
A Database Approach for Managing VLSI Design Data 

Randy H. Katz 
Computer Sciences Department 

1210 West Dayton St. 
University of Wisconsin-Madison 

Madison, WI 53706 
(608) 262-0664 

ABSTRACT: We describe an approach to 
managing information about VLSI designs, 
founded upon database system methods. A 
database component provides a low-level 
flat-file interface to stored data. Built 
on top is a design data management system, 
supporting the hierarchical construction of 
a design from primitive cells, and organiz- 
ing data about alternative design represen- 
tations and versions. Programs to provide 
a tailored interface to design data are 
also provided. The system simplifies the 
rapid construction of new design tools by 
taking responsibility for design data 
management. 

i. Introduction 

The simplified design method of Mead 
and Conway [MEAD80] has sDawned a new cul- 
ture of custom chip design. However, many 
experts agree there will be a limit of 
growth in VLSI circuit complexity because 
of the lack of tools to adequately support 
the design process. Although the design 
automation community has responded with 
sophisticated tools to aid in circuit lay- 
out and verification, the important issue 
not adequately addressed by these tools is 
the management of the VLSI design data 
itself. 

Computer-aided design tools for VLSI 
must efficiently manage large volumes of 
information that describe a design. This 
includes the descriptions of the different 
representations of a design (e.g., electri- 
cal, logical, behavioral, functional, and 
topological), and the various versions of a 
design as it evolves. The data management 
component is crucial to the success of a 
CAD system, yet few systems provide sophis- 
ticated data management facilities 
[LOSL80]. 

The current state-of-the-art is to 
store design data in a traditional file 
system. These do not provide a wide range 
of data management facilities. However 
database systems support such features 
critical to effective design data manage- 
ment as: dynamically changeable file 
structures, a variety of data access 
mechanisms, control mechanisms for secure 
and concurrent access, and recoverable 

storage of data. 

In this paper, we outline an alterna- 
tive approach for managing circuit design 
data, founded on database management facil- 
ities. While the idea of employing database 
techniques for computer-aided design is not 
new [CIAMP76a, CIAMP76b, FOST75, HASK82, 
HAYN81, HOSK79, KORE75, KAWA78, MITS80, 
NIEN79, ROBE81, SUCH79, VALL75, WILM79, 
WONG76a, WORK74, ZINT81], these systems are 
tailored to specific design domains, with 
"wired" database structures that make it 
difficult to support a wide range of design 
tools and methodologies. The system 
described here explicitly supports 
hierarchical design without a prespecified 
selection of design representations, is 
founded on current database techniques, and 
concentrates on providing an interface to 
design data upon which new design tools can 
easily be constructed. 

This paper is organized as follows. In 
the next section, we give a summary of the 
features desired in a system for managing 
design data. In Section 3, we argue that 
existing database systems, while supporting 
many of these features, fall short in sup- 
porting several critical ones. In Section 
4, we briefly review the previous efforts 
to apply database techniques to design data 
management, and contrast them with our 
approach. Section 5 describes the archi- 
tecture of our system for design data 
management. We indicate how database 
management techniques can be adapted for 
design management. We close the paper with 
conclusions and the current status of our 
system. 

2. Feature Summary for Design Data Manage- 
~ent e 

Hierarchical "levels of abstraction" 
are important for tackling any complex 
problem, especially so for describing a 
VLSI design. [MEAD80] describes a hierarch- 
ical design method for VLSI systems design, 
wherein a complete system is first concep- 

This list has been compiled from a 
variety of sources, primarily [EAST80, 
EAST81, HASK82, ROSE80]. We only include 
those features we deem to be truly desir- 
able for design data management. 
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tualized, and then decomposed recursively 
into constituent, more primitive parts. The 
leaves of the hierarchy represent the 
detailed specifications of the primitive 
cells that constitute the design. Internal 
nodes describe how the more primitive com- 
ponents are composed and interconnected. 
In a series of papers about CAD tools for 
VLSI, [ALLE81, DIRE81, DUTT81, NEWT81, 
TRIM81], a common theme emerges that the 
design tools must reflect this hierarchical 
structure. A design data management system 
is no exception. 

The hierarchical approach is generally 
agreed upon; the details of design 
represention are not. A design may be 
described by many alternative representa- 
tions, including: layout geometries, stick 
diagrams, block diagrams, logic diagrams, 
transistor networks, functional specifica- 
tions, or behavioral specifications. 
Rather than impose an a priori assumption 
on the kinds of design representations sup- 
ported, a design data management system 
should provide support for organizing mul- 
tiple representations of a design, without 
it understanding their detailed structure. 
Higher level software is responsible for 
choosing the form of the representation and 
for its interpretation. 

