
Designing Gate Arrays Using a Silicon Compiler

John P. Gray, Irene Buchanan & Peter S. Robertson

Lattice Logic Ltd

6 Albany Lane, Edinburgh, EHI 3QP, Scotland.

ABSTRACT

This paper describes a programming environment in

which gate array designs can be developed. It

allows the engineer to design for performance,

wirability and testability by manipulating a

textual description of a design. The principle

features of this are a high-level language for

design description, completely automatic layout,

and an integrated simulator. The total package can

be referred to as a silicon compiler in the gate

array design style.

This paper describes such a silicon compiler.

With this approach chip design is seen as

analogous to software development where formal

notations provide a convenient method of enforcing

good design practice. This analogy is explored by

the description of the key components of a design

environment constructed from the compilation view

of designing. The components of the design system

include a structural design language, diagnostic

compiler, intermediate codes, physical design

subsystem, integrated simulators and test pattern

generation software.

I. INTRODUCTION

Present approaches to design automation tools for

gate arrays emphasise general placement and

routing algorithms for use with a range of

proprietary chip images. This very often leads to

inefficiencies in physical design by sacrificing

active area to accommodate wiring. An alternative

approach is to reoognise that communication (wire)

is at least as important as function and to design

the chip image accordingly. Thus by allowing a

wiring management strategy and physical design

algorithms to dictate floor plan and cell design,

it becomes possible to achieve fully automatic

physical design. The realisation of such a

physical design subsystem, together with an

appropriate notation for hierarchical description,

can be thought of as a silicon compiler.

There is also a design methodology to be used in

conjunction with the compiler. It is based on the

Complete abstraction of physical detail into the

system, and partial abstraction of electrical and

temporal detail into simple design rules. This is

intended to liberate the designer to concentrate

on the higher level architectural issues in design

where the greatest gains in performance can be

made. Taken as a whole the approach provides

significant reductions in design time while not

sacrificing real estate over more conventional

gate array implementations.

2. SILICON COMPILATION

Silicon compilation is not a well-defined term but

it can, in its widest sense, be regarded as any

translation between a design description and a

layout. The earliest example of silicon

compilation was probably LAP [Locanthi 78], a set

of procedures embedded in a high-level language,

in this case SIMULA, for describing IC layouts

19th Design Automation Conference

0420-0098/82/0000/0377500.75 © 1982 IEEE
Paper 24.3

377

http://crossmark.crossref.org/dialog/?doi=10.5555%2F800263.809233&domain=pdf&date_stamp=1982-01-01

e.g. box, polygon. Higher-level constructs such

as PLAs could then be programmed using the normal

features of a high-level language. This simple

idea has now been taken over by many design

groups, especially inside universities, and has

resulted in many flavours of LAP corresponding to

the group's favourite programming language.

The first silicon compiler followed this beginning

[Johannsen 78]. It concentrated on deformable

cell descriptions so that physical designs could

be composed by cell abuttment. Another early

contribution to the subject was made by one of the

authors [Buchanan 80]. Buchanan's work

concentrated on Joint physical and structural

descriptions of a hierarchical design so that all

objects had both coordinate and connectivity

attributes. This resulted in a system in which

all operations, such as artwork production, stick

diagrams, design rule checking and simulation,

were performed on the same object. More recently,

systems for generating designs in a particular

architecture have been demonstrated [Johannsen 81,

Rupp 81]. They come closest to true hardware

compilers in showing that it is possible to

compile a behavioural description into a physical

description without exorbitant areal overhead.

These examples show that it is possible to choose

a design style and support designing in that style

with a particular software environment.

3. DESIGN ENVIRONMENT AND METHODOLOGY

The design environment is strongly based on the

idea of programming designs and is shown in Figure

I. There are three primary environments

corresponding to the design description,

verification, and implementation phases of

designing. Within and between environments,

functions are modularised to separate programs and

communicate via intermediate codes. There is thus

no need for central data base support.

~,~-~

Design activity can be thought of as iterating

around three conceptual loops in the system, see

Figure 2. Structural debugging is via MODEL

compilation to yield a design in which there are

no topological errors. Functional debugging is

performed via a simulator that is built into the

system. Both unit delay and timing modes are

available and the simulator operates from an

intermediate code produced from the MODEL

compilation. The intermediate code file contains

a list of transistors and their interconnections

which is used by the simulator as a basis for a

Paper 24.3
378

- . - - . . I I

6
transistor switch-level simulation. Finally,

performance debugging is accomplished via loading

analysis and timing simulation.

