A USER LOOKS AT DA -- YESTERDAY, TODAY, TOMORROW

A. E. Fitch
International Business Machines Corporation
Systems Development Division, Poughkeepsie, New York

Summary

While much has been written about the tech-
nical detail of Design Automation, little has been
written about how a "user' views DA.

This paper will not address the technical de~
tails of Design Automation, nor will it consider
the entire range of DA facilities and users in ex-
istence today. Instead, the paper will contrast a
specific user's needs to the facilities available to
that user yesterday and today. This contrast will
follow a general definition of the term DA, and a
detailed description of the various tasks confront-
ing the particular user. For the purpose of this
paper, the user's job is to develop a computing
system.

The question of automation versus assistance
is discussed, especially in light of this paper's
projections for what DA must supply to the user
of tomorrow. For purposes of this paper, yester-
day is the time of discrete wiring, today involves
printed wiring, and tomorrow is the era of inte-
grated circuits.

The importance of the tools, which tomor -
row's DA must supply, is put in perspective by a
discussion of a factor called 'the pressure point."
A general characterization of the DA authors, DA
users, and procedures used in the three time
frames of this paper is made.

The emergence of a mixed breed of pro-~
grammers and engineers is noted. The import-
ance of this mixed breed to tomorrow's DA is
discussed.

Although this paper deals with a very specific
kind of DA, the observations and projections un-
doubtedly have fairly universal application.

Introduction

Those of us who have grown up with DA have
come to consider it a fact of life. Regardless of
whether DA means Design Automation, or Design
Assistance, we understand the why and what of
DA. The fact that this familiarity does not exist
universally was brought home to me recently.

After I had completed a presentation dealing
with DA to a group of engineers, a young, newly-

hired engineer came up to me and said, "But
there's one point I missed. What is DA?" In
order to establish a common understanding of
what DA means in this paper, I define DA pic-
torially as shown in Figure 1. DA is a tool used
by the engineer:

1. to record the design.

2. to check some of the design.

3. to perform certain of the well-defined
design chores.

4. to provide management with information.

5. to provide manufacturing organizations
with the information required to produce
the product.

Although this definition of DA implies a fairly
sophisticated system, I believe that most, if not
all DA activities tend to fit somewhere in this
general definition, regardless of whether the ob-
ject for action by a given system is a computer or
a circuit, a bridge or a bikini.

I will not deal with the technical detail of DA.
Nor will I describe or even hint at any technologi-
cal breakthrough. Instead of making such revela -
tions, I would like to spend a few minutes looking
at where we were, where we are, and where we
should be headed. Because DA is useless unless
a "user' exists, I will first establish a user. For
purposes of this presentation, the "user' is ac-
tually a composite of many individual users whose
collective job is to develop and produce a comput-
ing system. The tasks that this user generally
performs will be contrasted with the general
capabilities of DA of yesterday and today.

I will consider which of these user tasks needs
attention in tomorrow's DA. While I realize that
the general term DA encompasses a universe
much wider than that which I will address, I sus-
pect that some of the observations, philosophies,
and projections I will make can find application in
the areas of DA not directly addressed here.

How the User Views DA

Before we examine the user's job in detail, I
think it would be interesting to see what mental
image four different groups of people might have
of DA, The mental image that comes to the mind
of the new engineer is most likely that which is
shown in Figure 2. This potential user does not

=371~

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800260.809039&domain=pdf&date_stamp=1969-01-01

know which end of the monster to grab first and
is afraid of being overwhelmed by the whole
thing. I am sure this is the image that came to
the mind of the young engineer I previously de-
scribed. The project manager who has to fund
either the creation of or operation of a DA sys-
tem might have a view as shown in Figure 3.
While DA is of great importance, it isn't neces-
sarily cheap to create or inexpensive to use, it
costs money to make tools, and the lack of proper
tools can cost time, which is also expensive,

The programmer who created the DA tool
probably sees the tool as shown in Figure 4. It
is perfection personified and can do no wrong.
The experienced programmer, however, knows
that jewels can have flaws. The experienced
user will view DA as all of the above at one time
or another but upon sober reflection will prob-
ably view DA as shown in Figure 5. There is no
question but that the user, given adequate re-
sources, can do everything that DA tools can do
-- maybe better -- but that he recognizes the
value of the tool and the impracticality of doing
without it. He may even come to appreciate the
value of a few of the ways in which the tools force
him into what seems to be regimented thinking,
although he probably would never admit this --
especially to the person who created the tools.

