
A Database Approach for Managing VLSI Design Data

Randy H. Katz
Computer Sciences Department

1210 West Dayton St.
University of Wisconsin-Madison

Madison, WI 53706
(608) 262-0664

ABSTRACT: We describe an approach to
managing information about VLSI designs,
founded upon database system methods. A
database component provides a low-level
flat-file interface to stored data. Built
on top is a design data management system,
supporting the hierarchical construction of
a design from primitive cells, and organiz-
ing data about alternative design represen-
tations and versions. Programs to provide
a tailored interface to design data are
also provided. The system simplifies the
rapid construction of new design tools by
taking responsibility for design data
management.

i. Introduction

The simplified design method of Mead
and Conway [MEAD80] has sDawned a new cul-
ture of custom chip design. However, many
experts agree there will be a limit of
growth in VLSI circuit complexity because
of the lack of tools to adequately support
the design process. Although the design
automation community has responded with
sophisticated tools to aid in circuit lay-
out and verification, the important issue
not adequately addressed by these tools is
the management of the VLSI design data
itself.

Computer-aided design tools for VLSI
must efficiently manage large volumes of
information that describe a design. This
includes the descriptions of the different
representations of a design (e.g., electri-
cal, logical, behavioral, functional, and
topological), and the various versions of a
design as it evolves. The data management
component is crucial to the success of a
CAD system, yet few systems provide sophis-
ticated data management facilities
[LOSL80].

The current state-of-the-art is to
store design data in a traditional file
system. These do not provide a wide range
of data management facilities. However
database systems support such features
critical to effective design data manage-
ment as: dynamically changeable file
structures, a variety of data access
mechanisms, control mechanisms for secure
and concurrent access, and recoverable

storage of data.

In this paper, we outline an alterna-
tive approach for managing circuit design
data, founded on database management facil-
ities. While the idea of employing database
techniques for computer-aided design is not
new [CIAMP76a, CIAMP76b, FOST75, HASK82,
HAYN81, HOSK79, KORE75, KAWA78, MITS80,
NIEN79, ROBE81, SUCH79, VALL75, WILM79,
WONG76a, WORK74, ZINT81], these systems are
tailored to specific design domains, with
"wired" database structures that make it
difficult to support a wide range of design
tools and methodologies. The system
described here explicitly supports
hierarchical design without a prespecified
selection of design representations, is
founded on current database techniques, and
concentrates on providing an interface to
design data upon which new design tools can
easily be constructed.

This paper is organized as follows. In
the next section, we give a summary of the
features desired in a system for managing
design data. In Section 3, we argue that
existing database systems, while supporting
many of these features, fall short in sup-
porting several critical ones. In Section
4, we briefly review the previous efforts
to apply database techniques to design data
management, and contrast them with our
approach. Section 5 describes the archi-
tecture of our system for design data
management. We indicate how database
management techniques can be adapted for
design management. We close the paper with
conclusions and the current status of our
system.

2. Feature Summary for Design Data Manage-
~ent e

Hierarchical "levels of abstraction"
are important for tackling any complex
problem, especially so for describing a
VLSI design. [MEAD80] describes a hierarch-
ical design method for VLSI systems design,
wherein a complete system is first concep-

This list has been compiled from a
variety of sources, primarily [EAST80,
EAST81, HASK82, ROSE80]. We only include
those features we deem to be truly desir-
able for design data management.

Paper 19.2
274

19th Design Automation Conference

0420-0098/82/0000/0274500.75 © 1982 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F800263.809218&domain=pdf&date_stamp=1982-01-01

tualized, and then decomposed recursively
into constituent, more primitive parts. The
leaves of the hierarchy represent the
detailed specifications of the primitive
cells that constitute the design. Internal
nodes describe how the more primitive com-
ponents are composed and interconnected.
In a series of papers about CAD tools for
VLSI, [ALLE81, DIRE81, DUTT81, NEWT81,
TRIM81], a common theme emerges that the
design tools must reflect this hierarchical
structure. A design data management system
is no exception.

