THE EXCELL METHOD FOR EFFICIENT GEOMETRIC ACCESS TO DATA

Markku Tamminen
Reijo Sulonen

Helsinki Ulniversity of Technology
Lahoratory of Information Processing Science
02150 Espoo 15, Finland

ABSTRACT

The extendible cell (EXCELL) method provides a data
structure for efficient geometric access. It stores
geometric data into computer storage blocks
corresponding to disjoint variable sized rectangular
cells accessible by an address calculation type directo-
ry. We describe the method for point files and files
of more complicated figures analvzing performance.
We report algorithms for the nearest neighbour and
point—in—polygon—network problems and describe appli-
cations to geographical data bases, hidden line elimina-
tion and geometric modeling.

Introduction

By geometric data we mean representations of
geometric structures composed of points, line—
segments, surface—areas and volumes, central in com-
puter graphics, geographic data management and com-
puter aided design. These applications moreover require
geometric access meaning the retrieval of such obhjects
on the basis of geometric relationships like proximity
and intersection. Constructing efficient data struc-
tures for this is a central problem of computational
geornetry’/.

This paper analyzes a data structuring approach aiming
at efficient geometric access. The following building
block tasks of CAD tvpify our aims:

1. nearest neighbour search*

2. the point—in-polygon—network r,\roblem15

3. range search of points' and other geometric ob-

jects

4. intersection problems!7,2

5. geometric analysis by ray—casting16

6. checking interference’ and geometric integrityl3

7. hidden line and surface problems?®,

We present the extendible cell (EXCELL) approach, a
framework for data structures and algorithms for max-

imally efficient geometric access. It is especially
suited for data in external memorg. EXCELL is
closely related to the quad—tree279)11 and fixed

cell:9,7 techniques combining their good features. We
analyze data structures for sets of points and two-—
dimensional polygon networks as concrete examples of
the approach.

Sample algorithms and application systems for prob-
lems 1, 2, 3, 5 and 7 above demonstrate that EXCELL

ficiency. Theoretical results on EXCELL and related
methods confirm the empirical inferences.

For simplicity we use two—dimensiona! examples and
terminology (study—area, rectangle,...} even for con-
cepts with wider applicabilitv. We use interchangeably
terms "edge" for line—segment and "face" for two— or
three—dimensional surface—area (polygon). This presen-

tation relies on detailed analvses reported else-
wherel9,20,21,22,23,24

Order preserving extendible hashing

It is useful to first consider the simplest case. A
one—dimensional data structure corresponding to the
geometric problems defined ahove would support the
operation find—next(key) and he called a generalized
prioritv queue.

From recent developments in one—dimensional data
structures the extendible hashing (EXHASH) of Fagin
et al.® seems most promising for us. From our
viewpoint order preserving EXHASH can he defined
and analyzed as a binarvy bucket trie20,

Let us have a set F (file) of real-valued keys of a
key—space U. (For simplicity we assume U = [0,1). A
binary bucket trie T is the tree obtained by recursive-
ly halving U until no interval contains more than b
(bucket size) keys (figure 1):
1. To each node n of T corresponds an interval I(n)
of U.
2. U itself corresponds to the root of T.
3, If there are more than b keys in the interval I(n)
then node n has two sons corresponding to the
two halves of I(n).
4, 1f there are at most b keys in I(n) then node n is
a leaf (i.e. has no sons).

To the trie T there corresponds a complete binary
tree (here called directory) with 2%*d elements. The
directory may be represented as an array (figure 1)
and the element corresponding to any key of U ac-
cessed hy index calculation.

EXHASH is a hinary bucket trie represented by a
directory and data buckets maintained dynamically by
bucket splits and directorv doublings (and corresponding
merges, if necessary): If we add a record to a bucket
alreadv containing b records the original bucket inter-
val is split in the middle, the b + 1 records distribut-
ed correspondingly to the two resulting buckets and
the directory updated. If the depth of the original

is simple to implement and leads to good expected ef- bucket was d the depth of the whole tree increases

19th Design Automation Conference
Paper 23.1
0420-0098/82/0000/0345$00.75 © 1982 IEEE 345

http://crossmark.crossref.org/dialog/?doi=10.5555%2F800263.809228&domain=pdf&date_stamp=1982-01-01

meaning that the directory has to be doubled. NDue to
bucket splitting no overflow pages are needed and a
record may be retrieved with one disk access (two
counting the directory access).