Facilities Available to User

Yesterday

For the purposes of this presentation, I con-
sider yesterday as 1958-1962. The predominant
technologies involved mostly unit logic elements
(generally cards) on which discrete components
were mounted. These cards were inserted in
panel sockets, with intrasocket and intersocket
connections made with discrete wiring. In this
time frame, few functional logic cards existed
and the printed circuit patterns required for use
on cards were derived from manually generated
artwork. Installation of yesterday's engineering
changes (EC's) meant a slightly different use of
the normal manufacturing tools, and presented
no insurmountable technical problems. Speed
was generally measured in microseconds and
technology oriented rules were few in number,
Signal delays due to wiring were not a major
concern.

Today

In the context of this presentation, today is
defined as 1962 to the present and is character-
ized by a continuation of the use of unit logic
cards and the introduction of a larger number of
functional cards. Both of these card categories

employ hybrid components in place of many of the
discrete components of yesterday. The sockets
and panels of yesterday have generally been re-
placed by multilayer printed circuit boards. The
discrete wires have for the most part been re-
placed by printed circuit wiring. Engineering
changes today are possible but inconvenient be-
cause they require special tools and procedures
owing to the nature of the personality to be
changed. Speed today is sometimes still mea-
sured in microseconds but more generally it is
measured in tens or hundreds of nanoseconds.
The number of technology-oriented rules to be
adhered to has increased markedly. Wire lengths
measured in feet can be cause for concern.

Tomorrow

Tomorrow is probably upon us. It is charac-
terized by the higher component densities we will
experience in SSI (Small-Scale Integration), MSI
(Medium-Scale Integration), LSI (Large-Scale
Integration), and the ambiguous Utopia all en-
gineers seek, RSI -- just the right scale of inte-
gration. Tomorrow's engineering changes, will
require tooling of extreme complexity and indeed
may mean remanufacturing rather than reworking.
Tomorrow's speed will be measured in nanosec-
onds and picoseconds. Inches of wire will cause
concern, and the volume of technology-oriented
rules is liable to become unmanageable.

Tasks Confronting the User

In performing his total job, the user must
perform many tasks, some of which are not now
addressed by DA and maybe never should be. But
to fully describe our composite friend, I will
briefly discuss all elements of his job. The de-
gree to which a given user will address each ele-
ment is a function of many things including the
tools available to help him, the complexity of the
product, and scheduling considerations. His ac-
tivities are listed in Figure 6 and are described
as follows:

1. Plan and specify the product -- In this
phase the major input considerations will be the
job to be done by the product, and a target for the
product's final cost. This step will determine
the choice of the technology to be used and a plan
for implementation.

2. Develop and Record second-level product
descriptions -- This step will lead to the selec-
tion of algorithms, the definitions of functional
elements (e.g., I-Box, E-Box, etc.), and inter-
nal machine strategies required to meet cost and
performance objectives. The degree of descrip-
tions produced in this step may vary from a few

~-372-

second-level drawings to an algorithmic descrip-
tion of the entire product.

3. Verify the second-level or algorithmic
operation -- Execution of this step may be as
simple as a review of second-level diagrams, or
as complex as a total algorithmic simulation of
the product. This is the first of many places
where the question ''Is it right?'' is asked.

The preceding steps are generally referred
to as "architecture.'" The following steps are
generally referred to as "implementation. ' These
steps can be compared to the reduction of an
artist's rendering of a building, to the detailed
plans necessary for its construction, to the dimen-
sional checking of such plans, and to the testing of
the plans for structural strength. Although these
steps are shown as distinct operations, it should
be understood that there are varying degrees of
interaction between them.