A system for managing designs does not 
itself interpret the representations of a 
design, but must be responsible for keeping 
track of the multiple representations of a 
design cell. It should tag the alternative 
representations that require update after a 
design change to a particular representa- 
tion. Note that the design system itself 
cannot propagate design changes to alterna- 
tive representations without an understand- 
ing of the semantics of the representation. 

A design data management system keeps 
track of the multiple versions of a design 
as well. Facilities for declaring a design 
as "released" and unupdatable, must be pro- 
vided. Also needed is the ability to 
archive and restore old versions. 

A design data management system not 
only propagates the "need to update" to 
alternative representations of a modified 
design, but also provides mechanisms to aid 
in propagating changes up the design 
hierarchy. A component of a design may 
require update because of a change in one 
of its subcomponents. The method by which 
this update is performed should be left to 
higher level software. 

A completely instantiated VLSI design 
is likely to stress the capabilities of 
most modern storage systems. The design 
system must provide facilities for pro- 
cedurally deriving parts of the design from 
stored data. A design is a combination of 
stored data and procedurally defined data. 

Finally, the system must serve as a 
convenient base upon which to develop new 
design tools for VLSI. Therefore, the 
interface to these tools should be flexible 
and easily tailored for the particular 
design data representations manipulated by 
these tools. Existing tools should inter- 
face to the system without great diffi- 
culty, by making the system appear identi- 
cal to a file system. 

3. Suitability of Existing Database Sys- 
tems for Design Data Management 

Relational database technology, as 
developed in such prototype systems as 
INGRES [STON76a] and System-R [ASTR76], 
provides many desirable features for the 
management of design data. Further, rela- 
tional data handling techniques have not 
been available to builders of design sys- 
tems until recently. However, even rela- 
tional database systems are not perfectly 
matched to the problem of managing design 
data (e.g., see [HASK82, HAYN81]). Exten- 
sions are necessary, and we describe them 
here. 

The conceptual contribution of the 
relational approach is the clean separation 
of data's physical organization from the 
flat file view presented to the user. While 
the user sees his data organized as a col- 
lection of tables, in actuality, sophisti- 
cated techniques for organizing data on 
secondary storage are employed. For exam- 
ple, extendible hashing [FAGI79] and B- 
trees [COME79] can be used to provide asso- 
ciative access to dynamically changing 
files. These are new access mechanisms that 
are not to be found in many older database 
systems. 

Relational systems provide mechanisms 
for the reliable storage of data, even in 
the face of system crashes [GRAY78]. 
Mechanisms to support data sharing, while 
isolating a user from the concurrent 
updates of other users, are also provided. 
Database systems support the notion of a 
transaction: a collection of database 
operations that are either executed com- 
pletely or not at all [GRAY78]. Finally, 
sophisticated access control [GRIF76, 
STON76b] and integrity control [ESWA75, 
STON75] mechanisms are supported by these 
systems. 

However, current systems do not con- 
veniently support all the facilities needed 
for design data management. First, database 
systems have been designed for the manage- 
ment of regular, formatted data. It is not 
easy to represent unstructured data, such 
as text or graphical images. Second, rela- 
tional systems do not provide operations to 
manipulate hierarchically structured data. 
Third, few systems provide physical storaqe 
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structures that exploit the hierarchical 
nature of design data. For example, in 
INGRES, it is awkward to cluster (i.e., 
group together) the child records of a par- 
ticular parent because there is no storage 
structure that spans relations. On the 
other hand, System-R supports the notion of 
a "clustering link" to connect interrelated 
records from different tables. Fourth, 
database systems do not explicitly support 
multiple representations or versions. 
Finally, the kinds of transactions encoun- 
tered in the design environment differ con- 
siderably from those currently supported by 
database systems. The latter are short in 
duration and typically involve little data. 
In a design environment, a designer 
"checks-out" a piece of a design, modifies 
it extensively over a long period of time, 
and finally returns it to the database. 
These kinds of transactions require large 
volumes of data and persist for long 
periods of time ("conversational transac- 
tions" [HASK82]). 

4. Previous Approaches to Design Data 
Manag eme~t 

Design automation encompasses many 
diverse fields of design activity. What 
separates VLSI from others is the need for 
supporting an ever changing collection of 
representations for a design. Tools 
developed for previous technologies may not 
be applicable to VLSI design. 

A major weakness of earlier systems is 
their inflexible choice of the set of sup- 
ported representations. While this may be 
acceptable for a well understood design 
domains, the choice of what constitutes the 
correct set of representations for VLSI has 
yet to be determined. 