— — - —n
I ‘, ————————— -]

—— I [
. — A -3
Pm—— \\‘ . -L_J
— T . [t
B i 2

. - [

o — -. -5
| — *»—JL]
- — U
. DR
r—,/,j . Sduieg bad
T

—— S -
[2ain]

>l }_NJ i

[

. =

-l 1]
o Lo

Figure 1. A binary bucket trie (EXHASH structure)
with bucket size b = 3 and depth d = 3. The left part
represents the directory and the bucket intervals; the
right part the corresponding binary tree. Nashed lines
represent the complete tree.

Ordinarily hashing means randomization. However, this
is not eficient for operations such as find—next. Thus
we apply EXHASH directly to the key values and call
the result an order preserving address transformation.
A main part of our work (chapter 7) has consisted of
analyzing how non-uniform key—distribution affects the
performance of EXHASH.

EXCELL — EXHASH for multidimensional points

We may apply EXHASH to obtain a multidimensional
dynamic geometric file structure, which we have
called EXCELL. We assume for simolicity the study
area U to be the unit square U =[o,1) x [o,1). Let
(x,y) of U have the binary representation

i

x=Ze.1;2

15icbo] (1)
y :Z’bi 2,
141400
and g be the following grid (hash) function
~@i-1) 25
g(x,y) = Z(a'.Z +b;2) (2
feisoo

Definition 1. An extendible cell (EXCELL) implementa-
tion of a point file (i.e. set) F on U is the structure
obtained by applying EXHASH on the interval b,D to
g(F).

Figure 2 helps interprete this ahstract definition.

The data—huckets of EXCELL correspond to rectangles
(cells) formed by halving the study area alternatingly
in the x— and v— directions. The depth of an EX-
CELL structure is the maximal number of halvings
needed to obtain a cell. At depth d = dx + dy (dx =
[d/2] 5 dy = ld/2D) the grid function (2) distributes the
points of F onto an even grid of cells with x—spacing
2%%(—dx) and y-spacing 2**(—dy). When d is increased
the directory is doubled by halving all directory cells
in the x— or y-—direction.

The function g is difficult to implement efficiently.
Because an EXCELL file has a directorv we may,
however, reorganize the directory at each doubling
without affecting the data buckets. Therefore the grid
transformation may be replaced by an array—index—like
calculation, for instance:

ind(x,y) = é“j i&[xj + 2(v]). 3

Paper 23.1
346

In the ind—order the directory forms a two—
dimensional array.
¥ T T
3 }4 l : :
x | ..5-.{..-3...]...4..L.4...
X 1 |
| | | |
I | IS (U IS RS
1 —12 I | | op]
! X | | } |
X '........l 1|2=q"q
X l + I 1
1x x | | | |
1 1 1 1 1
data part directory
x: points
os cursor

————— : cell borders
oot effect of inserting the new point +

Figure 2. Point EXCELL concepts. The study area is
divided into four data cells (=rectangles), none of
which contain more than three (=h) points. The direc-
torv is an array of elements each corresponding to a
rectangle of minimal size and indicating the data cell
containing it. The data cell of a cursor point p is re-
trieved by first calculating the directory array index
by the EXCELL grid function. The insertion of the
new point (+) requires the cell division and directory
doubling operations indicated by short dashes.

Irrespective of the directorv calculation cells
correspond to buckets induced by function (2).
The main guarantee of EXCELL is:
each leaf cell contains at most b points
()

the father of each cell (i.e. the rectangle
from which the cell was formed by halv-
ing) contains at least b + 1 points.