4. Develop and record the detailed product
logic -- This design step sees the engineer re-
ducing the second-level or algorithmic descrip-~
tion of the product to detailed logic drawings or
logic lists, considering such factors as technol-
ogy rules, permissible logic chain length, and
interaction with other areas of design.

5. Check the detailed product logic -~ In this
step, the engineer tests the detailed logic against
specific examples to prove that the algorithm has
been reduced properly to detailed logic. (Mis-
takes, of course, are always in the recording of
his work, not in the work itself.) This test is
generally a DC functional check, and is some-
times referred to as desk debugging. Again we
ask: "Is it right?"

6. Package the detailed product logic -- At
this point, the engineer maps the logic into speci-
fic physical entities. This step may involve
choosing prepackaged logic elements (e.g., cards)
and "placing' these on a panel (e.g., board), or
it may involve the segmentation of the detailed
logic into specific functional packages (e.g.,
cards) that will be unique to this product. The
packaging information is recorded on the de-
tailed product logic documents at this time. The
considerations in this step may range from maxi-
mum performance to minimum cost and are
highly product- and technology-oriented.

7. Check recorded package detail ~-- The
probability for error in the packaging activity is
relatively high; not on the part of the engineer,
of course, but in the recording of his decisions.
Owing to that fact, and the fact that we have not
yet found the way to make two physical elements

occupy the same space at the same time, this step
is executed. It also helps to avoid embarrasment
and some engineering changes at a later time.

8. Check the dynamic characteristics of the
packaged logic -- One of the major considerations
used in developing the detailed logic was the mini-
mum and maximum length of logic chain that could
be tolerated. This requirement also served as a
consideration in packaging the logic. At this point
in his activities, the user tries to prove that the
absolute delays through his logic chains are within
the established bounds. The degree of checking
may range from analysis of a few networks he sus-
pects are critical to a complete analysis of all the
logic. Once more we ask: ''Is it right?"

9. Provide the information required to manu-
facture the product -- Now the recorded design in-
formation contains the full product description;
bills of material and detailed manufacturing in-
structions can be generated. The product can be
built. At this point in time, our friend deserves
a vacation. He has been very busy, regardless
of DA.

10. Repeat all or part of the above for EC's
-- Our friend's vacation is soon over. The errors
he didn't find previously are obvious now that hard-
ware is standing. How could he have let that ob-
vious error get by his eagle-eye? This phase in-
volves correcting the design, generating rework
instructions to modify the existing hardware, and
thinking each change is the last. On the same day
he corrects the last error and is worried about
what to do next, someone is sure to request that
an additional feature be designed -- so our friend
is back in business again.

DA Applications

Yesterday

Given the total job the user must do, let us
now examine the areas in which DA has been, is,
and must be used. Figure 7 contrasts the user's
total job with the DA capabilities he had available
yesterday. Generally speaking, DA provided the
ability to record the design, including packaging
data, check the packaging data, and produce in-
formation for manufacturing the product. In ef-
fect, yesterday's DA replaced the many clerks
and draftsmen who would be required to manually
document the design, and DA provided a bonus of
waving a red flag when the recorded design vio-
lated basic ground rules. While simulation was
being discussed yesterday, DA users and creators
were too busy cutting their teeth to have time to
pursue it. The relatively low speed of the cir-
cuits used, plus the fact that EC's seemed to be a

-373-

practical way of life, put AC performance testing
far from the minds of most people. The DA of
yesterday gave the user some degree of support
in 50% of his activities and represented a major
step forward despite this hindsight view of its
capabilities.

Today

In Figure 8, we see the capabilities of to-
day's DA added to the chart. Significant im-
provements have occurred in capabilities that
existed yesterday. The ability to do some de-
sign checking has been introduced. Not only has
the ability to record detailed packaging informa-
tion been improved, but first generation pro-
grams now exist that try to relieve the user of
some of the packaging job. Because these pro-
grams are first generation, the thinking has not
been deep enough to cover the entire range of
users. But progress has been made. More com-
plicated packages require more comprehensive
physical checking programs, so DA capability in
this area has also improved. For the first time,
a capability exists to exarnine the product in a
dynamic sense. Manufacturing data is more
complex today, and DA has provided improved
tools to create and handle this more complex
data. DA has learned, and continues to learn,
how big a problem the processing of EC's can
be. Today's rework instructions are more im-
portant than ever because the number of influ-
encing factors is greater today than yesterday.
Today's DA supports the user to some extent in
70% of his activities including all of those asso-
ciated with detailed design.

