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S I M P L E  L E A R N I N G  BY A D I G I T A L  C O M P U T E R  

The Computation Laboratory 
Harvard University 

1. Introduction 

Digital comouters can readily be 

programmed to exhibit modes of behavior 

which are usually associated only wlth 

the ne2vous systems of living organisms. 

Thls paper describes a concrete example 

of one practical technique by which the 

Electronic Delay Storage Automatic 

Calculator (EDSAC) of the University 

~athematlcal Laboratory, Cambridge, was 

made capable of modifying its behavior 

on the basis of experience acquired In 

the course of operation. 

Techniques of this type may have 

some value for those who, like psy- 

chologists and neurophysiologists, are 

interested In the potentialities of 

existing digital computers as models of 

the structure and of the functions of 

animal nervous systems. The description 

will be given In two stages. In the 

first stage (Section 2) the behavior of 

the EDSAC under the control of a re- 

s o_~.~ learning program will be presented 

from the point of view of an experlmenter 

who can control the input of the machine 
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and observe its output, but who is denied 

access to its internal mechanism. This 

point of view corresponds to that of an 

experimenter who attempts to deduce the 

structure and the internal mode of oper- 

ation of an animal organism from 

controlled observations of its functions. 

In the second stage (Section 3), the 

factors determining the behavior of the 

machine are revealed, and are analyzed 

from the privileged point of view of the 

designer of the learning program. 

2. The Functions of the .Response 

Learning Machine 

When the response learning program 

is introduced into the EDSAC, this 

machine is changed from a general purpose 

digital computer into a special purpose 

machine which will be called the response 

learnln~ machine. An experimenter asked 

to describe the behavior of this response 

learning machine would soon observe that 

the machine has a sensory device, the 

input mechanism, which is capable of de- 

tecting a stimulus in the fo~ of a 

number whose magnitude corresponds to 

intensity. He would note that when such 

a stimulus s t > 0 is applied at time t, 

it initiates at random one of a set of 

possible responses Ri, i = 1,2,...,5. 

The machine signals the occurrence of the 

response R i by printing the number i with 

its output teleprinter. Following the 

occurrence of a response, the experimenter 

may express his approval or disapproval. 

To analyze the machine,s behavior in 

detail, the observer might gather experi- 

mental data in a form such ~s that of 

Table I. In this table, s t is displayed 

in column l, the resulting R i at time t, 

Rit , appears in column 2, and the in- 
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tensity, at, of approval or disapproval 

is given in column 3. The remaining 

col~nnns of Table 1 should, for the 

moment, be disregarded. 

At t = 3, s t = 2 initiated the re- 

sponse R2, and at t = 17, s t = 4 

initiated R 3. An X in column 2 at time 

t indicates that s t was too weak to in- 

itiate any response whatsoever at that 

time. In the interval l~ t ~ 12, s t = 2 

is frequently too weak to elicit any re- 

sponse, and those responses that are made 

occur at random. The experimenter would 

find it possible to train the machine to 

give one particular response only, by 

expressing his approval (a t > O) whenever 

this response occurs, and his unconcern 

(a t = O) or his disapproval (a t < O) 

otherwise. Conversely, a response can 

be discouraged by repeated disapproval. 

Table 1 shows that the approval signals 

a t = 2 given to R 1 at t = 27 and t = 29. 

and a t = 1 given at t = 30 were suf- 

ficient to train the machine to respond 

to every stimulus with R1, except at 

t = 28 when, at an early stage of 

training, R 3 o~curred. An earlier at- 

tempt, made at t = 16, to teach the 

machine to make the response R 1 failed 

for reasons whose explanation will be 

given later. 