The EXCELL method for more compblicated objects

By more complicated objects we mean line—segments,
surface—areas and volumes. The main difference to
point files is that an object may intersect several
cells of a fixed or extendible grid. We might thus
speak of spatial directories, which indicate the data
hbase ohjects intersecting each geometric cell.

The extendible cell method21;22 syhdivides cells until
the contents of each one is described within a speci-
fied storage space. Thus it is close to the Warnock
hidden surface method2?. The cell structure is supple-
mented by a directorv identical to that of the previ-
ous chapter. The vagueness of this description shows
that EXCELL is a general orincinle specified separate-
ly for each problem. We describe an application of
EXCELL to two-dimensional polygon networks (figure
3) in somewhat more detail.

Two—dimensional polvgon networks are perhaps the
most important geometric structure of geographic data
management. Also the visible surface—areas of a pro-
jection of a three—dimensional solid form a two-—
dimensional area-partition. The following simple struc-
ture has been used for both of these aoplication521’

We use an edge-oriented representation of polygon

networks (fig. #). Boundaries are decomposed into ele-
mentary edges. The direction of each edge is defined
"lexicographically" with the right and left neighbour
polygons recorded in the edge record.

Figure 3. A 400 polygon network generated by the
Dirichlet tessellation model (chapter %). Superposed is
an EXCELL structure with b = 10.

Ta

Figure 4. A cube with forward faces A, B and C

represented by directed
—neighbour information.

edges and their right/left

We implement a spatial directory by dividing the (x,y)
- study area into non-overlapping rectangular cells
corresponding to blocks of storage space. Here we do
not utilize pointers between cells and edges but store
an edge record (after clipping its geometry) in each
cell intersected (figure 5).

Cell § Cehl 2

Figure 5. Each edge is clipped and the
edgeparts "stored in" the cells intersected.

remaining

=T
i
S|
|
¥ I —
|
— —d —
|
1

Figure 6. Edge EXCELL concepts. 'J is divided into
four cells (the data part) so that no cell is intersected
by more than three edges (o——o). See figure 2 for
further explanations.

EXCELL for edges is analogous to point—-EXCELL (fig-

ure 6). Cell (bucket) size is defined by a maximal
number of intersecting edges and cell division by the
clipping operation of figure 5.

Access paradigms

We have chosen four geometric queries to reflect the
essential access requirements of the tasks mentioned
in chapter 1. As the access paradigms for EXCELL
point files we use the range query! and the nearest
neighbour query®:

given an arbitrary point (cursor}
p of U find the ooint of file F, (NN)
which is closest to p.

We discuss the implementation in chapter 6.

Our access paradigm for polvgon network files is the
point—in—polygon—-network query:

Given a polygon network N and an
arbitrary point (cursor) p of U determine
the polygon P(p) of N containing b.

(PIPN)

A geometric model of a solid mavy be defined by a
representation of its boundary, i.e. a set of oriented
faces. We may define a three—dimensional face-
directory for a geometric volume model by letting
each three—dimensional cell contain references to all

faces intersecting it. We use "ray—casting"1® as the
access paradigm:

Given points p0 and pl determine, which face

is intersected first by the semi-—infinite ray RO

p0 + t{pl — p0) , 0 <= t < infinity.

Algorithms

Exact match retrieval for point files is almost identi-
cal to that of EXHASH®, We present only the inser-
tion algorithm for edges (line-segments) to obrovide
geometric flavour (fig. 7). Insertion of points is just a
bit simpler.

Next we study the main geometric access paradigms.
The simplest wav to implement a range query is to
utilize the directorv as a two-dimensional array as in
the following pair of routines:

var ci : get of cell;

procedure open range (var r : rectangle):

7% Gnen range querv for rectanale r */
ci «= [;: /* empty set */
for each directory element, whose cell intersects r do
T el f=ci + [Q); /* set wnion */

function get next in range() : cell:
7% get next cell In Opened range */
if ci = [] then get next in range := MIL
else begin choose a c811 ¢ of ¢i;
ci = ci - [¢]:
get next_in range := ¢

end;