Tomorrow

In Figure 9, we see the initial capabilities
that will be required of tomorrow's DA added to
the chart.

In considering what tomorrow's DA must do,
it is urgent that we consider the two meanings of
DA. Undoubtedly there are those who view
tomorrow's DA as being the ultimate in automat-
ing all the activities with which the user is faced.
To these people, DA means Design Automation.
I propose that the "A'' in DA be capitalized for
Assistance and lower cased for automation.
There are tasks such as packaging that may be
distastful to the user, but that he can do with
reasonable effort. There are tasks such as
dynamic performance analysis that are nearly
impossible for the user to do without having the
proper tools.

As I look toward tomorrow, my fundamental
belief is that the designer should be left to do the

creative thinking that a job like partitioning re-
quires, and that the energies of DA organizations
should be aimed at providing maximum assistance
in his handling of job details.

The areas of planning, algorithmic design,
and algorithmic checking deserve attention but
with a small letter a. These activities tend to be
highly tailored to the particular product. While
some projects may find it efficient to use general-
purpose programs, larger projects will actually
save money by creating their own tools. Tools to
assist in logic design and packaging must im-
prove, but the tools available to check the design
(DC, packaging, and AC) must improve to the
greatest extent. These tools must receive atten-
tion with a capital A.

It may seem surprising that I have not pro-
jected the need for fully automatic packaging
capabilities or the absolute elimination of a user
manipulating anything but a higher-level design
language. The fact is, however, that design
verification is today, and will continue to be
tomorrow, the single most important interactive
aspect of DA, Perhaps in the future, manufac-
turing instructions will automatically be created
on the basis of an algorithmic description of the
product, but it seems hard to believe that such a
Utopia can be justified econormically in light of
rapidly changing technologies and requirements.

Tomorrow's technologies provide an interest-
ing study in contrasts regarding DA support for
EC's. An integrated circuit element itself re-
quires little DA support to generate rework in-
structions since it is doubtful that it will be re-
workable. However, levels of packages that can
be reworked will require comprehensive support
with the input to such tools taking many forms
ranging from a change to the documented logic, to
specific instructions regarding the characteris-
tics of changes to a given physical network.

The Pressure Point

To demonstrate the importance of checking
tools, I would like to describe what I will call the
"pressure point.' I am sure a pressure point
exists in all projects, whether the output is soft-
ware or hardware. In engineering projects, the
pressure point is that point in the design sequence
where project management exerts enough pres-
sure on the user to force the release of a design
for manufacturing, or for integration into a
larger design area. Figure 10 shows a simple
representation of the pressure point and lists
factors that influence its position. Factors that
can move the pressure point earlier are project
schedules, a technology in which EC's can be

-374~

made with ease, the ease with which an engineer
gives in to management pressure, and -- sig-
nificantly -- the lack of tools available to the
engineer to prove his design. The pressure
point moves later in time as a function of diffi-
culty in installing EC's on the hardware, the
ability of the engineer to resist the pressure,
and the availability of and quality of tools with
which he can prove his design.

Figure 11 shows where the pressure point
was yesterday, where it is today, and where it
must be tomorrow. In yesterday's time frame,
EC's were assumed to be a way of life because
the lack of tools to prove the design left hardware
test as the only proof of design correctness. To-
day, EC's are possible but inconvenient and they
are becoming more expensive. Today we have
some basic tools with which to prove the design;
we are starting to place more emphasis on the
ship date and less on the power-on date. Today
the pressure point is moving out in time. The
fact that basic tools exist is but one factor. To
bring about this reorientation, we must establish
the user's confidence in these tools. They must
be usable. The finest screwdriver bit is useless
if it is mounted in a handle that is full of burrs,
just as the finest program is useless if the user
must turn cartwheels to use it.