[ZINT81] describes a design in terms 
of a logic diagram and a ntwork of devices. 
[SUCH79] describes one as an interconnec- 
tion of parts from a standard catalog of 
discrete transistors, SSI, MSI, and LSI 
parts. [CIAM76a, CIAM76b] represents it as 
devices, pins, interconnections, and sig- 
nals. [KORE75] describes it in terms of 
parts, nets, wiring, and layout artwork. 
Logical, physical, and electrical represen- 
tations are part of the database described 
in [WORK74]. None of these make it easy to 
create new design representations. 

In addition, none of the systems men- 
tioned above are based on state-of-the-art 
database technology. All have been built on 
network database systems. These provide 
primitive access and concurrency control 
features, and do not adequately isolate the 
design management software from the physi- 
cal database representation. 

Some systems have been based on rela- 

tional techniques [WILM79, VALL75]. How- 
ever, these systems do not address the 
issues of organizing a design hierarchy or 
supporting multiple design representations. 

[ROBE81] describes a system that most 
closely resembles ours. It supports multi- 
ple design representations constructed from 
a set of basic data organizations (symbol 
tables, relational tables, structured data 
tables, unstructured data). Interfaces are 
provided for a variety of tools. However, 
it fails to support a design hierarchy, and 
provides no mechanisms for maintaining con- 
sistency across representations. Further, 
it is built on top of a CODASYL database 
system, implying that its schema is static, 
and thus new design representations cannot 
be added without a major reorganization of 
the database. 

The GLIDE System [EAST80] is another 
state-of-the-art design data management 
system. Its features include dynamic sche- 
mas, automatic invocation of procedures for 
integrity enforcement, and record types and 
operations for geometric modeling. Further, 
the system is accessed through its own 
sophisticated programming language, rather 
than via a procedure call interface. How- 
ever, because the system is oriented 
towards general purpose geometric modeling, 
it does not support special features impor- 
tant for VLSI design. In particular, the 
design hierarchy is not explicitly sup- 
ported, and thus cannot be used in design 
change propagation or to control concurrent 
access. Neither is a flexible choice of 
design representations, although there is 
support for design alternatives. Finally, 
the choice of interface, i.e., through a 
special programming language, may make it 
difficult to interface existing tools to 
the design system. 

The utility of database techniques for 
design data management is not universally 
accepted. [SIDL80] claims that commercial 
database systems are hard to use and suffer 
from poor performance. While true for older 
systems, this is not as much of an issue 
for relational systems. [BAND75] claims 
that certain useful operations, such as 
tree traversal, are difficult to perform in 
relational systems. This is more an 
artifact of high-level relational query 
languages than the data organization. A 
system with a low-level interface could 
support the operation. [TRIM81] claims that 
extensions to a database are disruptive and 
costly, and that interfacing to a database 
requires too much work. The first claim is 
not as true for relational systems, which 
support schemas and structures that can 
change dynamically. The latter issue is 
addressed by the remainder of this paper: 
the system described below is designed to 
facilitate design tool interface to a data- 
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base. 

No previous system supports the range 
of facilities needed to support VLSI 
design. What sets ours apart is its expli- 
cit representation of a design hierarchy, 
its support for a flexible choice of design 
representations, and its multilevel archi~ 
tecture, which combine the advantages of a 
relational interface to stored data, with a 
customized, domain specific interface to 
design data. 

5. A Multilevel Architecture for Design 
Data Management 

5.1. System Overview 

The deficiencies af current systems 
for managing design data has led us to 
develop a multilevel architecture for 
design data management (see Figure 5.1). 
The system's core is the database com- 
ponent. Its responsibility is to provide an 
efficient interface to stored data, and to 
isolate the higher layers from considera- 
tions of reliability, physical storage 
structure, data sharing, access control, 
and (low-level) integrity control. It sup- 
ports unstructured data and record cluster- 
ing, while providing a simple and flexible 
interface upon which the rest of the system 
is built. 

A design management component is built 
on top of the database component. It is 
responsible for managing the design hierar- 
chy, and organizing the alternative design 
representations and multiple versions 
within a database supported by the database 
component. It provides an interface for 
extracting and replacing subcomponents of a 
design from the design hierarchy. 

The final layer consists of programs 
that interpret the data stored about a 
design. Design interpreters provide an 
interface to design tools that is appropri- 
ate for manipulating the data at hand, 
e.g., layout geometries, transistors, etc. 

In the remainder of this section, we 
describe each of the levels in more detail. 