As the training proceeds, errors 

become less frequent, and the learned 

responses may be initiated by a pro- 

gressively weaker stimulus. The attempt 

to teach the response learning machine 

to give the response R 1 begins at t = 27 

with the stimulus 3; at t = 30 the stimu- 

lus 2 was tried and found to be sufficient 

and at t = 33, R 1 occurred when the 

smallest stimulus, I, was used. At the 

same time, the need for approval di- 



mlnishes. At t = 27 and t = 29, a t = 2, 

but a t = 0 at t = 31 and at t = 32, and 

R 1 nevertheless is still initiated by the 

small stimulus 1 at t = 33. From t = 34 

onwards, R 1 is discouraged, until it 

disappears for the stimulus 1 at t = 37. 

At t = 38 even the stimulus 2 will not 

initiate it, but at t = 39 the stimulus 

3 brings it back. One last sharp disap- 

proval (-4) finally inhibits it. From 

t = 40 onwards, the same procedure is 

repeated with R 4. Note how at t = 42, a 

premature attempt to reduce the stimulus 

from 3 to 2 produced no response at all. 

It has already been mentioned that 

a response may be learned by the machine 

if encouraged by the experlmenter, but 

if the experimenter is neutral and ex- 

presses unconcern (a t = O) for every re- 

sponse, it is nevertheless still possible 

for some particular response to occur 

more and more frequently. Eventually, 

occurring to the exclusion of all others, 

this response becomes a habit. The high 

frequency of R 3 from t = 15 onwards is 

due to this effect. To train the machine 

to give R1, it was first necessary 

actively to discourage R3, which showed 

promise of becoming a habit. At t = 21 

the stimulus was reduced to 1 to test how 

strong a habit R 3 had become by that 

time. As the stimulus 1 produced no re- 

sponse, s t = 3 was used again at t = 22. 

The reappearance of R 3 then indicated the 

necessity for disapproval. It is also 

possible, under similar conditions, for 

the response learning machine to decay 

into a lethargic state, making in- 

creasingly infrequent responses. In 

Table 2, columns l, 2, and 3 for 

1 ~ t ~ 15 are identical with the corre- 

sponding columns of Table 1. However, at 
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t = 17 and thereafter, s t (Table 2) was 

reduced to i, and the frequency of re- 

sponses dropped sharply. 

3. The Response Learnin 6 Pro6ram 

To control the occurrence of re- 

sponses, a threshold state number Si, 

S i ~ O, is associated with each response 

R i. Columns 4 through 8 of Table i dis- 

play the threshold state numbers at time 

t, Sit, for every i. The set of 

threshold state numbers is held in the 

response learning machine,s number store. 

When a stimulus is introduced at time t, 

the threshold state number store is 

scanned until the first largest Sit , say 

Sjt, is found. At t = 20 the scanning 

proceeded until $3,20 was found. Sit 

found, the machine forms Sjt + s t , and 

tests for the condition Sit + s t ~ T. T 

is a fixed number, 7 in the present ex- 

periments, called the triggering 

threshold. A response can occur at time 

t only if the relation Sjt + s t ~ T is 

satisfieS. When this is not the case, X 

is printed in column 2, and the machine 

prepares to receive the next stimulus, 

st÷ I. When Sjt + s t ~ T, the scanning 

proceeds, to find and count those Skt 

satisfying the relation Skt = Sjt , k ~ J. 

~en no such Skt exists, response Rj 

occurs, and the number J is printed in 

column 2. At t = 20, $3,20 + s20 = 5 + 3 

= 8 ~ 7, hence R 3 occurred. When two or 

more responses compete with each other, 

as was the case at t = 17, the winning 

response is selected at random. At 

t = 17, R I and R 3 were in competition, 

and R 3 won. The selection of a response 

by the procedure just outlined relies 

essentially on the use of conditional 

orders. Such orders enable the machine 



to choose among several alternative 

courses on the basis of the results of 

earlier operations. Naturally, the 

progr~must foresee the need for a 

choice, and provide conditional orders 

to meet this need, but the actual de- 

cision is made by the machine itself, on 

the basis of information obtained in the 

course of operation either from its own 

store, or, by means of the input mecha- 

nism, from the outside world. 

