e , a n d

(2) t r a n s l a t i o n o f t h e w o r d s . I n t h e

f i r s t s t e p t h e d e c k c o n t a i n i n g t h e i n -

s t r u c t i o n s i s s o r t e d by s u b r o u t i n e s a n d

t h e n u m b e r o f o c c u r r e n c e s o f e a c h s u b -

r o u t i n e i s c o u n t e d . S t a n d a r d s e t s o f

c a r d s a r e p r e p a r e d f o r e a c h s u b r o u t i n e .

T h e s e c o n t a i n t h e c o m p l e t e c o d e d p a t t e r n

o f t h e s u b r o u t i n e s w i t h c o n s t a n t s i n r e -

d u n d a n t f o r m a n d w i t h b l a n k s l e f t f o r

t h e p o s i t i o n s o c c u p i e d by t h e a r g u m e n t s .

I n a d d i t i o n , t h e s u b r o u t i n e d e c k s c o n t a i n

p u n c h e s t h a t c o n t r o l t h e r e a d f e e d o f t h e

r e p r o d u c e r a n d t h e t i m i n g o f s e l e c t o r s

t h a t p u n c h t h e a r g u m e n t s i n t o t h e

a p p r o p r i a t e p o s i t i o n s i n t h e s u b r o u t i n e

d e c k . The i n s t r u c t i o n d e c k i s p l a c e d i n

t h e r e a d f e e d , t h e s u b r o u t i n e d e c k s i n t h e

punch feed. As each instruction card

passes under the reading brushes the in-

formation is punched i n t o the first card

of the subroutine deck. This information

is gang-punched hack into successive cards

of the subroutine deck while the read feed

is held. Selectors then transfer the

symbols from the gang-punched columns

into appropriate positions on the sub-

routine cards. When a subroutine is

c o m p l e t e d t h e n e x t i n s t r u c t i o n card i s

read. This process results in a deck

containing a set of instructions in terms

of the elementary operations of the com-

puter but with symbols still from a re-

dundant d i c t i o n a r y . The s e c o n d s t e p o f

w ord t r a n s l a t l o n i s p e r f o r m e d a s d e s c r i b e d

p r e v i o u s l y .

The c o m p u t e r i t s e l f c a n o b v i o u s l y p e r -

f o r m t h e p r o c e s s e s d e s c r i b e d a b o v e . O n l y

a c a r e f u l a n a l y s i s c a n d e t e r m i n e w h e t h e r

o r n o t a n y a d v a n t a g e w o u l d be g a i n e d by

u s i n g t h e c o m p u t e r f o r t h i s p u r p o s e i n -

s t e a d o f t h e e l e m e n t a r y m a c h i n e r y now i n

u s e .

COMPUTER AIDS TO CODE CHECKING
By

I r a C. D i e h m
N a t i o n a l B u r e a u of S t a n d a r d s , W a s h i n g t o n

When a complex routine is tried on
a computer for the first time, it is seldom
found to be free from error. The trend
toward automatic performance of the clerical
parts of the coding process should reduce
the number of coding errors. This mechan-
ization of coding is the subject of several

papers at this conference. Nevertheless,
a significant a m o u n t of valuable computer
time will continue to be devoted to the
search for oodlng e~cors.

Careful proofreading and clerical
checking are obvious but important

19

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800259.808984&domain=pdf&date_stamp=1952-06-01

methods of eliminating errors before going
to the computer. On the other hand, our
machines are intended to help to eliminate
such drudgeries, so that we are interested
in how the machines themselves can be
used to analyze coding errors.

In the first place, most computers
have convenient built-ln features which
are useful to this end. The term 'break-
point' is used to mean a special programmed
halt which may be overridden by a manual
switch. Many machines have breakpoint
provisions, means for determining the
contents of particular memory locations,
and means for determining what instruction
is being executed. In addition to these,
SEAC, t h e National Bureau o f S t a n d a r d s
Eastern Automatic computer, for example,
has a device called the 'automonitor',
which will automatically r e c o r d each
instruction and its result. This device
was not originally on the machine. One
of the first diagnostic routines we used
was a routine of the interpretive type
which recorded each instruction and its
result, while the routine was apparently
being executed in the normal manner. The
engineers noted that this could be done
automatically with a very few engineering
changes, so they added the 'automonitor. ~
The d e v i c e c a n a l s o b e u s e d t o r e c o r d
t h e instruction a n d r e s u l t o n l y on pre-
determined instructions, in fact it is
most valuable when used in this way.

Such built-in features are convenient,
but in their absence one can program
equivalent measures or better ones, on
any adequate general purpose computer.
It is these auxiliary routines, and the
philosophy embodied in them, that
chiefly determine the efficiency with
which the machine is used in finding
coding errors.