Paper 23.1
347

ure insert ex (var e : edge): /* insert edge into FXAFLL file */

E—m’ﬂ—e not_null(e) 30
gin ¢ := qet cell ins(start(e));

clm) edge (c,eel);

ingert_cell{c,el) /* el assumed non-deqenerate */

end;

function get cell ins (var o : voint) : cell:

qet a cel] guaranteed to contain free space */
c := get cell (qet Air{o)};
whxle Full (=)

Bedin ﬂ‘vﬁ_ cell(c);

c th cell(get dir(n))
end;

get_cell ins := ¢;

function aet dir {var p : point) : cell number:
7* retrieve number of cell corresponding to ooint o */

function get cell (var n : cell number) : cell;
7% tetrieve Cell having number 0 */
cell; e : edge); /* insert edge into cell */
procedure clip edge (var c : cell; e,el : edge);

/* clip edge e; store e cinel and e = el in e */

orocedure insert cell (var ¢ :

orocedure divide cell (var c : cell); /* divide a cel? */
cannot be dividedic) then Aup dir():
1% tast dTvided_in v _direction(c) then x halve celllc,cl,c2)
elge v halve ceTl(c,Cl,c2);
moJ_AiF (c) ; mod | Air(c2)s
for each ndge eIncdo
T Befin clio edge(cT e,el);
if not - nuillel) then insert cell(cl,el):
IE not_nullle) then insert cell(c2,e)
'elease(c) /* storaae of ¢ is returned to free svace */
precedure x halve ce'l (var c,Cl,c" : cell);
7% Ralve ¢ pervendicul ary to x~axis forming new cells ol and c2 */

orocedure dup dir(); /* duplicate directorv in aporodriate direction */

procedure mod_dir (var ¢ : cell); /* modifv directorv part intersectirg
rectangle of cell < tO contain the number of c */

Figure 7. Insertion algorithm for edges.

For the nearest neighbour and point—in—polygon—
network queries we utilize what we call brother algo-
rithms relying on the main guarantee (4). We call the
brother of a cell the rectangle formed in the same
halving operation. Always either a cell or its hrother
(which may contain several data cells) is non—empty.
Figure & shows that assuming the maximum coordinate
difference metric the size of the area that we must
inspect in the NN—query is at most 20 times the size
of the cell of the cursor. From the same area we may
retrieve all b + | nearest neighbours. The loon LOOP
may be efficiently implemented by the EXCELL
method.

function find nearest (var p : point) : point;
7% €ird mearest neighbour of cursor o */
¢ := get cell{get Air(p)); /* get cell ¢ overlamwinc woint b */
d0 := maximal disEa.nce from p to any moint of brother (c);
for each cell ¢’ within a distance’ less than 40 from o do /* TR */
ciosest (p,c”,00,d0); /* dO mav change */
Emd_neatest 1= p0;

procedure closest (var o : voint: ¢ : cell; p0 : point; 40 ' distance);
7F Find voint o0 closest to p within distance A0 in cell ¢ */
For each point v’ inc do
If distance (o,p”) <'d0 then
begin d0 := distance(p,»’);
o0 :=p

end;
With neighbourhood information stored together with
line-segments (figure 4) we may answer a PIPN—query
as described in figure 9 and the algorithm
find_polygon. The algorithm presented is simplified by
considering the line—segment closest to p in a cell.

Paper 23.1
348

——— JAaa
R T
L d e P e]
: : e ||%° {
L '
'l 1 | 1
1)
r-‘l'-----"——r--‘l
\ t 1 1 |
| SN O SNpI SIS
=
op
Part a Part b
x: point
o: cursor

Figure 8. The hrother algorithm. Solid lines show an
EXCELL opartition with bucket size b = |. There are
at most 20 rectangles of the size of clp) to be
checked. This area is called cnn{p) and indicated by
dashes., Parts a and b demonstrate the two possible
forms of c(p). In this example all data—cells are re-
trieved to answer the query.

(a) (b) ()

Figure 9. The polygon a cursor o belongs to is found
by casting a test ray from p and determining on which
side of the first intersected segment p lies. To spe-
cial cases we apply more elaborate tests. Case’ (a)
depicts the ordinary situation, (b) special case and (c)
the case of an empty cell.