After a response R i has occurred, 

the machine signals to the experimenter 

and asks for approval. The experimenter 

then introduces a number a t of appropri- 

ate magnitude and sign into the machine. 

Given at, the machine proceeds to form 

Si, t+ 1 from Sit , for all i. When R i has 

occurred at time t, 

Si, t÷ 1 = Sit+at+l+Nit-Ni,t_l-d(Sit, t);  

the terms of this expression will be de- 

scribed in turn, 

By increasing, decreasing, or 

leaving Sit constant, the addition of the 

factor a t correspondingly modifies the 

probability that Si,t+ 1 > Sj,t+l, i # J, 

and hence the probability that the 

scanning process will stop at Si, t+ 1. 

Adding unity to the threshold state of 

the response which has been initiated at 

time t increases the probability that 

this response will occur again at time 

t' > t. This device accounts for the 

habit-forming effect described earlier. 

It is this effect which, together with 

the chance selection of R~ at t = 17, 

accounts for the S-machine,s delayed 

learning of the response R 1. Attempts to 

teach this response were begun at t = 16, 

but were unsuccessful until t = 29, after 

R 3 had been effectively discouraged. 
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Nit and Ni,t_ I are both pseudo- 

random numbers*. In each interval 

(t,t+l) a pseudo-random number Nt, 

-5 ~ N t ~ 5, is added to one Sjt se- 

lected at random, and Nt_ 1 is subtracted 

from the Skt (k # J, or k = J) to which 

it had been added in the interval 

(t-l,t). In this fashion, random fluctu- 

ations are superimposed on the average 

level of the threshold states. Because 

of these fluctuations, the machine can 

make mistakes, that is, it can occasion- 

ally make a response other than the one 

it has been taught to make. More 

important, provided that no S i is 

excessively large, each S i has a reason- 

able probability of being greater than 

the others at some time. This makes 

possible the teaching of a new response, 

or, when no response is favored over the 

others, produces an interesting variety 

of responses. 

The last factor, d(Sit, t), produces 

a decay trend of all threshold states 

toward 1. d is different from zero only 

in the intervals between t = 5n and 

t = 5n+l, where~ = 0,1,2,... In these 

intervals d = +l when Sit > l, d = -1 

when Sit ~-0, and d = 0 when Sit = 1. 

The effect of d ~ 0 is self-explanatory. 

The negative decay is provided when 

Sit ~ 0 for the purely practical purpose 

of preventing the "death" of the response 

learning machine. As illustrated in 

Table 2, the decay introduces some 

lethargy into the behavior of the ma- 

chine, by causing all S i to drop, hence 

requiring ever-increasing stimuli to 

*"Pseudo-random" numbers good enough for 
these experiments are generated by 
squaring a certain constant, and by se- 
lecting a number of digits from the 
result. The middle digits of the square 
then serve as a new constant. 



produce a response. Were all S i to 

become so strongly negative that Sit +st4T 

for all i, given the most favorable random 

effect and stimulus, no further response 

could be elicited from the machine. The 

use of negative decay effectively makes 

1 the average minimum level of the S i- 

The effect of decay and of the random 

variations on the threshold states can 

best be observed in Table 2, when t > 15. 

For all those Rj which did not occur 

at time t, 

Sj,t÷ I = Sjt+Njt-Nj,t_l-d(Sjt, t). 

In this expression a t and the habit 

forming term 1 do not appear. The es- 

sential features of the preceding 

description are thus su~narized by the 

three relations which govern the operation 

of the response learning machine: 

1. To initiate a response at time t: 

Sjt + st ~T for some J; 

2. Where R i has occurred at time t: 

Si, t÷ 1 = Sit+at+l+Nit-Ni, t_l-d(Sit, t); 

3. Where R i has not occurred at time t: 

Si,t+ 1 = Sit+Nit-Ni, t_l-d(Sit, t). 

It must be remembered that, while he is 

training the response learning machine, 

the experimenter does not know the 

threshold state numbers, and must rely 

on his recollection of his own past 

actions and of the responses the machine 

made to them. This is the data given in 

the first three columns of Table 1. 