The hierarchical approach is generally
agreed upon; the details of design
represention are not. A design may be
described by many alternative representa-
tions, including: layout geometries, stick
diagrams, block diagrams, logic diagrams,
transistor networks, functional specifica-
tions, or behavioral specifications.
Rather than impose an a priori assumption
on the kinds of design representations sup-
ported, a design data management system
should provide support for organizing mul-
tiple representations of a design, without
it understanding their detailed structure.
Higher level software is responsible for
choosing the form of the representation and
for its interpretation.

A system for managing designs does not
itself interpret the representations of a
design, but must be responsible for keeping
track of the multiple representations of a
design cell. It should tag the alternative
representations that require update after a
design change to a particular representa-
tion. Note that the design system itself
cannot propagate design changes to alterna-
tive representations without an understand-
ing of the semantics of the representation.

A design data management system keeps
track of the multiple versions of a design
as well. Facilities for declaring a design
as "released" and unupdatable, must be pro-
vided. Also needed is the ability to
archive and restore old versions.

A design data management system not
only propagates the "need to update" to
alternative representations of a modified
design, but also provides mechanisms to aid
in propagating changes up the design
hierarchy. A component of a design may
require update because of a change in one
of its subcomponents. The method by which
this update is performed should be left to
higher level software.

A completely instantiated VLSI design
is likely to stress the capabilities of
most modern storage systems. The design
system must provide facilities for pro-
cedurally deriving parts of the design from
stored data. A design is a combination of
stored data and procedurally defined data.

Finally, the system must serve as a
convenient base upon which to develop new
design tools for VLSI. Therefore, the
interface to these tools should be flexible
and easily tailored for the particular
design data representations manipulated by
these tools. Existing tools should inter-
face to the system without great diffi-
culty, by making the system appear identi-
cal to a file system.

3. Suitability of Existing Database Sys-
tems for Design Data Management

Relational database technology, as
developed in such prototype systems as
INGRES [STON76a] and System-R [ASTR76],
provides many desirable features for the
management of design data. Further, rela-
tional data handling techniques have not
been available to builders of design sys-
tems until recently. However, even rela-
tional database systems are not perfectly
matched to the problem of managing design
data (e.g., see [HASK82, HAYN81]). Exten-
sions are necessary, and we describe them
here.

The conceptual contribution of the
relational approach is the clean separation
of data's physical organization from the
flat file view presented to the user. While
the user sees his data organized as a col-
lection of tables, in actuality, sophisti-
cated techniques for organizing data on
secondary storage are employed. For exam-
ple, extendible hashing [FAGI79] and B-
trees [COME79] can be used to provide asso-
ciative access to dynamically changing
files. These are new access mechanisms that
are not to be found in many older database
systems.

Relational systems provide mechanisms
for the reliable storage of data, even in
the face of system crashes [GRAY78].
Mechanisms to support data sharing, while
isolating a user from the concurrent
updates of other users, are also provided.
Database systems support the notion of a
transaction: a collection of database
operations that are either executed com-
pletely or not at all [GRAY78]. Finally,
sophisticated access control [GRIF76,
STON76b] and integrity control [ESWA75,
STON75] mechanisms are supported by these
systems.

However, current systems do not con-
veniently support all the facilities needed
for design data management. First, database
systems have been designed for the manage-
ment of regular, formatted data. It is not
easy to represent unstructured data, such
as text or graphical images. Second, rela-
tional systems do not provide operations to
manipulate hierarchically structured data.
Third, few systems provide physical storaqe

Paper 19.2
275

structures that exploit the hierarchical
nature of design data. For example, in
INGRES, it is awkward to cluster (i.e.,
group together) the child records of a par-
ticular parent because there is no storage
structure that spans relations. On the
other hand, System-R supports the notion of
a "clustering link" to connect interrelated
records from different tables. Fourth,
database systems do not explicitly support
multiple representations or versions.
Finally, the kinds of transactions encoun-
tered in the design environment differ con-
siderably from those currently supported by
database systems. The latter are short in
duration and typically involve little data.
In a design environment, a designer
"checks-out" a piece of a design, modifies
it extensively over a long period of time,
and finally returns it to the database.
These kinds of transactions require large
volumes of data and persist for long
periods of time ("conversational transac-
tions" [HASK82]).

4. Previous Approaches to Design Data
Manag eme~t

Design automation encompasses many
diverse fields of design activity. What
separates VLSI from others is the need for
supporting an ever changing collection of
representations for a design. Tools
developed for previous technologies may not
be applicable to VLSI design.