The notions underlying design in this environment

are taken from structured programming. Top down

development of a design is carried out by the

processes of abstraction and stepwise refinement.

It amounts to the identification and fleshing out

of major modules at all levels of design

abstraction, essentially the development of the

module hierarchy. It follows that a key component

of a structured design methodology is a notation

that allows the natural expression of the

partitioning of a design. Additionally, the

constructs of the notation provide a mechanism for

the "painless" enforcement of good design

practice. The MODEL notation has been designed

with these principles in mind.

4. DESIGN SPECIFICATION USING MODEL

The fundamental structuring tool in the MODEL

language is the Dart. A part is a unit or module

with one or more input signals and one or more

output signals. The definition of a part

specifies its internal structure in terms of

instances of simpler parts and their

interconnections. Primitive parts such as NAND

and NOR gates, inverters, etc. are predefined in

system libraries and do not need to be defined by

the user. Higher level libraries e.g. TTL

equivalents, are simple to compile. An instance

of a part is the use of the part in the definition

of a more complex part. Any number of instances

of the same part may occur in the same layout.

The part definition specifies its internal form

and its interface to the outside world. The

potential connections to other parts are defined

by arbitrarily-named input and output signals, the

formal parameters of the part definition. When an

instance of the part is generated,• actual signals

from the enclosing environment are substituted for
i

the formal signal parameters used in the

definition. Local signals may be declared inside

a part.

Figure 3 shows a logic diagram for a four-way

multiplexor which outputs one of the four input

signals depending on which of the four control

signals is a I. A possible specification of the

part would be as follows:

Paper 24.3
379

A further example, the 2 bit decoder shown in

Figure 4, illustrates the use of the conditional

statement.

PART decoder (a,b,latch) -> p(0:3)

SIGNAL abar,bbar

INTEGER i

not (a) -> abar

not (b) -> bbar

FOR i=0:3 CYCLE

nor (IF i&1=0 THEN a ELSE abar ENDIF,

IF i&2=0 THEN b ELSE bbar ENDIF,

latch) -> p(i)

REPEAT

END

PART mux (data(1:4),ctrl(1:4)) -> output ~a~- __~

SIGNAL temp(I : 4)

nand (d a t a (1) , c t r l (1)) -> temp(1)

nand (d a t a (2) , c t r l (2)) -> temp(2)

nand (data(3),etrl(3))-> temp(3) [F~, "c l ._ . .__. ,~
nand (data(4),etrl(4)) -> temp(4) ~ - - ~ ~ ' ' ~

hand (temp(1:4)) -> output

END

Integer parameters can be declared in the part

heading by enclosing the list in square brackets.

Local integer variables may be declared inside the

part. A way of specifying the same part in a more

general form using the numerical parameter feature

would be:

PART mux [n] (data(1:n),etrl(1:n)) -> output

SIGNAL temp(1:n)

INTEGER i

FOR l=1:n CYCLE

nand (data(1),ctrl(1)) -> temp(i)

REPEAT

nand (temp(1:n)) -> output

END

1

A more substantial example, a carry look-ahead

adder, is contained in Appendix 1.

Paper 24.3
380

5. DESIGN FOR PERFORMANCE, WIRABILITY

AND TESTABILITY

In design for performance, because of the fixed

device sizes in gate array technologies, it is

possible to develop simple rules for estimating

best and worst case delays in gating structures.

Table I shows worst case delays for a particular

form of chip image.

PULLDOWN PULLUP

Inverter 2 4

Nor 2 4m

Nand 2m 4

m is the number of inputs per gate

Table I. Worst Case Gate Delay (To be scaled by

the technology delay of n-channel device)

These simple rules may be used during the stepwise

refinement process to estimate performance. More

accurate verification must follow using timing

simulation, net loading analysis and circuit level

simulation.

There are two approaches to design for wirability:

semi-custom gate arrays and full-custom gate

arrays. In the first a fixed chip image is

preprocessed with a given wire capacity. In all

fixed chip images it is possible to generate a

design in which wire demand exceeds wire capacity.

It is however possible to estimate wire demand

given a systems partition. In the case of the

MODEL compiler a separate pass over the

intermediate code accumulates global and local

signal usage to yield a worst case wiring demand.