5.2. Database Compone_nnt 

The database component is a low-level 
data management system that supports a 
relational style data interface. Although 
the data appears to be organized as simple 
tables, it has a complicated physical 
organization to facilitate efficient data 
access. This is hidden from higher levels 
of the system. 

Methods for implementing a database 
component are now well understood. The RSS 
(Relational Storage System) of System-R is 
illustrative of the general architecture 

I manipulation interface 
for represented data 

V 

I Design Interpreters I 

design hierarchy, versions, 
representations 

V 

I Design Management 1 
+ ..................... + 

I f l a t  f i l e s  
V 

' ~  . . . . . . . . . . . . . . . . . . . . .  ~ 

I Database Component 1 
+ + 

I access methods, 
storage structures 

V 

Design 
Database 

Figure 5.1 - Three Level Architecture 

[ASTR76]. While the RSS is not a full func- 
tion relational system, it does provide 
operators for data recovery, transaction 
management, and data definition. The inter- 
face supports record-at-a-time access via 
sequential scan, indexed scan, or interre- 
lational links. 

The database component is composed of 
the subsystems of a database management 
system responsible for supporting access to 
physical storage structures, including 
buffer management and physical I/O (access 
methods), atomic actions and isolation from 
concurrent users (transaction manager), and 
reliable storage and recovery from crashes 
(recovery manager). [GRAY78, GRAY81a, 
GRAY81b] provide discussions of the imple- 
mentation aspects of these subsystems. 

A database component must be easy to 
extend with new access methods. Indexed and 
hashed associative storage structures are 
supported, but new methods for handling 
unstructured data, such as text and other 
data peculiar to the design environment, 
are also needed. For example, we are adapt- 
ing techniques proposed for handling tex- 
tual databases in the office automation 
environment. 
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5.3. Design Manager 

The database component supports data- 
bases organized as a collection of tables 
(or files), and provides a set of record- 
at-a-time operations for their manipula- 
tion. The design manager is responsible for 
mapping the design hierarchy, including 
alternative representations and multiple 
design versions, onto these structures. 

A design hierarchy consists of Primi - 
tive leaf cells and composition cells (see 
Figure 5.2). We store the hierarchy in a 
database as follows. Each cell is uniquely 
identified by a system assigned cell-id. 
Information about cells, such as its 
designer's name and the last time it was 
updated, are stored in a cell table. Asso- 
ciated with each primitive cell is a col- 
lection of representations for the cell, 
e.g., layout geometries, transistor net- 
works, etc. Information about a particular 
kind of cell representation is stored in a 
repressentation table. There is one 
representation table for each representa- 
tion type. A row is an instance of a 
represented object in a named cell. All 
rows describing the same cell should be 
grouped together (e.g., clustered on cell- 
id). A simple extension allows a collection 

of tables (e.g., boxes, wires, polygons) to 
collectively represent a particular type 
(e.g., geometries). This is similar to the 
database concept of generalization 
[SMIT77], wherein a geometry "is-a" box, 
wire, or polygon. 

The design hierarchy is stored in the 
composition table. This table describes a 
composition cell as placements and orienta- 
tions of more primitive composition cells 
and leaf cells. For simplicity, we assume a 
common hierarchy for all the alternative 
representations of a design. It is a simple 
extension to support separate hierarchies 
for each type of representation. In addi- 
tion, it is possible to represent a design 
hierarchy as a rooted directed acyclic 
graph instead of a tree. Figure 5.3 shows 
the database representation of the design 
hierarchy of Figure 5.2. 

The scheme described above supports a 
flexible representation of the design. The 
design manager knows about three kinds of 
tables, but the detailed structure of these 

o CELL 3 

CELL 1 [] [] CELL 2 

Figure 5.2 -- Simple Design Hierarchy 
[] leaf cells, o composition cells 

Cell Table 

Cell-id Cell-name Designer Date 
+ ........ + ........... + .......... + ...... + 

1 1 1 CELL 1 1 R. Katz 1 10/6 1 
+ ........ + ........... + .......... + ..... ~+ 

1 2 I CELL 2 I R. Katz 1 10/7 1 
+ ........ + ........... + .......... + ...... + 

I 3 I CELL 3 I R. Katz 1 10/9 1 
+ ........ + ........... + .......... + ...... + 

Composition Table 

Comp-cell Prim-cell Placement 
+ ......... + ......... + ......... + 

h 3 I 1 I I 
+ ......... + .......... + ......... + 

1 1 2 1 1 
+ ......... + ......... + ......... + 

Representation Table: Boxes 

Cell-id layer minx miny maxx maxy 
................ + .... + .... + .... + .... + 