Product designs using tomorrow's technolo-
gies must have an accuracy greater than anything
known before. A mistake cast in hardware will
certainly require more than a soldering iron and
a razor blade for correction. If adequate tools
are not available, or if such tools are not prop-
erly interfaced to the user, it may be necessary
to build tomorrow's product in four steps:

1. Build a discrete component model of the
product, using today's technology to de-
tect and eliminate basic design errors
(e.g., Boolean errors).

2. Build the product in the final technology
to detect and eliminate dynamic errors
masked by the technology used in step .

3. Build the final product.

4. Pray very hard when designing special
features after the product is built,

If we have to do business this way, DA will
have failed in its assistance role and will be re-
duced to a record keeping system. To prevent
this kind of regression, tomorrow's DA must go
so far as necessary to allow execution of pro-
grams (which eventually will be run on the con-
structed hardware) on a complete model of the
logic. This model should take into account the
AC characteristics of the packaged design and
the technology where necessary. This sounds

like a tall order, and indeed it is. I am not ob-
livious to the peripheral problems of this kind of
undertaking, but in my estimation it represents
the major step forward that must be taken and
should be the key goal for the future.

Mere lines of code assembled into programs
are not enough to provide this tool. This must be
an engineered tool, polished to perfection. The
execution time for using this tool must not be such
that it is prohibitively expensive to use. Regard-
less of what the object for action is in the DA ac-
tivity with which each of you are associated,
tools for checking the design must come first,
tools for automating the design last. If you do
your job well enough, tomorrow's tomorrow may
be the day that hardware changes can be
eliminated.

A New Breed

Perhaps you haven't recognized it, but people
and procedures have changed within the time
frames described in this presentation.

Yesterday saw DA tools that were created by
a few programmers and used by a few engineers
through a group of operating specialists. These
specialists buffered the engineer from the com-
plications of DA. The path was relatively long,
and the engineer knew only the most fundamental
facts of the why and what of DA. Generally
speaking, yesterday's engineers only engineered.
They depended on DA programmers to supply
tools in the form of programs.

Today the long path is only a little shorter,
but new paths have been introduced. The en-
gineer today, in using checking tools, is much
closer to DA than he ever had been previously.
A new breed of user is developing. This breed
is complemented by a new breed of DA program-
mer. Although there are still many engineers
and programmers around, today we see the em-
ergence of this new breed that I will call
"engigrammers'' and ''progineers.' No longer
are some engineers at best novices at program-
ming, nor are all programmers novices at en-
gineering problems. Today this mixed breed is
involved in understanding and solving common
problems.

Today the engineer is no longer totally de-
pendent on programmers to supply the tools he
needs. The universal acceptance of higher-level
languages, coupled with the general recognition
on the part of the engineers that it does not take
black magic to create specialized tools for
limited applications, has enabled the engigram-
mer to create his own tools in cases where DA

-375-

couldn't, wouldn't, or shouldn't deliver the
tool.

Tomorrow's user must have DA at his finger-
tips. The long communication paths must be non-
existent.

Tomorrow the ranks of those who create the
tools and those who use the tools must be made
up of a few pure programmers, a few pure en-
gineers and a predominance of the mixed breed --
engigrammers and progineers -- with the engig-
rammers providing unique one-shot tools and the
progineers providing the comprehensive, general-
purpose tools. Both will be working from the
common product file in a majority of cases.

Conclusions

In summary, yesterday's DA opened the door.
It provided a set of basic tools to the user that put
major emphasis on assistance, and minor empha-
sis on automation. Yesterday it was '"da' in
lower case letters.

Today's DA is yesterday's child in adoles -
cence. In many cases, attempts to automate have
received more emphasis than those to assist.
Today it is "Da'" with a capital D. Tomorrow
must see this adolescent grow and mature.
Tomorrow it must be '"DA, " all upper case. The
lines of communication must be kept short and the
user involvement in definition -- deep. Tomor-
row's DA must balance assistance and automation.
It must provide Assistance in the areas of extreme
need, Automate the well-defined processes on a
user need basis, not on the basis of arbitrary
choice.