A major weakness of earlier systems is
their inflexible choice of the set of sup-
ported representations. While this may be
acceptable for a well understood design
domains, the choice of what constitutes the
correct set of representations for VLSI has
yet to be determined.

[ZINT81] describes a design in terms
of a logic diagram and a ntwork of devices.
[SUCH79] describes one as an interconnec-
tion of parts from a standard catalog of
discrete transistors, SSI, MSI, and LSI
parts. [CIAM76a, CIAM76b] represents it as
devices, pins, interconnections, and sig-
nals. [KORE75] describes it in terms of
parts, nets, wiring, and layout artwork.
Logical, physical, and electrical represen-
tations are part of the database described
in [WORK74]. None of these make it easy to
create new design representations.

In addition, none of the systems men-
tioned above are based on state-of-the-art
database technology. All have been built on
network database systems. These provide
primitive access and concurrency control
features, and do not adequately isolate the
design management software from the physi-
cal database representation.

Some systems have been based on rela-

tional techniques [WILM79, VALL75]. How-
ever, these systems do not address the
issues of organizing a design hierarchy or
supporting multiple design representations.

[ROBE81] describes a system that most
closely resembles ours. It supports multi-
ple design representations constructed from
a set of basic data organizations (symbol
tables, relational tables, structured data
tables, unstructured data). Interfaces are
provided for a variety of tools. However,
it fails to support a design hierarchy, and
provides no mechanisms for maintaining con-
sistency across representations. Further,
it is built on top of a CODASYL database
system, implying that its schema is static,
and thus new design representations cannot
be added without a major reorganization of
the database.

The GLIDE System [EAST80] is another
state-of-the-art design data management
system. Its features include dynamic sche-
mas, automatic invocation of procedures for
integrity enforcement, and record types and
operations for geometric modeling. Further,
the system is accessed through its own
sophisticated programming language, rather
than via a procedure call interface. How-
ever, because the system is oriented
towards general purpose geometric modeling,
it does not support special features impor-
tant for VLSI design. In particular, the
design hierarchy is not explicitly sup-
ported, and thus cannot be used in design
change propagation or to control concurrent
access. Neither is a flexible choice of
design representations, although there is
support for design alternatives. Finally,
the choice of interface, i.e., through a
special programming language, may make it
difficult to interface existing tools to
the design system.

The utility of database techniques for
design data management is not universally
accepted. [SIDL80] claims that commercial
database systems are hard to use and suffer
from poor performance. While true for older
systems, this is not as much of an issue
for relational systems. [BAND75] claims
that certain useful operations, such as
tree traversal, are difficult to perform in
relational systems. This is more an
artifact of high-level relational query
languages than the data organization. A
system with a low-level interface could
support the operation. [TRIM81] claims that
extensions to a database are disruptive and
costly, and that interfacing to a database
requires too much work. The first claim is
not as true for relational systems, which
support schemas and structures that can
change dynamically. The latter issue is
addressed by the remainder of this paper:
the system described below is designed to
facilitate design tool interface to a data-

Paper 19.2
276

base.

No previous system supports the range
of facilities needed to support VLSI
design. What sets ours apart is its expli-
cit representation of a design hierarchy,
its support for a flexible choice of design
representations, and its multilevel archi~
tecture, which combine the advantages of a
relational interface to stored data, with a
customized, domain specific interface to
design data.

5. A Multilevel Architecture for Design
Data Management

5.1. System Overview

The deficiencies af current systems
for managing design data has led us to
develop a multilevel architecture for
design data management (see Figure 5.1).
The system's core is the database com-
ponent. Its responsibility is to provide an
efficient interface to stored data, and to
isolate the higher layers from considera-
tions of reliability, physical storage
structure, data sharing, access control,
and (low-level) integrity control. It sup-
ports unstructured data and record cluster-
ing, while providing a simple and flexible
interface upon which the rest of the system
is built.

A design management component is built
on top of the database component. It is
responsible for managing the design hierar-
chy, and organizing the alternative design
representations and multiple versions
within a database supported by the database
component. It provides an interface for
extracting and replacing subcomponents of a
design from the design hierarchy.

The final layer consists of programs
that interpret the data stored about a
design. Design interpreters provide an
interface to design tools that is appropri-
ate for manipulating the data at hand,
e.g., layout geometries, transistors, etc.