1 metal 0 I 0 0 I 40 
+ ....... + ..... + .... + .... + .... + .... + 

.... I ........ I .... 
+ ....... + ..... + .... + .... + .... + .... + 

1 poly i0 1 I0 20 1 20 
+ ....... + ..... + .... + .... + .... + .... + 

2 diff 5 I 15 20 1 35 
+ ....... + ..... + .... + .... + .... + .... + 

. . . . . . . . . .  I ........ I .... 
+ ........ + ...... + ..... + .... + .... + .... + 

2 implt -I0 I-i0 5 1 25 
+ ....... + ..... + .... + .... + .... + .... + 

REQU- 1 Determined by Design 
IRED 1 Interpreters 

Figure 5.3 -- Database Representation 
of Design Hierarchy 

is determined by higher levels. Certain 
columns are required by the design manager, 
but additional columns can be appended for 
use by the design interpreters. 

A version is a consistent state of a 
design that can no longer be updated. The 
concept is similar to that of a database 
snapshot [ADIB80]. However, the snapshot 
consists of the entire database, including 
the catalogs that describe its structure. 
The latter is needed whenever a design is 
restored to a previous version after the 
schema has changed (e.g., the representa- 
.tion details for specific types have 
changed). Some of the implementation tech- 
niques for versions are similar to those 
for differential files [SEVE76]. 

The database manager provides two 
basic operations for manipulating a design 
hierarchy: an extract operator for 
"checking-out" a subdesign from the design 
repository (identified by the root of a 
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subtree of the design hierarchy) and a 
replace operator to modify the contents of 
a subdesign. The design manager is a 
librarian, keeping track of which parts of 
the design are currently being editted by 
designers. In effect, we treat the design 
database as a hierarchically organized fil- 
ing cabinet. 

The size and complexity of a VLSI 
design make it important to support multi- 
ple designers simultaneously accessing 
design data. We exploit the hierarchical 
structure of a design to control concurrent 
access to design parts. Parallel subtrees 
indicate independence among the design ele- 
ments within them. Multiple designers can 
simultaneously access subdesigns as long as 
each is in an independent subtree, i.e., is 
not contained within any checked-out sub- 
design, and does not contain a subdesign 
checked-out to another designer. 

Hierarchical locking protocols 
[GRAY78] can be used to support concurrent 
access to parallel subtrees. A designer 
holds an "intentions lock" on a subtree if 
he wishes to lock one of its subtrees for 
design activity. Many designers can simul- 
taneously hold intentions locks on the same 
composition cell, but only one can have 
"exclusive" access for update. Intentions 
locks are requested for all the nodes on 
the path from the root of the design 
hierarchy to the root of the subdesign. An 
exclusive lock is requested on the latter 
node. It will not be granted if the node is 
already held with an exclusive lock (a 
designer already has it checked-out) or an 
intentions lock (a subdesign of this one 
has been checked-out). The protocol can be 
extended for use with hierarchies forming a 
directed acyclic graph. 

Extracting a subdesign consists of 
setting the locks as discussed. The data- 
base component provides the hierarchical 
locking mechanisms, and tuple-level lock- 
ing. Extraction does not imply that data 
has been read from the database. It simply 
insures that the data to be updated by one 
designer cannot be simultaneously accessed 
by another. 

The replace operation causes a new 
subtree to replace one that has already 
been extracted. The act of modifying a sub- 
tree may invalidate higher levels of the 
design hierarchy. For every node along the 
path back to the root of the design, a con- 
sistency checking program, provided by the 
design interpreters or other higher level 
software, is automatically invoked whenever 
a subtree is replaced. A sophisticated 
checker can be written with full knowledge 
of the structure of the representation. For 
example, if there is a bounding box associ- 
ated with each cell, the checker can insure 
that the new subtree does not exceed its 

allocated area. If it does, then the update 
can be aborted, or more likely, the checker 
can warn the user (e.g., a graphical cir- 
cuit editor or some other design tool) of 
the potential problem. The design manager, 
without detailed knowledge of the represen- 
tations of the design, can at best indicate 
those cells that may require update. 

The above observation applies to the 
propagation of the "need to update" to 
other representations of an updated primi- 
tive cell. The formulation of a consistency 
checker across representations is more dif- 
ficult because it must understand the 
equivalence across representations. The 
problem of mapping between different data- 
base representations of the same semantic 
objects has already been studied (e.g., 
[WONG79]). These techniques may be applica- 
ble here, but require complete identifica- 
tion of equivalent objects across represen- 
tations. At least, the design manager can 
indicate those rows of representation 
tables that might require updating. 