The behavior pattern of the response 

learning machine is sufficiently complex 

to provide a difficult task for an ob- 

server required to discover the mechanism 

by which the behavior of the S-machine is 

determined. By examining the data of the 

first three columns of Table 1 such an 

observer could easily find regularities 

in the response pattern, and he might 

even develop empirical rules for pre- 

dicting responses with tolerable accu- 

racy. He would find it very difficult 

by this means to obtain a good approxi- 

mation to the description of the response 

learning program given above. Switching 

the machine off to dissect it would be 

of limited value only, since this action 

would make the response learning program 

vanish from the EDSAC,e store. 

4. The Di6ital Computer as a Model 

The readiness with which the EDSAC, 

and other digital computers, can play 

different roles at a moment's notice is 

one of their important properties. When 

the role a digital computer is called 

upon to play is markedly different from 

those its designers had in mind, a neces- 

sarily large proportion of the orders in 

a program must be devoted to specifying 

this role. In the response learning 

program, an aggregate of elementary EDSAC 

orders is required, for example, to in~- 

itZate the firing of a response, since 

this is an operation which does not 

correspond to any single order. This 

drawback is balanced by some important 

advantages. Given the EDSAC, the only 

additional equipment required to turn it 

into a learning machine is the length of 

teleprinter tape which holds the learning 

program before it is introduced into the 

machine, and changes in learning machine 

design and the rectification of errors 

require at most the preparation of a new 

program tape. 0nly a few seconds of 
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input time are required to turn the EDSAC 

from an orthodox computing machine into 

an experimental learning device. For 

these reasons, a flexible digital com- 

puter could serve with advantage as a 

proving ground for a wide variety of 

models. 
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Table 1 

A typical response learning experiment 

i 2 5 4 5 6 7 8 

t s t Rit a t Sit S2t Sst S4t ~5t 

02  X 03  05  05  03  05  
02 X 04  03  03  03  03  
02  2 O0 03  07 03  03  05  
02 X 05 04 05 Ol 05 

5 02 5 O0 03 04 07 05 05 

Table I (Cont't) 

A typical response learning experiment 

I 2 3 4 5 6 7 8 

02  1 O0 06  03  03  0 2  02  
02  X 03  0 3  02  0 2  0 2  
02  X 02  03  03  0 2  0 2  
02  3 O0 03  03  0 8  0 2  02  

1 0  02  X 03  04  04  0 2  0 2  

02  X 02  02  03 Ol Ol 
02  X 02  02  02  O1 O1 
03 2 O0 02 05 03 Ol Ol 
03 5 O0 02 05 03 Ol 05 

15 05 3 O0 ~ 02 05 08 Ol 02 

03 1 Ol 06 02 03 Ol Ol 
04 3 O0 05 02 03 Ol Ol 
05 5 O0 05 02 04 Ol 02 
05 5 O0 05 02  05 Ol 06 

20 03 5 O0 03 02 05 Ol -02 

Ol X 02 Ol 05 Ol Ol 
05 3 -01 Ol Ol 05 Ol Ol 
03 X 02 01 05 01 01 
03 5 -02 02 Ol 05 Ol Ol 

25 05 3 -03 02 Ol 04 Ol Ol 

05 X 01 01 01 01 01 
05 i 02 06 01 01 01 01 
03 5 -01 04 Ol 05 Ol Ol 
03 1 02 04 Ol Ol Ol Ol 

50 02 1 Ol 07 Ol 02 Ol Ol 

02 i O0 08 Ol Ol 05 Ol 
02 1 O0 ii Ol Ol Ol Ol 
Ol 1 O0 i0 04 Ol 01 Ol 
Ol 1 -05 ii Ol 05 Ol Ol 

55 01 i -03 09 01 01 01 01 

01 i -04 06 01 01 01 01 
Ol X 04 Ol 01 Ol 01 
02 X 04 01 01 01 02 
03 I -04 04 01 01 01 00 

