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ABSTRACT 

This paper describes a programming environment in 

which gate array designs can be developed. It 

allows the engineer to design for performance, 

wirability and testability by manipulating a 

textual description of a design. The principle 

features of this are a high-level language for 

design description, completely automatic layout, 

and an integrated simulator. The total package can 

be referred to as a silicon compiler in the gate 

array design style. 

This paper describes such a silicon compiler. 

With this approach chip design is seen as 

analogous to software development where formal 

notations provide a convenient method of enforcing 

good design practice. This analogy is explored by 

the description of the key components of a design 

environment constructed from the compilation view 

of designing. The components of the design system 

include a structural design language, diagnostic 

compiler, intermediate codes, physical design 

subsystem, integrated simulators and test pattern 

generation software. 

I. INTRODUCTION 

Present approaches to design automation tools for 

gate arrays emphasise general placement and 

routing algorithms for use with a range of 

proprietary chip images. This very often leads to 

inefficiencies in physical design by sacrificing 

active area to accommodate wiring. An alternative 

approach is to reoognise that communication (wire) 

is at least as important as function and to design 

the chip image accordingly. Thus by allowing a 

wiring management strategy and physical design 

algorithms to dictate floor plan and cell design, 

it becomes possible to achieve fully automatic 

physical design. The realisation of such a 

physical design subsystem, together with an 

appropriate notation for hierarchical description, 

can be thought of as a silicon compiler. 

There is also a design methodology to be used in 

conjunction with the compiler. It is based on the 

Complete abstraction of physical detail into the 

system, and partial abstraction of electrical and 

temporal detail into simple design rules. This is 

intended to liberate the designer to concentrate 

on the higher level architectural issues in design 

where the greatest gains in performance can be 

made. Taken as a whole the approach provides 

significant reductions in design time while not 

sacrificing real estate over more conventional 

gate array implementations. 

2. SILICON COMPILATION 

Silicon compilation is not a well-defined term but 

it can, in its widest sense, be regarded as any 

translation between a design description and a 

layout. The earliest example of silicon 

compilation was probably LAP [Locanthi 78], a set 

of procedures embedded in a high-level language, 

in this case SIMULA, for describing IC layouts 
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e.g. box, polygon. Higher-level constructs such 

as PLAs could then be programmed using the normal 

features of a high-level language. This simple 

idea has now been taken over by many design 

groups, especially inside universities, and has 

resulted in many flavours of LAP corresponding to 

the group's favourite programming language. 

The first silicon compiler followed this beginning 

[Johannsen 78]. It concentrated on deformable 

cell descriptions so that physical designs could 

be composed by cell abuttment. Another early 

contribution to the subject was made by one of the 

authors [Buchanan 80]. Buchanan's work 

concentrated on Joint physical and structural 

descriptions of a hierarchical design so that all 

objects had both coordinate and connectivity 

attributes. This resulted in a system in which 

all operations, such as artwork production, stick 

diagrams, design rule checking and simulation, 

were performed on the same object. More recently, 

systems for generating designs in a particular 

architecture have been demonstrated [Johannsen 81, 

Rupp 81]. They come closest to true hardware 

compilers in showing that it is possible to 

compile a behavioural description into a physical 

description without exorbitant areal overhead. 

These examples show that it is possible to choose 

a design style and support designing in that style 

with a particular software environment. 

3. DESIGN ENVIRONMENT AND METHODOLOGY 

The design environment is strongly based on the 

idea of programming designs and is shown in Figure 

I. There are three primary environments 

corresponding to the design description, 

verification, and implementation phases of 

designing. Within and between environments, 

functions are modularised to separate programs and 

communicate via intermediate codes. There is thus 

no need for central data base support. 