An alternative is possible if the 
design method supports a hierarchy of 
representations, with one algorithmically 
derived from another. For example, a sticks 
representation can be compiled into a two 
dimensional layout. The design manager 
automatically invokes the compiler whenever 
a change has been in the more abstract 
representation. This is similar to the Make 
facility of UNIX [FELD79]. 

The design data management system also 
provides operations for version control. A 
design is created by describing its initial 
structure to the design manager, who 
instructs the database component to create 
the necessary relations. A version is an 
unupdatable snapshot of a design. Version 
creation must be synchronized with update 
activity in the design hierarchy. Versions 
can be archived, and later restored. 

The above assumes that the process of 
design ~s an orderly progression from ver- 
sion to version. Alternative designs are 
not supported. These could arise from the 
simultaneous update of a subdesign by more 
than one designer, each leading to a new 
alternative. Design alternatives can be 
represented as changes to a read-only ver- 
sion of a design. An alternative becomes 
the next version by merging its accumulated 
change file into the original. Design 
alternatives are similar to the notion of 
hypothetical databases [STON80, STON81], 
and can be implemented by differential 
files [SEVE76] or views [STON75]. 

5.4. Design Interpreters 

The design interpreters choose a 
design representation (structure of the 
representation tables), and provide an 

Paper 19.2 
279 



interface to design tools for manipulating 
objects of the representation. In addi- 
tion, they provide a consistency checker 
for use by the design manager. 

To illustrate the structure of a 
design interpreter, we describe one for 
simple layout data. A layout is a collec- 
tion of boxes assigned to particular 
layers. A "boxes table" represents boxes by 
the cell to which they are assigned, the 
layer, and the minimum and maximum x and y 
coordinates for the placement of the box 
within a cell. The latter can be translated 
by the placement and orientation informa- 
tion found in the composition table. In 
addition, each cell description contains 
its bounding box, determined from the 
minimum and maximum x and y coordinates of 
any feature within the cell. This will be 
used by the consistency checker. 

The manipulation interface tailored 
for a hypothetical graphics editor for 
integrated circuit layout is the following. 
The basic required operations include the 
ability to retrieve boxes for display, to 
select all boxes that contain a particular 
coordinate, to delete or modify accessed 
boxes, and to create new leaf cells and 
generally manipulate the design hierarchy. 
To edit a particular cell requires that it 
be extracted from the design hierarchy 
(i.e., to begin a conversational transac- 
tion). The cumulative effects of cell com- 
positions can be determined for each leaf 
cell. Retrieve, select, delete, and modify 
operations can be mapped into conventional 
database operations applied to the boxes 
representation table. The creation of a new 
cell requires updates to the cell, composi- 
tion, and boxes representation tables. 
These are straightforward database opera- 
tions issued by the boxes interpreter. When 
editing is done, the subtree is replaced 
and the consistency checker is invoked to 
insure that no cell has outgrown its boun- 
dary (i.e., to end a conversational tran- 
saction). The checker can be written so 
that invalid cells can be identified, and 
passed to the editor for highlighted 
display on a graphics terminal. 

All software dealing with the design 
hierarchy and database access is located in 
the boxes interpreter. The writer of • the 
integrated circuits editor can concentrate 
on the issues of man/machine dialogue and 
data presentation. Once an interpreter for 
the boxes data representation has been 
written, new tools that manipulate boxes 
can be developed more quickly. 

6. Conclusions and Status 

We have described an approach for 
applying database techniques to managing 
VLSI circuit design data. A prototype 
implementation is currently underway. We 

are building our system on top of a locally 
written storage system modelled along the 
lines of System-R's RSS, and are construct- 
ing design interpreters for a limited 
number of representational types. In par- 
ticular, we are designing an interpreter 
for geometric layout data. We have acquired 
several design tools from other universi- 
ties, and intend to interface these to our 
interpreter. 

Many important research issues require 
further investigation. First, we are 
developing new methods to store unstruc- 
tured data in a database system. Second, we 
are investigating how the concept of design 
version differs from database snapshots, 
and whether new techniques are needed for 
their support. Third, we are exploring how 
to maximize parallel design activity by 
exploiting the hierarchical structure of 
the design. Are new methods of concurrency 
control required to support "conversational 
transactions", or can existing mechanisms, 
such as hierarchical locking protocols, be 
adapted? Fourth, we are investigating how 
to maintain design consistency by automati- 
cally propagating design changes to design 
components, either across design represen- 
tations or through the design hierarchy. 
Finally, we are investigatng how to support 
alternative designs by adapting the tech- 
niques for hypothetical databases. 

Eventually, we plan to adapt our 
architecture to a network environment, in 
which the design manager acts as a server 
for a network of design workstations. The 
issue is how to partition the layers of the 
design system between the workstations and 
the centralized server machines. 