‘unc*mn fird polygon {var o : point)
FInd polygon containing cursor o */
c get_cell(get dir(p)); /* get ce'l of cursor » */
if not_emtvi(c) then
£ind po]yqon within _cell(c,p)
2lse becun ¢’ := find nenhew(c)
Emd no’vqcn := find_Dolygon within cell {c”,0)s

: volygon;

and;

function f£ind volygon within _cell (var ¢ : cell; o : point) : volvgon;
Search within a nof-emptv cell *

find edge e closest to v within ¢; /% O(b) ocverations */

if e wnique then £ind olvgon within cell := polygon(p,e)

7% volygon on the samé side of e as D or "o outside" */

else find polygon within cell := resolve special _case(o,c,e);

function find nevhew (var c : cell) : cell: /* find first non-emoty nevhew */
7% check the nerhews (offspring of the brother of ¢) in such an

order that when a rnon-empty one is found the whole line from p to

any vart of the revhew is contained in cells a'ready checked (i.e.

emoty) - see figure 1V (7). */

The above algorithm demonstrates two~dimensional
ray~casting. Next we present a three—dimensional ver-
sion, Here 1J denotes the "box" of interest.

function first_face on rav (var p : moint; ray : direction) : face;
7% retrieve first Face from voint o in Airection rav */
if not in box(p,l’) then /* p arbitrary start of infinite rav */
in o := frontface intersection(o,rav,mM):
7%¥ Intersection of rav with a “"forward" face of box 1T */
first_face on_rav := first face on rav(o,rav)

ends
else Begin c:= get cell (get dir(v));
f:= NTL; /* face to be retrieved initialized */
while in box(p,7} and £ = NII, do
4 £ T= first_face_on rav_in ce'l(o,ray,c)
end;
first_Face on_rav := f;

function first face on rav_in cell
(War b : point? ray : directidn; ¢ : cell) : face; /* within-cell search */
if ray intersects a face then
first face on_rav in Cell := closest intersected face;
/* 0(b) intersectIon and polyuon contairment checks */
else begin p := backface intersection(o,dir,c):
7% Intérséction with a "backward" face of box c */
first face on ray in cell := ML
ed: ” T T T T
The directory mechanism provides maximally direct
access, characteristic of EXCELL compared to other

approaches.

Analysis of EXCELL for points

EXCELL cannot claim worst case optimality except
for exact match queries. To analyze the expected per—
formance we must postulate a data generation model.
Analogously to the one-dimensional mode!l ot we have
chosen the Poisson point process. Spoecifically we
analyse a varying intensity process with constrained
variation (VIPC).

Intensity defines the expected number of points in any
subset of U and variation V is defined as the ratio of
maximal to average intensity. This is the main param-—
eter. Constrained variation means informally that the
intensity function is smooth.

We have been able to perform most
multi-dimensional point-EXCELL using the one-
dimensional EXHASH model. The analysis of order
preserving EXHASH cannot, however, rely on the uni—
form randomization assumptions of ordinary hashing.
The results on EXHASH are presented in table l.

analysis of

The results on EXHASH independent of the order of
the directory or the neighbourhood relationship of data
intervals apply to EXCELL as defined by (2) and (3).
This includes all the results of table 1 except the
find-next query. Some further corollaries are:

- the asymptotic expected filling ratio of data
buckets is fixed as In 2 (0.69) in the VIPC
model irrespective of V

- the asymptotic expected storage efficiency of
quad-tree data buckets is 2/3 of that of the EX~-
CELL data part.

In2% we showed that under the VIPC model EXCELL
behaves asymptotically as if intensity were constant.
Also the expected cost of the NN-query is bounded
(i.e. O(1)) irrespective of the expected number of
points in the file and that the asymptotical probability
of having to search more than one cell in the brother
algorithm is < 3/sqrt(b) (b: bucket size). This asymp-
totic independence of intensity variation is the main
asset of EXCELL when compared to fixed cell tech-
niques.