In the remainder of this section, we
describe each of the levels in more detail.

5.2. Database Compone_nnt

The database component is a low-level
data management system that supports a
relational style data interface. Although
the data appears to be organized as simple
tables, it has a complicated physical
organization to facilitate efficient data
access. This is hidden from higher levels
of the system.

Methods for implementing a database
component are now well understood. The RSS
(Relational Storage System) of System-R is
illustrative of the general architecture

I manipulation interface
for represented data

V

I Design Interpreters I

design hierarchy, versions,
representations

V

I Design Management 1
+ +

I f l a t f i l e s
V

' ~ . ~

I Database Component 1
+ +

I access methods,
storage structures

V

Design
Database

Figure 5.1 - Three Level Architecture

[ASTR76]. While the RSS is not a full func-
tion relational system, it does provide
operators for data recovery, transaction
management, and data definition. The inter-
face supports record-at-a-time access via
sequential scan, indexed scan, or interre-
lational links.

The database component is composed of
the subsystems of a database management
system responsible for supporting access to
physical storage structures, including
buffer management and physical I/O (access
methods), atomic actions and isolation from
concurrent users (transaction manager), and
reliable storage and recovery from crashes
(recovery manager). [GRAY78, GRAY81a,
GRAY81b] provide discussions of the imple-
mentation aspects of these subsystems.

A database component must be easy to
extend with new access methods. Indexed and
hashed associative storage structures are
supported, but new methods for handling
unstructured data, such as text and other
data peculiar to the design environment,
are also needed. For example, we are adapt-
ing techniques proposed for handling tex-
tual databases in the office automation
environment.

Paper 19.2
277

5.3. Design Manager

The database component supports data-
bases organized as a collection of tables
(or files), and provides a set of record-
at-a-time operations for their manipula-
tion. The design manager is responsible for
mapping the design hierarchy, including
alternative representations and multiple
design versions, onto these structures.

A design hierarchy consists of Primi -
tive leaf cells and composition cells (see
Figure 5.2). We store the hierarchy in a
database as follows. Each cell is uniquely
identified by a system assigned cell-id.
Information about cells, such as its
designer's name and the last time it was
updated, are stored in a cell table. Asso-
ciated with each primitive cell is a col-
lection of representations for the cell,
e.g., layout geometries, transistor net-
works, etc. Information about a particular
kind of cell representation is stored in a
repressentation table. There is one
representation table for each representa-
tion type. A row is an instance of a
represented object in a named cell. All
rows describing the same cell should be
grouped together (e.g., clustered on cell-
id). A simple extension allows a collection

of tables (e.g., boxes, wires, polygons) to
collectively represent a particular type
(e.g., geometries). This is similar to the
database concept of generalization
[SMIT77], wherein a geometry "is-a" box,
wire, or polygon.

The design hierarchy is stored in the
composition table. This table describes a
composition cell as placements and orienta-
tions of more primitive composition cells
and leaf cells. For simplicity, we assume a
common hierarchy for all the alternative
representations of a design. It is a simple
extension to support separate hierarchies
for each type of representation. In addi-
tion, it is possible to represent a design
hierarchy as a rooted directed acyclic
graph instead of a tree. Figure 5.3 shows
the database representation of the design
hierarchy of Figure 5.2.

The scheme described above supports a
flexible representation of the design. The
design manager knows about three kinds of
tables, but the detailed structure of these

o CELL 3

CELL 1 [] [] CELL 2

Figure 5.2 -- Simple Design Hierarchy
[] leaf cells, o composition cells

Cell Table

Cell-id Cell-name Designer Date
+ + + + +

1 1 1 CELL 1 1 R. Katz 1 10/6 1
+ + + + ~+

1 2 I CELL 2 I R. Katz 1 10/7 1
+ + + + +

I 3 I CELL 3 I R. Katz 1 10/9 1
+ + + + +

Composition Table

Comp-cell Prim-cell Placement
+ + + +

h 3 I 1 I I
+ + + +

1 1 2 1 1
+ + + +

Representation Table: Boxes

Cell-id layer minx miny maxx maxy
................ + + + + +

1 metal 0 I 0 0 I 40
+ + + + + + +

.... I I
+ + + + + + +

1 poly i0 1 I0 20 1 20
+ + + + + + +

2 diff 5 I 15 20 1 35
+ + + + + + +

. I I
+ + + + + + +

2 implt -I0 I-i0 5 1 25
+ + + + + + +

REQU- 1 Determined by Design
IRED 1 Interpreters

Figure 5.3 -- Database Representation
of Design Hierarchy

is determined by higher levels. Certain
columns are required by the design manager,
but additional columns can be appended for
use by the design interpreters.