To demonstrate that new tools can be 
developed more quickly on top of a design 
data management system, we also intend to 
develop a set of tools for direct use with 
our system. These will include a graphical 
editor for integrated circuit layout, 
design and electrical rules checkers, and 
circuit simulators. 

7. References 

[ADIB80] Adiba, M. E., B. G. Lindsay, 
"Database Snapshots," Proc. Intl. 
Conference on Very Large Databases, 
(Oct. 1980). 

[ALLE81] Allen, J., P. Penfield, "VLSI 
Design Automation Activities at MIT," 
IEEE Trans. on Circuits and Systems, V 
CAS-28, N 7, (July 1981). 

[ASTR76] Astrahan, M. M., et. al., "System 
R: Relational Approach to Database 
Manag%ment," ACM Trans. on Database 
Systems, V i, N 2, (June 1976). 

Paper 19.2 
280 



[BAND75] Bandurski, A. E., D. K. Jefferson, 
"Data Description for Computer-Aided 
Design," Proc. ACM SIGMOD Conference, 
(May 1975). 

[CIAM76a] Ciampi, P. L., et. al., "Control 
and Integration of a CAD Database," 
13th Design Automation Conference, 
1976. 

[CIAM76b] Ciampi, P. L., J. D. Nash, "Con- 
cepts in CAD Database Structures," 
13th Design Automation Conference, 
1976. 

[COME79] Comer, D., "The Ubiquitous B- 
tree," ACM Computing Surveys, V Ii, N 
2, (June 1979). 

[DIRE81] Director, S. W., et. al., "A 
Design Methodology and Computer Aids 
for Digital VLSI Systems," IEEE Trans. 
on Circuits and Systems, V CAS-28, N 
7, (July 1981). 

[DUTT81] Dutton, R. W., "Stanford Overview 
in VLSI Research," IEEE Trans. on 
Circuits and Systems, V CAS-28, N 7, 
(July 1981). 

[EAST80] Eastman, C. M., "System Facilities 
for CAD Databases," 17th Design Auto- 
mation Conference, 1980. 

[EAST81] Eastman, C. M., "Recent Develop- 
ments in Representation in the Science 
of Design," 18th Design Automation 
Conference, 1981. 

[ESWA75] Eswaren, K, P., D. D. Chamberlain, 
"Functional Specifications of a Sub- 
system for Database Integrity," Proc. 
Intl. Conf. on Very Large Databases, 
(Sep. 1975). 

[FAGI79] Fagin, R., et. al., "Extendible 
Hashing -- A Fast Access Method for 
Dynamic Files," ACM Trans. on Database 
Systems, V 4, N 3, (Sep. 1979). 

[FELD79] Feldman, S. J., "Make -- A Program 
for Maintaining Computer Programs," 
UNIX Time-Sharing System UNIX 
Programmer's Manual, Seventh Edition, 
Volume 2A, (Jan. 1979). 

[FOST75] Foster, J. C., "The Evolution of 
an Integrated Database," 12th Design 
AUtomation Conference, 1975. 

[GRAY78] Gray, J., "Notes on Database 
Operating Systems," IBM Research 
Report RJ2188(30001), 2/23/78. 

[GRAY81a] Gray, J., et. al., "The Recovery 
Manager of the System-R Database 
Manager," ACM Computing Surveys, V 13, 
N 2, (June 1981). 

[GRAY81b] Gray, J., "The Transaction Con- 
cept: Virtues and Limitations," Proc. 
Intl. Conference on Very Large Data- 
bases, (Sep. 1981). 

[GRIF76] Griffiths, P. P., B. W. Wade, "An 
Authorization Mechanism For a Rela- 
tional Database System," ACM Trans. on 
Database Systems, V i, N 3, (Sep. 
1976). 

[HASK82] Haskin, R. L., R. A. Lorie, "On 
Extending the Functions of a Rela- 
tional Database System," 1982 A.C.M. 
SIGMOD Conference, (June 1982). 

[HAYN81] Haynie, M. N., "The 
Relational/Network Hybrid Data Model 
for Design Automation Databases," 18th 
Design Automation Conference, 1981. 

[HOSK79] Hoskins, E. M., "Descriptive Data- 
bases in Some Design/Manufacturing 
Environments," 16th Design Automation 
Conference, 1979. 

[KAWA78] Kawano, et. al., "The Design of a 
Database Organization for an Elec- 
tronic Equipment Design Automation 
System," 15th Design Automation 
Conference, 1978. 