As we look to tomorrow, I would propose that
two factors be well balanced. These factors are
Evolution and Revolution. The creation of Revo-
lution where Evolution was needed or the settling
for Evolution where Revolution was needed, has
to be avoided. As we move toward tomorrow, a

reasonable balance between the blue-sky activi-
ties and the bread-and-butter jobs must exist,
because a man who doesn't have the proper basic
foods of bread and butter can hardly appreciate
the blue sky.

In a well-known work, the idea is presented
that just to keep up, one must run very fast, and
to get ahead means to run even faster. This
thought is certainly appropriate for tomorrow's
DA.

As we look to tomorrow, we must think '"big"
-- we must think of tens of thousands of circuits
instead of hundreds of circuits.

We must think ''small" -- think of these cir-
cuits being packed into a tiny area, and what ef-

fect this will have on the DA user. We must
think of the cost of a mistake.
We must think '"fast'" -- provide tools that al-

low the user ready access, provide tools that op-
erate as fast as possible. Unless we think fast,
thinking big may be a waste of time.

We must think "slow' -- be slow to jump to
the conclusion that our wonderful idea is the an-
swer to the user's prayer especially if we don't
know what he is praying for. We must think of the
slowness with which the tools are created and be
sure that the fact that things do change with time
won't eliminate the need for the tool before it is
operational.

Tomorrow's DA must provide tools that are
complete and comprehensive but not complicated.
These tools for tomorrow must be created by a
few programmers and many progineers to enable
the few engineers and many engigrammers to
move the pressure point to the proper point.

~376-

Figurev 1. DA pictoria.llyv.

Figure 2. The new e‘ngineer's view of DA,
Figure 3. A manager's view of DA.

Figure 4. DA's view of DA: A real jewel.
Figure 5. The experienced user's view of DA,
Figure 6. The user's job.

Figure 7. The user's support yesterday.

Figure 8. The user's support yesterday and
today.

Figure 9. Where to head.
Figure 10. The pressure point.

Figure 11. The pressure point in three time
frames.

Design Product Checking

Description

Functions
Records

Functions

- e - — - e - —

Management Manufacturing
Information Information

Figure 1.

=377-

. Plan and Specify the Product.

. Develop and Record Second-Level Descriptions of the Product.
. Check the Second-Level Descriptions.

. Develop and Record Detailed Logic for the Product.

. Check the Detailed Logic.

. Package the Detailed Logic.

. Check the Packaging Information.

. Check the Dynamic Characteristics of the Packaged Logic.

. Provide Information for Manufacturing the Product.

. Process Engineering Changes for Corrections or New Features.

Activities
1 -Plan
2-2nd level
3-Check(?2)
4 - Detail Logic
5-Check (4)
6-Package Degree
7-Check (6) of

8-Dynamic DA Support
Analysis

9-Mfg. Info.
10-EC’s

User Task —=

Activities
1-Plan
2-2nd Level
3-Check (2)
4-Detail Logic
5-Check (4)
6-Package
7-Check (6)
8-Dynamic

Analysis
9-Mfg. Info.
10-EC's

Activities
1-Plan
2-2nd Level
3-Check (2)
4-Detail Logic
5-Check (4)
6-Package
7-Check (6)
8-Dynamic

Analysis
9 -Mfg. Info.
10-EC’s

|

Degree
of
DA Support

N
\
\
\
J L

|

Degree
of
DA Support

| Design | Build | Tesr_

1

Pressure
Point

Moves Moves

—ef———r— L —

Dvue to Due to

1-Lack of Tools to Check 1- Ability to Debug on Paper
2-Schedules ' - 2-Difficulty of EC
3-Ease of EC 3-Engineer’s Personality
4-Engineer’s Personality (Hard)

(Soft)

Start Pwr on

| Design l Build I Hardware Test

| Hard
YESTERDAY | Changes

Start Pwr on Shnp

‘ Design and Debug | Build ‘ Hardware Test I

Paper Hardware
TODAY Chcmges Changes

Pwr on Ship
Hardware

| Design and Debug | Build Test

Paper Hardware
TOMORROW |'<—7 Changes |-*—— Changes —’—‘