A version is a consistent state of a
design that can no longer be updated. The
concept is similar to that of a database
snapshot [ADIB80]. However, the snapshot
consists of the entire database, including
the catalogs that describe its structure.
The latter is needed whenever a design is
restored to a previous version after the
schema has changed (e.g., the representa-
.tion details for specific types have
changed). Some of the implementation tech-
niques for versions are similar to those
for differential files [SEVE76].

The database manager provides two
basic operations for manipulating a design
hierarchy: an extract operator for
"checking-out" a subdesign from the design
repository (identified by the root of a

Paper 19.2
278

subtree of the design hierarchy) and a
replace operator to modify the contents of
a subdesign. The design manager is a
librarian, keeping track of which parts of
the design are currently being editted by
designers. In effect, we treat the design
database as a hierarchically organized fil-
ing cabinet.

The size and complexity of a VLSI
design make it important to support multi-
ple designers simultaneously accessing
design data. We exploit the hierarchical
structure of a design to control concurrent
access to design parts. Parallel subtrees
indicate independence among the design ele-
ments within them. Multiple designers can
simultaneously access subdesigns as long as
each is in an independent subtree, i.e., is
not contained within any checked-out sub-
design, and does not contain a subdesign
checked-out to another designer.

Hierarchical locking protocols
[GRAY78] can be used to support concurrent
access to parallel subtrees. A designer
holds an "intentions lock" on a subtree if
he wishes to lock one of its subtrees for
design activity. Many designers can simul-
taneously hold intentions locks on the same
composition cell, but only one can have
"exclusive" access for update. Intentions
locks are requested for all the nodes on
the path from the root of the design
hierarchy to the root of the subdesign. An
exclusive lock is requested on the latter
node. It will not be granted if the node is
already held with an exclusive lock (a
designer already has it checked-out) or an
intentions lock (a subdesign of this one
has been checked-out). The protocol can be
extended for use with hierarchies forming a
directed acyclic graph.

Extracting a subdesign consists of
setting the locks as discussed. The data-
base component provides the hierarchical
locking mechanisms, and tuple-level lock-
ing. Extraction does not imply that data
has been read from the database. It simply
insures that the data to be updated by one
designer cannot be simultaneously accessed
by another.

The replace operation causes a new
subtree to replace one that has already
been extracted. The act of modifying a sub-
tree may invalidate higher levels of the
design hierarchy. For every node along the
path back to the root of the design, a con-
sistency checking program, provided by the
design interpreters or other higher level
software, is automatically invoked whenever
a subtree is replaced. A sophisticated
checker can be written with full knowledge
of the structure of the representation. For
example, if there is a bounding box associ-
ated with each cell, the checker can insure
that the new subtree does not exceed its

allocated area. If it does, then the update
can be aborted, or more likely, the checker
can warn the user (e.g., a graphical cir-
cuit editor or some other design tool) of
the potential problem. The design manager,
without detailed knowledge of the represen-
tations of the design, can at best indicate
those cells that may require update.

The above observation applies to the
propagation of the "need to update" to
other representations of an updated primi-
tive cell. The formulation of a consistency
checker across representations is more dif-
ficult because it must understand the
equivalence across representations. The
problem of mapping between different data-
base representations of the same semantic
objects has already been studied (e.g.,
[WONG79]). These techniques may be applica-
ble here, but require complete identifica-
tion of equivalent objects across represen-
tations. At least, the design manager can
indicate those rows of representation
tables that might require updating.

An alternative is possible if the
design method supports a hierarchy of
representations, with one algorithmically
derived from another. For example, a sticks
representation can be compiled into a two
dimensional layout. The design manager
automatically invokes the compiler whenever
a change has been in the more abstract
representation. This is similar to the Make
facility of UNIX [FELD79].