[KORE75] Korenjak, A. J., A. H. Tiger, "An 
Integrated CAD Database System," 12th 
Design Automation Conference, 1975. 

[KORE75] Korenjak, A. J., A. H. Tiger, "An 
Integrated CAD Database System," 12th 
Design Automation Conference, 1975. 

[LOSL80] Losleben, P., "Computer Aided 
Design for VLSI," in Very Large Scale 
Integration VLSI: Fundamentals and 
Applications, D. F. Barbe, ed., 
Springer Series in Electrophysics 5, 
Springer Verlag, Berlin, 1980. 

[MEAD80] Mead, C., L. Conway, Introduction 
to VLSI Systems, Addison-Wesley, Read- 
ing, MA, 1980. 

[MITS80] Mitsuhasi, T., et. al., "An 
Integrated Mask Artwork and Analysis 
System," 17th Design Automation 
Conference, 1980. 

[NEWT81] Newton, A. R., et. al., "Design 
Aids for VLSI: The Berkeley Perspec- 
tive," IEEE Trans. on Circuits and 
Systems, V CAS-28, N 7, (July 1981). 

[NIEN79] Nieng, K-Y, D. A. Beckly, "Com- 
ponent Library for an Integrated 
Design Automation System," 16th Design 
Automation Conference, 1979. 

[ROBE81] Roberts, et. al., "A Vertically 
Organized Computer-Aided Design Data 
Base, 18th Design Automaton Confer- 

Paper 19.2 
281 



ence, 1981. 

[ROSE80] Rosenberg, L. M., "The Evolution 
of Design Automation to Meet the Chal- 
lenges of VLSI," 17th Design Automa- 
tion Conference, 1980. 

[SEVE76] Severence, D. G., G. M. Lohman, 
"Differential Files: Their Application 
to the Maintenance of Large Data- 
bases," ACM Trans. on Database Sys- 
tems, V i, N 3, (Sep. 1976). 

[SIDL80] Sidle, T. W., "Weakness of Commer- 
cial Database Management Systems in 
Engineering Applications," 17th Design 
Automation Conference, (June 1980). 

[SMIT77] Smith, J., D. Smith, "Database 
Abstractions: Aggregations and Gen- 
eralizations," ACM Trans. on Database 
Systems, V 2, N 3, (Sep. 1977). 

[STON75] Stonebraker, M., "Implementation 
of Integrity Constraints and Views by 
Query Modification," Proc. ACM SIGMOD 
Conf., (May 1975). 

[STON76a] Stonebraker, M. R., et. al., "The 
Design and Implementation of INGRES," 
ACM Trans. on Database Systems, V i, N 
3, (Sep. 1976). 

[STON76b] Stonebraker, M. R., P. Ruben- 
stein, "The INGRES Protection System," 
Proc. 1976 ACM National Conference, 
(Oct. 1976). 

[STON80] Stonebraker, M. R., K. Keller, 
"Embedding Expert Knowledge and 
Hypothetical Data Bases into a Data 
Base System," Proc. ACM SIGMOD Conf., 
(May 1980). 

[STON81] Stonebraker, M. R., "Hypothetical 
Databases as Views," Proc. ACM SIGMOD 
Conf., (May 1981). 

[SUCH79] Sucher, D. J., D. F. Wann, "A 
Design Aids Database for Physical com- 
ponents," 16th Design Automation 
Conference, 1979. 

[TRIM81] Trimberger, S., et. al., "A Struc- 
tured Design Methodology and Associ- 
ated Software Tools," IEEE Trans. on 
Circuits and Systems, V CAS-28, N 7, 
(July 1981). 

[VALL75] Valle, G. "Relational Data Han- 
dling Techniques in IC Mask Layout 
Procedures," 12th Design Automation 
Conference, 1975. 

[WILM79] Wilmore, J. A., "The Design of an 
Efficient Data Base to Support an 
Interactive LSI Layout System," 16th 
Design Automation Conference, 1979. 

[WONG79a] Wong, S., W. Bristol, "A Computer 
Aided Design Database," 16th Design 
Automation Conference, 1979. 

[WONG79b] Wong, E., R. H. Katz, "Database 
Design and Schema Conversion for Rela- 
tional and DBTG Databases," ist Intl. 
Conference on Entities and Relation- 
ships, (Dec. 1979). 

[WORK74] Works, K., et. al., "Engineering 
Data Management Systems (EDMS) for 

Computer Aided Design of Digital Sys- 
tems," llth Design Automation Confer- 
ence, 1974. 

[ZINT81] Zintl, G., "A CODASYL CAD Database 
System," 18th Design Automation 
Conference, 1981. 

Paper 19.2 
282 