~,~-~ 

Design activity can be thought of as iterating 

around three conceptual loops in the system, see 

Figure 2. Structural debugging is via MODEL 

compilation to yield a design in which there are 

no topological errors. Functional debugging is 

performed via a simulator that is built into the 

system. Both unit delay and timing modes are 

available and the simulator operates from an 

intermediate code produced from the MODEL 

compilation. The intermediate code file contains 

a list of transistors and their interconnections 

which is used by the simulator as a basis for a 
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6 
transistor switch-level simulation. Finally, 

performance debugging is accomplished via loading 

analysis and timing simulation. 

The notions underlying design in this environment 

are taken from structured programming. Top down 

development of a design is carried out by the 

processes of abstraction and stepwise refinement. 

It amounts to the identification and fleshing out 

of major modules at all levels of design 

abstraction, essentially the development of the 

module hierarchy. It follows that a key component 

of a structured design methodology is a notation 

that allows the natural expression of the 

partitioning of a design. Additionally, the 

constructs of the notation provide a mechanism for 

the "painless" enforcement of good design 

practice. The MODEL notation has been designed 

with these principles in mind. 

4. DESIGN SPECIFICATION USING MODEL 

The fundamental structuring tool in the MODEL 

language is the Dart. A part is a unit or module 

with one or more input signals and one or more 

output signals. The definition of a part 

specifies its internal structure in terms of 

instances of simpler parts and their 

interconnections. Primitive parts such as NAND 

and NOR gates, inverters, etc. are predefined in 

system libraries and do not need to be defined by 

the user. Higher level libraries e.g. TTL 

equivalents, are simple to compile. An instance 

of a part is the use of the part in the definition 

of a more complex part. Any number of instances 

of the same part may occur in the same layout. 

The part definition specifies its internal form 

and its interface to the outside world. The 

potential connections to other parts are defined 

by arbitrarily-named input and output signals, the 

formal parameters of the part definition. When an 

instance of the part is generated,• actual signals 

from the enclosing environment are substituted for 
i 

the formal signal parameters used in the 

definition. Local signals may be declared inside 

a part. 

Figure 3 shows a logic diagram for a four-way 

multiplexor which outputs one of the four input 

signals depending on which of the four control 

signals is a I. A possible specification of the 

part would be as follows: 
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A further example, the 2 bit decoder shown in 

Figure 4, illustrates the use of the conditional 

statement. 

PART decoder (a,b,latch) -> p(0:3) 

SIGNAL abar,bbar 

INTEGER i 

not (a) -> abar 

not (b) -> bbar 

FOR i=0:3 CYCLE 

nor (IF i&1=0 THEN a ELSE abar ENDIF, 

IF i&2=0 THEN b ELSE bbar ENDIF, 

latch) -> p(i) 

REPEAT 

END 

PART mux (data(1:4),ctrl(1:4)) -> output ~a~- __~ 

SIGNAL temp( I : 4) 

nand ( d a t a ( 1 ) , c t r l ( 1 ) )  -> temp(1) 

nand ( d a t a ( 2 ) , c t r l ( 2 ) )  -> temp(2) 

nand (data(3),etrl(3))-> temp(3) [F~, "c l ._ . .__. ,~  
nand (data(4),etrl(4)) -> temp(4) ~ - - ~ ~ ' ' ~  

hand (temp(1:4)) -> output 

END 

Integer parameters can be declared in the part 

heading by enclosing the list in square brackets. 

Local integer variables may be declared inside the 

part. A way of specifying the same part in a more 

general form using the numerical parameter feature 

would be: 

PART mux [n] (data(1:n),etrl(1:n)) -> output 

SIGNAL temp(1:n) 

INTEGER i 

FOR l=1:n CYCLE 

nand (data(1),ctrl(1)) -> temp(i) 

REPEAT 

nand (temp(1:n)) -> output 

END 

1 

A more substantial example, a carry look-ahead 

adder, is contained in Appendix 1. 
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5. DESIGN FOR PERFORMANCE, WIRABILITY 

AND TESTABILITY 

In design for performance, because of the fixed 

device sizes in gate array technologies, it is 

possible to develop simple rules for estimating 

best and worst case delays in gating structures. 