The design data management system also
provides operations for version control. A
design is created by describing its initial
structure to the design manager, who
instructs the database component to create
the necessary relations. A version is an
unupdatable snapshot of a design. Version
creation must be synchronized with update
activity in the design hierarchy. Versions
can be archived, and later restored.

The above assumes that the process of
design ~s an orderly progression from ver-
sion to version. Alternative designs are
not supported. These could arise from the
simultaneous update of a subdesign by more
than one designer, each leading to a new
alternative. Design alternatives can be
represented as changes to a read-only ver-
sion of a design. An alternative becomes
the next version by merging its accumulated
change file into the original. Design
alternatives are similar to the notion of
hypothetical databases [STON80, STON81],
and can be implemented by differential
files [SEVE76] or views [STON75].

5.4. Design Interpreters

The design interpreters choose a
design representation (structure of the
representation tables), and provide an

Paper 19.2
279

interface to design tools for manipulating
objects of the representation. In addi-
tion, they provide a consistency checker
for use by the design manager.

To illustrate the structure of a
design interpreter, we describe one for
simple layout data. A layout is a collec-
tion of boxes assigned to particular
layers. A "boxes table" represents boxes by
the cell to which they are assigned, the
layer, and the minimum and maximum x and y
coordinates for the placement of the box
within a cell. The latter can be translated
by the placement and orientation informa-
tion found in the composition table. In
addition, each cell description contains
its bounding box, determined from the
minimum and maximum x and y coordinates of
any feature within the cell. This will be
used by the consistency checker.

The manipulation interface tailored
for a hypothetical graphics editor for
integrated circuit layout is the following.
The basic required operations include the
ability to retrieve boxes for display, to
select all boxes that contain a particular
coordinate, to delete or modify accessed
boxes, and to create new leaf cells and
generally manipulate the design hierarchy.
To edit a particular cell requires that it
be extracted from the design hierarchy
(i.e., to begin a conversational transac-
tion). The cumulative effects of cell com-
positions can be determined for each leaf
cell. Retrieve, select, delete, and modify
operations can be mapped into conventional
database operations applied to the boxes
representation table. The creation of a new
cell requires updates to the cell, composi-
tion, and boxes representation tables.
These are straightforward database opera-
tions issued by the boxes interpreter. When
editing is done, the subtree is replaced
and the consistency checker is invoked to
insure that no cell has outgrown its boun-
dary (i.e., to end a conversational tran-
saction). The checker can be written so
that invalid cells can be identified, and
passed to the editor for highlighted
display on a graphics terminal.

All software dealing with the design
hierarchy and database access is located in
the boxes interpreter. The writer of • the
integrated circuits editor can concentrate
on the issues of man/machine dialogue and
data presentation. Once an interpreter for
the boxes data representation has been
written, new tools that manipulate boxes
can be developed more quickly.

6. Conclusions and Status

We have described an approach for
applying database techniques to managing
VLSI circuit design data. A prototype
implementation is currently underway. We

are building our system on top of a locally
written storage system modelled along the
lines of System-R's RSS, and are construct-
ing design interpreters for a limited
number of representational types. In par-
ticular, we are designing an interpreter
for geometric layout data. We have acquired
several design tools from other universi-
ties, and intend to interface these to our
interpreter.

Many important research issues require
further investigation. First, we are
developing new methods to store unstruc-
tured data in a database system. Second, we
are investigating how the concept of design
version differs from database snapshots,
and whether new techniques are needed for
their support. Third, we are exploring how
to maximize parallel design activity by
exploiting the hierarchical structure of
the design. Are new methods of concurrency
control required to support "conversational
transactions", or can existing mechanisms,
such as hierarchical locking protocols, be
adapted? Fourth, we are investigating how
to maintain design consistency by automati-
cally propagating design changes to design
components, either across design represen-
tations or through the design hierarchy.
Finally, we are investigatng how to support
alternative designs by adapting the tech-
niques for hypothetical databases.

Eventually, we plan to adapt our
architecture to a network environment, in
which the design manager acts as a server
for a network of design workstations. The
issue is how to partition the layers of the
design system between the workstations and
the centralized server machines.

To demonstrate that new tools can be
developed more quickly on top of a design
data management system, we also intend to
develop a set of tools for direct use with
our system. These will include a graphical
editor for integrated circuit layout,
design and electrical rules checkers, and
circuit simulators.