40 03 4 02 Ol Ol Ol 04 Ol 

03 4 01 01 01 02 04 01 
02 X Ol Ol Ol 04 Ol 
03 4 02 01 01 02 06 01 
03 4 01 00 01 01 09 01 

45 02 4 01 01 01 02 ii 01 

01 4 -01 01 01 01 i0 01 
Ol 4 -01 O0 Ol Ol 13 Ol 
Ol 4 O0 -01 Ol Ol 13 Ol 
Ol 4 -02 Ol Ol -05 14 Ol 

50 Ol 4 -02 05 Ol Ol 15 Ol 

Ol 4 -04 Ol Ol Ol 12 05 
Ol 4 -04 O0 Ol Ol 09 Ol 
Ol 4 -04 Ol Ol Ol 06 Ol 
01 X Ol 01 01 05 01 

55 02 X Ol Ol -04 03 Ol 
05 X 02 Ol Ol 02 Ol 
03 X O0 01 Ol 02 01 
03 X 01 01 01 02 03 
03 X Ol 02 Ol 02 Ol 

60 05 2 O0 01 06 01 02 01 
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Table 2 

The effect of decay and random fluctuations 
on the threshold state numbers 

I0 

15 

20 

25 

i 2 3 4 5 6 7 8 

s t Hit a t Sit S2t S3t S4t Sst 

02 X 03 03 03 03 03 
02 X 04 03 03 03 03 
02 2 O0 03 07 03 03 03 
02 X 05 04 03 Ol 03 
02 3 O0 03 04 07 03 03 

02 i O0 06 03 03 O0 02 
02 X 03 03 02 02 02 
02 X 02 03 03 02 02 
02 3 O0 03 03 08 02 02 
02 X 05 04 04 02 02 

Og X 02 02 03 Ol Ol 
02 X 02 02 02 Ol Ol 
03 2 O0 02 05 03 Ol Ol 
03 5 O0 02 05 03 O0 05 
03 3 O0 02 03 08 Ol 02 

03 i O0 06 02 03 Ol Ol 
Ol X 02 02 03 Ol Ol 
Ol X 02 02 03 Ol Ol 
Ol X 02 02 03 Ol 02 
Ol 5 O0 02 02 03 Ol 06 

Ol X Ol Ol 02 Ol -02 
Ol X Ol Ol 02 Ol 02 
Ol X O0 Ol 02 Ol 02 
Ol X Ol Ol O0 Ol 02 
Ol X Ol Ol 02 Ol 02 

Ol X Ol Ol Ol Ol Ol 
Ol X Ol Ol Ol Ol Ol 
Ol i O0 06 Ol Ol Ol Ol 
Ol X 02 Ol 05 Ol Ol 

AN ANALYSIS BY 

CALCULATING 

ARITHMETICAL METHODS OF A 

N E T W O R K  W I T H  FEEDBACK 
By 

L. C. R o b b i n s  
B u r r o u g h s  Add ing  M a c h i n e  C o m p a n y ,  P h i l a d e l p h i a  

At the Wayne University meeting of 

this Association in the spring of 1951, 

George We Patterson presented a paper on 

Reversing Digit Number S~stemse Although 

these systems can be stated with respect 

to any base, we iili be concerned only 

with the special case of base 2o The re- 

versing representation for base 2 is also 

called the G~ay code, s~etric binary 

codep and the reflected binary code. It 
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appears  l i k e  t h i s s  

Decimal Reversing Normal 

0 0000 (DO0 
1 0001 0001 
2 0011 0010 
3 0010 0011 
4 0110 0100 
5 0111 0101 
6 OlO1 OllO 
7 oi00 0111 
8 ii00 I000 
9 ii01 i001 

i0 iiii I010 

where t he  narmal  base  2 r e p r e s e n t a t i o n  

been shown fo r  comparisone Note t h a t  f o r  