Table I shows worst case delays for a particular 

form of chip image. 

PULLDOWN PULLUP 

Inverter 2 4 

Nor 2 4m 

Nand 2m 4 

m is the number of inputs per gate 

Table I. Worst Case Gate Delay (To be scaled by 

the technology delay of n-channel device) 

These simple rules may be used during the stepwise 

refinement process to estimate performance. More 

accurate verification must follow using timing 

simulation, net loading analysis and circuit level 

simulation. 

There are two approaches to design for wirability: 

semi-custom gate arrays and full-custom gate 

arrays. In the first a fixed chip image is 

preprocessed with a given wire capacity. In all 

fixed chip images it is possible to generate a 

design in which wire demand exceeds wire capacity. 

It is however possible to estimate wire demand 

given a systems partition. In the case of the 

MODEL compiler a separate pass over the 

intermediate code accumulates global and local 

signal usage to yield a worst case wiring demand. 

Systems partitions may be adjusted, if possible, 

to reduce wire demand beneath wire capacity. The 

alternative approach in full-custom gate array is 

to generate a chip image with exactly the correct 

wire space for a particular design. The 

flexibility of a software approach enables this to 

be done by fully parameterising the generation of 

chip images. In a sense this can be thought of as 

an optimising silicon compiler. In addition to 

area optimisations it is possible to carry out 

performance optimisations by adjusting routes to 

minimise capacitive loading. 

It is becoming recognised that design for 

testability, like performance, is best addressed 

at the highest levels of design abstraction. If a 

designer wishes to guarantee testability by 

avoiding the intractable costs associated with 

test pattern generation algorithms it is necessary 

to enforce a register transfer design style and 

make internal state accessible. Level sensitive 

scan design is an example of this [Williams 79]. 

A minimal set of tools to support such a method is 

made up of automatic test pattern generator for 

stuck-at faults in combinational logic and a test 

pattern evaluator for manually generated patterns. 

5. SUMMARY 

Digital subsystem implementation can be viewed as 

designing a program that may be compiled to a 

physical design. It is important that a 

structured design methodology be used to master 

the complexity of large designs. A convenient 

notation, diagnostic programming environment and 

simple set of design rules, as described in this 

paper, support this approach. It is conjectured 

that this silicon compiler will be portable across 

a range of processes in the same way that high 

level language compilers can be portable across 

architectures. Design principles are well 

understood for the latter and must be discovered 

for the former to guarantee gate array users 

independence and flexibility in using products. 
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, '? 

{n-bit binary full adder with fast carry} 

{similar to TI part SN74LS283} 

Include "library.inc" 

Constant bits=4 

Input Pad a(1:bits), b(1:bits), carry in 

Output Pad s(1:bits), carry out 

Part look [n] (p(1:n),g(0:n)) -> carry 

Signal temp(1:n) 

Integer J 

For j = 1:n Cycle 

and(p(j:n), g(j-1)) -> temp(J) 

Repeat 

nor(g(n), temp(1:n)) -> carry 

End 

Part slice[n](a,b,p(1:n-1),g(0:n-1),cin) -> 

sum,cout,prop,gen 

hand(a, b) -> prop 

nor(a, b) -> gen 

xor(cin, and(prop, not(gen))) -> sum 

look [n] (p(1:n-1), prop, g(0:n-1),gen) -> cout 

End 

I 

Part adder[n](a(1:n), b(1:n), cin) -> cout, s(1:n) 

Integer j 

Signal e(0:n), p(1:n), g(0:n) 

not(cin) -> g(0) 

not(g(0)) -> c(0) 

e(n) -> eout 

For J = 1:n Cycle 

slice [j] (a(j), b(j), p(1:j-1), 

g(O:j-1), c(j-1)) -> 

s(j), c(j), p(j), g(J) 

Repeat 

End 

adder[bits](a(1:bits),b(1:bits),carry in) -> 

carry out, s(1:bits) 

Endoffile 
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