7. References

[ADIB80] Adiba, M. E., B. G. Lindsay,
"Database Snapshots," Proc. Intl.
Conference on Very Large Databases,
(Oct. 1980).

[ALLE81] Allen, J., P. Penfield, "VLSI
Design Automation Activities at MIT,"
IEEE Trans. on Circuits and Systems, V
CAS-28, N 7, (July 1981).

[ASTR76] Astrahan, M. M., et. al., "System
R: Relational Approach to Database
Manag%ment," ACM Trans. on Database
Systems, V i, N 2, (June 1976).

Paper 19.2
280

[BAND75] Bandurski, A. E., D. K. Jefferson,
"Data Description for Computer-Aided
Design," Proc. ACM SIGMOD Conference,
(May 1975).

[CIAM76a] Ciampi, P. L., et. al., "Control
and Integration of a CAD Database,"
13th Design Automation Conference,
1976.

[CIAM76b] Ciampi, P. L., J. D. Nash, "Con-
cepts in CAD Database Structures,"
13th Design Automation Conference,
1976.

[COME79] Comer, D., "The Ubiquitous B-
tree," ACM Computing Surveys, V Ii, N
2, (June 1979).

[DIRE81] Director, S. W., et. al., "A
Design Methodology and Computer Aids
for Digital VLSI Systems," IEEE Trans.
on Circuits and Systems, V CAS-28, N
7, (July 1981).

[DUTT81] Dutton, R. W., "Stanford Overview
in VLSI Research," IEEE Trans. on
Circuits and Systems, V CAS-28, N 7,
(July 1981).

[EAST80] Eastman, C. M., "System Facilities
for CAD Databases," 17th Design Auto-
mation Conference, 1980.

[EAST81] Eastman, C. M., "Recent Develop-
ments in Representation in the Science
of Design," 18th Design Automation
Conference, 1981.

[ESWA75] Eswaren, K, P., D. D. Chamberlain,
"Functional Specifications of a Sub-
system for Database Integrity," Proc.
Intl. Conf. on Very Large Databases,
(Sep. 1975).

[FAGI79] Fagin, R., et. al., "Extendible
Hashing -- A Fast Access Method for
Dynamic Files," ACM Trans. on Database
Systems, V 4, N 3, (Sep. 1979).

[FELD79] Feldman, S. J., "Make -- A Program
for Maintaining Computer Programs,"
UNIX Time-Sharing System UNIX
Programmer's Manual, Seventh Edition,
Volume 2A, (Jan. 1979).

[FOST75] Foster, J. C., "The Evolution of
an Integrated Database," 12th Design
AUtomation Conference, 1975.

[GRAY78] Gray, J., "Notes on Database
Operating Systems," IBM Research
Report RJ2188(30001), 2/23/78.

[GRAY81a] Gray, J., et. al., "The Recovery
Manager of the System-R Database
Manager," ACM Computing Surveys, V 13,
N 2, (June 1981).

[GRAY81b] Gray, J., "The Transaction Con-
cept: Virtues and Limitations," Proc.
Intl. Conference on Very Large Data-
bases, (Sep. 1981).

[GRIF76] Griffiths, P. P., B. W. Wade, "An
Authorization Mechanism For a Rela-
tional Database System," ACM Trans. on
Database Systems, V i, N 3, (Sep.
1976).

[HASK82] Haskin, R. L., R. A. Lorie, "On
Extending the Functions of a Rela-
tional Database System," 1982 A.C.M.
SIGMOD Conference, (June 1982).

[HAYN81] Haynie, M. N., "The
Relational/Network Hybrid Data Model
for Design Automation Databases," 18th
Design Automation Conference, 1981.

[HOSK79] Hoskins, E. M., "Descriptive Data-
bases in Some Design/Manufacturing
Environments," 16th Design Automation
Conference, 1979.

[KAWA78] Kawano, et. al., "The Design of a
Database Organization for an Elec-
tronic Equipment Design Automation
System," 15th Design Automation
Conference, 1978.

[KORE75] Korenjak, A. J., A. H. Tiger, "An
Integrated CAD Database System," 12th
Design Automation Conference, 1975.