The important principles to be followed,
I believe, are that the procedures to be
used at the computer should be planned in
advance and mechanized as much as poselble.
T h e r e s h o u l d b e n o a t t e m p t a t h u m a n
analysis of errors while at the computer.
It is my feeling that the computer should
not be operated by the programmer, for he
will not follow a predetermined plan, but
Will make on-the-spot improvisations which
are usually regretted later, and will leave
the machine Idle while he speculates on
p o s s i b l e c a u s e s o f e r r o r s . The o p e r a t i o n i s
best done by another person, preferably
o n e who d e v o t e e m o s t of his t i m e to c o m p u t e r
operation and is, therefore, completely
familiar with the controls and has an
intuitive feeling, gained from experience,
of possible machine errors.

O p e r a t i o n s which c a n b e d o n e a u t o -
matioally by auxiliary routines should be
done automatically rather than by manual
o p e r a t i o n o f t h e c o n t r o l s ; f i r s t , b e c a u s e
o p e r a t o r e r r o r s a r e v e r y common, a n d s e c o n d
b e c a u s e t h e c o m p u t e r c o u l d do h u n d r e d s o f
operations while a human being is reaching
for a switch. Those operations which must
be done manually should be specified
completely by means of written step-by-
s t e p instructions t o t h e o p e r a t o r .

In fact these principles should apply
to computer programming and operation in
general, and not Just t o code checking.

For most efficient use of both computer

20

time and preparation time, the session at
the computer should be short. On SEAC,
a few hours each week are devoted exclusive-
ly to code checking periods of roughly
ten minutes each, one routine after another
being put on the computer for testing.
One can usually get enough information
to isolate one coding error in a ten
minute period.

Sometimes, however, one wishes to
get information about as many different
errors as possible in a single run at the
computer. A code checking system suit-
able for this purpose has been designed
by J. H. Wegstein of the NBS Computation
Laboratory. In this method a sequence
of cells called a "control tank" is set
aside, and at each of several selected
key points in the routine, the control
is sent to different cells in this tank.
During normal operation each of these
cells will simply refer control to the
next part of the routine, without break-
ing the continuity of the calculation,
b u t during code checking special orders
which print selected quantities are put
into these cells. If these quantities
are incorrect, the computer is halted,
and previously prepared correct values
are inserted before continuing.

Quite a few auxiliary routines have
been tried out on various machines. There
are a great many possibilities, but all
the ideas involved are simple and would
occur to nearly anyone who devotes a
good deal of time to the use of a machine.
The trick is to find useful combinations
of ideas.

Some simple routines which have turned
out to be used on SEAC are:

i. A routine which makes it easy to
read out any specified sequence of
cells.

2. A routine which automatically inserts
or removes breakpoints in specified
locations.

3. A routine which transfers the contents
of the memory to magnetic wire or
t a p e . T h i s i s u s e d t o a v o i d r e p e t i t i o n
of correct computations while correct-
ing later errors in a routine. It is
also useful in bridging interruptions
in normal operation, and may be used,
periodically, as a precaution against
computer errors.

4. A routine which compares the inform-
ation on the input medium with the
information in the memory, and reads
o u t t h e a d d r e s s e s a n d c o n t e n t s o f
cells where discrepancies occur.
This routine has sometimes shown up
computer errorsas well. The pro-
grammers for the Whirlwind have also
n o t e d that such a routine was valuable.

Several more involved routines have
been useful in finding well hidden
coding errors. These include:

1. An interpretive routine which provides
a complete history of a specified
cell. Each time an instruction
affects that cell, the address of
t h e Instruction a n d its result are
read out. This routine is usually
applied to a Location where an

2.

.

i n c o r r e c t q u a n t i t y i s known t o
a p p e a r t t o a c e l l whose c o n t e n t s
have changed f o r an u n d e t e r m i n e d
r e a s o n , o r t o an i n s t r u c t i o n c o n t a i n -
i n g variable addresses; but also
has i n c i d e n t a l u s e s , such as l o o k i n g
at successive terms of a series
without altering the coding.

An i n t e r p r e t i v e r o u t i n e which d e t e r m i n e s
t h e p a t h which t h e c o n t r o l has t a k e n
t h r o u g h a n o t h e r r o u t i n e . At e a c h
comparison order, thls routine reade
out t h e a d d r e s s of t h a t o r d e r , and
t h e a d d r e s s from which t h e n e x t
o r d e r will be t a k e n . This r o u t i n e
s e r v e s much t h e sane p u r p o s e a s t h e
EDSAC r o u t i n e wh ich r e a d s ou t t h e
o p e r a t i o n symbol o f e a c h i n s t r u c t i o n
e x e c u t e d .