Worst case Good case{Smooth
case
1.Directory |O(CV/b) o™y loucvi™m
storage
(elements)
2.Natastorage [O((C+ClogV)/b) Clog(e)/b |O(C/b)
(huckets)
3.Average O(1+logV/b) O(1+1/b)y |O(1+1/b)
preprocessing
(data part)
4,Exact match [2 L(buffer) |2
query
5.Find-next O(1+log(VCN oll+1/p) {oQ1+1/b)
query
6.Range query |O(1+VR) O(1+R) O(1+R)

Table 1. Performance characteristics of EXHASH as
measured by the number of storage buckets and bucket
accesses. Notation:

C = total (expected) number of records

V = variation of intensity

b = maximal number of records in a data bucket
R = expected number of records retrieved

Average preprocessing means total preprocessing cost
divided by C. By smooth case we mean keys generat—
ed by a sufficiently regular statistical distribution.
Good case refers to a uniform random distribution of
keys. Worst case is the worst possible assuming a
fixed V. Log is to the base of 2.

Analysis of EXCELL for polygon networks

There exist no standard data generation models for
polygon networks as opposed to point files. For empir—
ical and theoretical analysis we have utilized the Diri-
chlet tessellation (DT) model (figure 3) and the random
lines (RL) model (figure 10). The DT formed by the
closest point loci generated by a set of uniformly dis—
tributed random centers is typical of fairly homogene-
ous area partitions. The RL-model exhibits extreme
variation of polygon size. Its merit is that geometric
probability”“ may be utilized to compare theoretically
various cell methods.

PRST W
S 5 _ .
N X z 0. \> M: ﬁ]
SN ﬁ A N
p { v’ .‘ >
Q ’)
; / !
3 / / 4
X SRS |
: RS
s SN

Figure 10. A realization of a 2571 polygon network
formed by 100 random lines.

A basic result of geometric probability is:

Let K1 K be bounded convex sets. The pro-
bability that a random line intersects Kl

if it is known to intersect K is L1/L, (GP)
L1 and L being the perimeters of Kl and K.

Based on (GP) we derive closed formulas for the per—
formance of fixed cell methods in the random lines
model. Especially we consider what we have called the
optimal fixed cell method (OFC). If there are n line-

Paper 23.1
349

segments an OFC structure contains O(n) cells and the
expected number of segments intersecting each cell is
fixed. This corresponds to the cell structure utilized
for point files in¥. Griffiths? and Franklin’ have util-
ized a similar structure as a face-~directory for the
hidden line problem.

While we cannot obtain closed performance formulas
for EXCELL (GP) leads to recursions suggesting the
functional form of performance equations. The parame-
ters are fitted from empirical simulations. Table 2
compares indicators of the OFC and EXCELL methods.

{ EXCELL ! OFC

NE 0.67b 0.67b (by definition)
PI 1+1.2/{B+6/b 1+2.0/¥B+2.0/b{(th)

PE V1/b(1.2+1 D) mﬁ(l.2+1.2ﬁ\(th\
1/EKD | 0.67b + 130D + L.1§ 0.67b + 136 + L.3(th)

Table 2. Comparison of emnirical formulas for some
EXCELL and OFC performance indicators. The ex-
pected number of lines intersecting a cell is fixed as
0.67b in both methods. Notation:
— n: total number of line segments in the file
— b: bucket size
— NE: number of segments in a cell
— PI: number of cell intersections per segment
— PE: summed cell perimeter for the whole grid
— EI: efficiencv of a segment—intersection gquery
("find data base segments intersecting a random
test segment of a standard length™; Le., the
average proportion of intersections found to in-
tersections tested
— th: theoretical

The main result is that for a stochastically homogene-
ous data distribution the EXCELL and OFC methods
perform quite similarly. The greatest difference is the
homogeneity of EXCELL: cells are rather uniformly
filled and seldom empty whereas in the OF method
the cell contents vary extremely. For non—uniform dis~
tributions this difference is accentuated. Also the re-
marks on the storage efficiency of quad—trees apply
here.