Systems partitions may be adjusted, if possible,

to reduce wire demand beneath wire capacity. The

alternative approach in full-custom gate array is

to generate a chip image with exactly the correct

wire space for a particular design. The

flexibility of a software approach enables this to

be done by fully parameterising the generation of

chip images. In a sense this can be thought of as

an optimising silicon compiler. In addition to

area optimisations it is possible to carry out

performance optimisations by adjusting routes to

minimise capacitive loading.

It is becoming recognised that design for

testability, like performance, is best addressed

at the highest levels of design abstraction. If a

designer wishes to guarantee testability by

avoiding the intractable costs associated with

test pattern generation algorithms it is necessary

to enforce a register transfer design style and

make internal state accessible. Level sensitive

scan design is an example of this [Williams 79].

A minimal set of tools to support such a method is

made up of automatic test pattern generator for

stuck-at faults in combinational logic and a test

pattern evaluator for manually generated patterns.

5. SUMMARY

Digital subsystem implementation can be viewed as

designing a program that may be compiled to a

physical design. It is important that a

structured design methodology be used to master

the complexity of large designs. A convenient

notation, diagnostic programming environment and

simple set of design rules, as described in this

paper, support this approach. It is conjectured

that this silicon compiler will be portable across

a range of processes in the same way that high

level language compilers can be portable across

architectures. Design principles are well

understood for the latter and must be discovered

for the former to guarantee gate array users

independence and flexibility in using products.

Paper 24.3
381

REFERENCES APPENDIX I : THE CARRY LOOK AHEAD ADDER

[Buchanan 80] Buchanan I.

"Modelling and Verification of

Structured Integrated Circuit

Design"

Ph.D. Thesis, Department of

Computer Science, University of

Edinburgh, 1980.

[Johannsen 79] Johannsen D.

"Bristle Blocks : A Silicon

Compiler"

Proceedings of the 16th Design

Automation Conference, 1979.

[Johannsen 81S Johannsen D.L.

"Silicon Compilation"

Ph.D. Thesis, Department of

Computer Science, California

Institute of Technology, 1981.

The logic diagram for a four-bit carry look ahead

adder contains about forty gates and an equivalent

number of wires. A similar part can be seen in

the TI catalogue, part SN74LS283. However, it is

difficult to deduce the function of a design from

a network of gates and so it is beneficial for

both comprehension and description to structure

the design hierarchically as shown in Figures 5,6,

and 7. The adder is first subdivided into four

bit-slices. Each slice produces its own

propagate, generate and sum signals and contains a

look-ahead part to produce the carry. The

look-ahead part is programmed to produce the

appropriate carry for a particular bit-slice. The

MODEL encoding for this design is as follows:

[Locanthi 78] Locanthi B.

"LAP : A SIMULA Package for IC

Layout"

Caltech Display File #1862, 1978.

[Rupp 81] Rupp C.R.

"Components of a Silicon Compiler

System"

VLSI 81 Conference Proceedings,

Academic Press, 1981

[Williams 79] Willaims, T.W., and K.P.Parker

"Testing Logic Networks and Design

for Testability"

Computer, 0ct79, pp9-21

Paper 24.3
382

w

, '?

{n-bit binary full adder with fast carry}

{similar to TI part SN74LS283}

Include "library.inc"

Constant bits=4

Input Pad a(1:bits), b(1:bits), carry in

Output Pad s(1:bits), carry out

Part look [n] (p(1:n),g(0:n)) -> carry

Signal temp(1:n)

Integer J

For j = 1:n Cycle

and(p(j:n), g(j-1)) -> temp(J)

Repeat

nor(g(n), temp(1:n)) -> carry

End

Part slice[n](a,b,p(1:n-1),g(0:n-1),cin) ->

sum,cout,prop,gen

hand(a, b) -> prop

nor(a, b) -> gen

xor(cin, and(prop, not(gen))) -> sum

look [n] (p(1:n-1), prop, g(0:n-1),gen) -> cout

End

I

Part adder[n](a(1:n), b(1:n), cin) -> cout, s(1:n)

Integer j

Signal e(0:n), p(1:n), g(0:n)

not(cin) -> g(0)

not(g(0)) -> c(0)

e(n) -> eout

For J = 1:n Cycle

slice [j] (a(j), b(j), p(1:j-1),

g(O:j-1), c(j-1)) ->

s(j), c(j), p(j), g(J)

Repeat

End

adder[bits](a(1:bits),b(1:bits),carry in) ->

carry out, s(1:bits)

Endoffile

Paper 24.3
383