A r o u t i n e which d e t e r m i n e s t h e t o t a l
effect, on t h e high speed memory,
of e a c h o f s e v e r a l chosen s e c t i o n s o f
t h e r o u t i n e b e i n g t e s t e d . Check
p o i n t s in t h i s latter r o u t i n e are
p i c k e d by t h e programmer, and s p e o i -
fi~ t o t h e compute r . The e f f e c t o f
t h e o p e r a t i o n i s t h a t t h e compute r
e x e c u t e s one s e c t i o n o f t h e r o u t i n e
b e i n g t e s t e d , t h e n r e a d e out t h e
a d d r e s s e e and c o n t e n t s o f memory
l o c a t i o n s which have been a l t e r e d
by t h a t s e c t i o n . Then i t e x e c u t e s
a n o t h e r s e c t i o n and r e a d s ou t t h e
changes i t has made, and so on. The
compute r a c c o m p l i s h e s t h i s by f i r s t
d u p l i c a t i n g t h e memory c o n t e n t s on
a m a g n e t i c t a p e and r e p l a c i n g t h e
i n s t r u c t i o n s a t check p o i n t s by
Instruotlons whloh will transfer
c o n t r o l t o t h e auxiliary roatlne.
Arrangement Is made, of course,
f o r t h e e x e c u t i o n o f t h e replaced
instructions a t the proper time.
Then the first section of the main
r o u t i n e t o e n t e r e d , no t i n t h e
interpretive manner, but dlreotly.
When a check p o i n t i s r e a c h e d , t h e
i n f o r m a t i o n i n t h e memory and on
the m a g n e t i c t a p e are compared, and
the a d d r e s s e e and new c o n t e n t s o f
l o c a t i o n s wh ich have been changed
a r e r e a d o u t . Then the p r e s e n t
c o n t e n t s o f t h e memory a r e d u p l i c a t e d

on m a g n e t i c t a p e s and c o n t r o l
r e t u r n s t o t h e r o u t i n e b e i n g t e s t e d
u n t i l a n o t h e r cheek p o i n t i s r e a e h e 4 ,

E f f e c t i v e l y , t h i s a u x i l i a r y
r o u t i n e u s e s o n l y t h e f i r s t 8 memory
l o c a t i o n s , c o n v e n t i o n a l l y r e s e r v e d ,
on SEAC, f o r t h e i n i t i a l r e a d - i n
Instruotlone. Actually it temporarily
u s e s o t h e r p a r t s o f t h e memory by
f i r s t t r a n s f e r r i n g t h e i r c o n t e n t s
t o m ~ n e t l e t a p e s and later r e s t o r i n g
them.

What one t r i e s t o a c h i e v e i n d e s i g n -
i n g such a u x i l i a r y r o u t i n e s i s t o p rogram
t h e machine t o s e l e c t t h e p e r t i n e n t In-
f o r m a t i o n r a t h e r t han t o r e a d ou t l a r g e
q u a n t i t e s o f d a t a which must be s e a r c h e d
t h r o u g h by a programmer.

I w i s h t o acknowledge t h e c o n t r i -
b u t i o n s o f C . J . S w i f t and J . H . W e g s t e l n
o f t h e NBS Computa t ion L a b o r a t o r y t o
t h e i d e a s p r e s e n t e d h e r e .

Note on 'Computer Aids to Code Checking'
by I.C. Diehm, N.B.S.

Programmers of the Eckert-Mauchly
Division are using a routine that has
proved helpful in detecting one class of
programming errors -- errors in the
address portion of instructions. Further-
more, this routine helps to prevent the
insertion of new errors during the pro-
cess of correcting old ones.

The 'codecheck' routine examines
a program and locates every instruction
referring to each location, for example,
537. The references are printed together
with their line numbers for e a s y identi-
fication. Thus, one list contains every
line of coding which can possibly affect
location 537. Codecheek performs this
operation for every'location from 000
through 999. In general, less time on
the computer is required than for n trial
run of the program being tested.

B. Hasbrouck"
Eckert-Mauchly Division
of Remington Rand

INPUT SCALING A N D OUTPUT SCALING

A BINARY CALCULATOR
By

E. F. Codd and H. L. Her r i ak
International Business Machine Corp. , New York

FOR

Input Scaling

Suppose 1) the input for a problem which is to
be solved on a binary ca lcula tor is given in dec i -
mal form; 2) the p r o g r a m m e r de s i r e s to spec i -
fy in his p rogram the scale fac tors to be applied
to in termedia te r e su l t s to keep these r e su l t s
within the capaci ty of the r e g i s t e r s of the ca lcu la -
tor; 3) the scale fac tors to be applied a re powers
of two (this al lows advantage to be taken of the

shifting operations which may be built into the
calculator) .

The following questions may now be asked.
1) Can p re l imina ry scaling of the decimal input
(ei ther by hand or on an auxi l ia ry decimal ca l -
culator) be avoided? 2) If the binary calcula tor
can Be p rog ram m ed to c a r r y out some equiv-
alent form of scaling, how closely does the con-
ver ted and scaled input approximate to the

21