The PIPN-query cost depends on the number of cell
accesses and within—cell operations. InZl it was shown
that even a cell size of 5 results in only 1.1 expected
cell and directory accesses in the DT model. Compar-
able performance is achieved only by hashing type
methods for exact match queries.

Thus EXCELL is especially efficient for well localized
geometric access in external storage. Its main problem
is the somewhat inefficient storage usage shown by in-
dicators NE and Pl of table 2.

Comparison with other methods

EXCELL is a general framework for data structures
and algorithms so that comparisons with other methods
should he made in a well specified context. However,
based on the above sample algorithms and analyses we
may draw some overall conclusions,

1. The efficiency of EXCELL is always comparable
to that of the optimal fixed cell technique 4,7,
and more uniform. For smooth data distrihutions
performance denends only on bucket size b.

Paper 23.1
350

2. The directory makes the access efficiency of EX-
CELL clearly sugerior to that of guad-tree type
methods27,3;,1 1,10 1Jse of the directory depends
on a time—space tradeoff but the data cells
should for storage efficiency always be based on
binary cell division as in EXCELL.

3. EXCELL has more efficient access than k-
dimensional trees but generally poorer storage
utilization.

4, EXCELL generally leads to simpler algorithms
than global projection methods 752,28, Also, the
latter methods are eenerally batch—oriented re-
quiring a oreorocessing phase. However, some-
times a "naive" use of projection methods2® is
simple and efficient.

5. The object composition tree aporoach 26:16,13 is
more problem specific than EXCELL and may be
tailored for great efficiency. Generally it does
not contain access efficiency guarantees as EX-
CELL. Its storage and preprocessing efficiency is
better. The two approaches may well be com-
hined by utilizing EXCELL as a "bottom-—up"
geometric directory to an object composition
tree,

These are crude generalizations because comparisons
should be bhased on a specific task and data distribu-
tion. The good characteristics of EXCELL are accen-
tuated when data structures reside in secondary
storage and its algorithmic framework is simple:

Recause of the maximal size of cell-contents
easy and robust naive algorithms may be util-
ized within cells. Overall efficiency is
guaranteed by the directory and by having to
consider only a restricted number of cells.

Applications

Geographic data bases initiated our study of EXCELL.
The analysis of the PIPN—query shows that EXCELL
orovides efficient geometric access to a data base.
RBeside actual spatial queries the main need for
geometric access derives from integrity constraints.
Guarding these is a main requirement of geographic
data management 25

Integrity checking contains tasks like:
— check if a new point (having approximate coordi-
nates) alreadv exists in the data bhase
— check if a new edge intersects existing ones.

These require geometric access and make insertion 1-2
orders of magnitude more expensive than queries.,

Geograohic data processing is traditionally batch-~
oriented EXCELL makes possible a data-hase en-
vironment with on-~line algorithms for many tasks.
Tocality of access, paramount for efficiency in geo-
graphic data management, is also a main characteristic
of EXCELL.

As seen from the ray-casting example EXCELL mayv
be used to analyse geometric models. In rav—casting
for visualization it is important to efficiently find
the first intersection on the ray. We have seen how
EXCELL supports this.

In23 we applied EXCELL to the hidden line oproblem

somewhat in the style of?, We obtained an efficient
"O(n)" algorithm operating in external storage and thus
making possible the treatment of scenes of unlimited
complexity even on a mini—-computer. The computa-
tional experience suggests the same efficiency level as
reported state—of-—the-art object space algorithmsgrzs.

In geometric integrity checking13 we inspect a new
geometric element for non-intersection with existing
ones. Interference detection’ is similar. Efficient
geometric access is essential.

Conclusions

EXCELL is above all a practical method for organizing
geometric data. Practical means simple to implement
and having good expected efficiency. Beside analysis
and simulations this has been demonstrated by the
operational hidden line system23.

EXCELL is a general approach with many applications.
It is a compromize between traditional full-resolution
methods and image processing methods relying on a
fixed pixel size. We have not here discussed the
numerous ramifications and variations of EXCELL.