[KORE75] Korenjak, A. J., A. H. Tiger, "An
Integrated CAD Database System," 12th
Design Automation Conference, 1975.

[LOSL80] Losleben, P., "Computer Aided
Design for VLSI," in Very Large Scale
Integration VLSI: Fundamentals and
Applications, D. F. Barbe, ed.,
Springer Series in Electrophysics 5,
Springer Verlag, Berlin, 1980.

[MEAD80] Mead, C., L. Conway, Introduction
to VLSI Systems, Addison-Wesley, Read-
ing, MA, 1980.

[MITS80] Mitsuhasi, T., et. al., "An
Integrated Mask Artwork and Analysis
System," 17th Design Automation
Conference, 1980.

[NEWT81] Newton, A. R., et. al., "Design
Aids for VLSI: The Berkeley Perspec-
tive," IEEE Trans. on Circuits and
Systems, V CAS-28, N 7, (July 1981).

[NIEN79] Nieng, K-Y, D. A. Beckly, "Com-
ponent Library for an Integrated
Design Automation System," 16th Design
Automation Conference, 1979.

[ROBE81] Roberts, et. al., "A Vertically
Organized Computer-Aided Design Data
Base, 18th Design Automaton Confer-

Paper 19.2
281

ence, 1981.

[ROSE80] Rosenberg, L. M., "The Evolution
of Design Automation to Meet the Chal-
lenges of VLSI," 17th Design Automa-
tion Conference, 1980.

[SEVE76] Severence, D. G., G. M. Lohman,
"Differential Files: Their Application
to the Maintenance of Large Data-
bases," ACM Trans. on Database Sys-
tems, V i, N 3, (Sep. 1976).

[SIDL80] Sidle, T. W., "Weakness of Commer-
cial Database Management Systems in
Engineering Applications," 17th Design
Automation Conference, (June 1980).

[SMIT77] Smith, J., D. Smith, "Database
Abstractions: Aggregations and Gen-
eralizations," ACM Trans. on Database
Systems, V 2, N 3, (Sep. 1977).

[STON75] Stonebraker, M., "Implementation
of Integrity Constraints and Views by
Query Modification," Proc. ACM SIGMOD
Conf., (May 1975).

[STON76a] Stonebraker, M. R., et. al., "The
Design and Implementation of INGRES,"
ACM Trans. on Database Systems, V i, N
3, (Sep. 1976).

[STON76b] Stonebraker, M. R., P. Ruben-
stein, "The INGRES Protection System,"
Proc. 1976 ACM National Conference,
(Oct. 1976).

[STON80] Stonebraker, M. R., K. Keller,
"Embedding Expert Knowledge and
Hypothetical Data Bases into a Data
Base System," Proc. ACM SIGMOD Conf.,
(May 1980).

[STON81] Stonebraker, M. R., "Hypothetical
Databases as Views," Proc. ACM SIGMOD
Conf., (May 1981).

[SUCH79] Sucher, D. J., D. F. Wann, "A
Design Aids Database for Physical com-
ponents," 16th Design Automation
Conference, 1979.

[TRIM81] Trimberger, S., et. al., "A Struc-
tured Design Methodology and Associ-
ated Software Tools," IEEE Trans. on
Circuits and Systems, V CAS-28, N 7,
(July 1981).

[VALL75] Valle, G. "Relational Data Han-
dling Techniques in IC Mask Layout
Procedures," 12th Design Automation
Conference, 1975.

[WILM79] Wilmore, J. A., "The Design of an
Efficient Data Base to Support an
Interactive LSI Layout System," 16th
Design Automation Conference, 1979.

[WONG79a] Wong, S., W. Bristol, "A Computer
Aided Design Database," 16th Design
Automation Conference, 1979.

[WONG79b] Wong, E., R. H. Katz, "Database
Design and Schema Conversion for Rela-
tional and DBTG Databases," ist Intl.
Conference on Entities and Relation-
ships, (Dec. 1979).

[WORK74] Works, K., et. al., "Engineering
Data Management Systems (EDMS) for

Computer Aided Design of Digital Sys-
tems," llth Design Automation Confer-
ence, 1974.

[ZINT81] Zintl, G., "A CODASYL CAD Database
System," 18th Design Automation
Conference, 1981.

Paper 19.2
282