We have only referred to the theoretical analysis of
EXCELL. However, we consider its results quite il-
luminating and the general method applicable to many
fixed and variable cell methods.

ACKNOWLEDGEMENTS

The Finnish Academy funded this work. We thank
Martti Mantyla, Heikki Saikkonen and Matti Tikkanen
for valuable comments and help.

REFERENCES

I. J.L. Bentley and J.H. Friedman, A survey of algo-
rithms and data structures for range searching,
ACM Comp. Surv., Vol 11, No &4, 1979

2. J.L. Bentley and Th. Ottman, Algorithms for re-
porting and counting geometric intersections, Re-
port CMU-CS-78-135, Dept. of Comp. Sci.,
Carnegie—Mellon University, 1978

3. J.L. Bentley and D,F Stanat, Analysis of range
searches in quad trees, Info. Proc. Lett., 3(1975)6

4. J.L. Bentley, B,W, Weide and A.C. Yao, Optimal
expected—time algorithms for closest point prob-
lems, ACM TOMS, vol 6, no &, 1980

5. J1.W. Boyse, Interference detection among solids
and surfaces, CACM 22(1979)1

6. R. Fagin, J. Nievergelt, N. Pippenger and H.R,
Strong, Extendible Hashing — a fast access method
for dynamic files, ACM TODS, 3, 1979

7. W.R, Franklin, A linear exact hidden surface algo-
rithm, ACM Computer Graphics, Vol 14, No 3,
1980

8. J.H. Friedman, J.L. Bentley and A. Finkel, An al-
gorithm for finding best matches in logarithmic
expected time, ACM TOMS, 6(1977)

9. J.G. Griffiths, Eliminating hidden edges in
drawings, Comput. Aided Des., 11(1979)2

10. Proceedings of the Advanced Study Symposium on
Topological DMata Structures and Geogranhical In-
formation Systems, Harvard University, 1977

11. G.M. Hunter and G. Steiglitz, operations on images
using quadtrees, IEEE PAMI-1, 1979

line

12.

13.

14.

15.
16.
17.
18.

19,

19.
20.

21.
22.

23.
24,

25.
26.

27.

28.

N.E. Knuth, The art of computer programming, vol
3: sorting and searching, Addison—-Wesley, Reading,
Mass., 1973

M. Mantyla, Methodological background of the
Geometric Workbench, Report—-HTKK-TKO-B30,
Helsinki University of Technology, Espoo, 1981
R.E. Miles A survey of geometrical probability in
the plane, Computer Graphics and Image Process-
ing, 12, 1980

F.P. Preparata, a new aoproach to planar point lo-
cation, SIAM J. Comput., Vo! 10, No 3, 1981

S.N. Roth, Ray casting for modeling solids, Com-
puter Graphics and Image Processing 18(1982)2

M.L. Shamos, Computational Geometry, PhD thesis,
Yale University,1978

LE. Sutherland, R.F. Sproull and R.A. Schumacher,
A characterization of ten hidden—surface algo-
rithms, ACM Comp. Surv., Vol 6, No 1, 1974

20, 21, 22, 23, 24, 25. M. Tamminen, Helsinki
University of Technology, Espoo, Report—HTKK-
TKK:

A20, The extendible cell method for fast

geometric access

B29, Order oreserving extendible hashing and buck-
et tries (to appear in BIT)

B27, Efficient spatial access to a data base

RB28, Expected performance of some cell based file
organization schemes

B34, Hidden lines using the EXCELL method

B35, The extendible cell method for closest point
problems (to appear in BIT)

A23, Management of spatially referenced data

R.B. Tilove, Set membership classification: a uni-
fied approach to geometric intersection problems,
IEEE trans. Comouters, Vol C-29, No 10, 1980
J.E. Warnock, a hidden surface algorithm for com-
puter generated halftone pictures, Computer Sci-
ence department, University of Utah, 1969

M. Wittram, Hidden—line algorithm for scenes of
high complexity, Comp. Aided Nes., 13(1981)

Paper 23.1
351

