
TESTING FUNCTIONAL FAULTS IN VLSI*

by

Yinghua Min**
China Academy of Railway Sciences

Beijing, China

Stephen Y.H. Su
Department of Computer Science
State University of New York
Binghamton, New York 13901

ABSTRACT

Functional testing has become increasingly
important due to the advent of VLSI technology.
This paper presents a systematic procedure for
generating tests for detecting functional faults
in digital systems described by the register
transfer langumge. Procedures for testing
register decoding, instruction decoding, data
transfer, data storage and data manipulation
function faults in microprocessors are described
step-by-step. Examples are given to illustrate
the procedures.

I. INTRODUCTION

One of the reasons which makes the testing
of VLSI very difficult is that the detailed
implementation is unknown to the users of the IC
(integrated circuit) chips because most of the IC
manufacturers consider the circuit implementation
of the IC chips proprietary. Therefore, we need
to test VLSI based on whatever information is
available to users in the manufacturer's data books
and application notes from which the behavior of
the IC chip is known. Functional testing deals
with the detection and location of faults which
change the behavior (function) of a digital system.
Increasing attention and interest have been given
to this area because of its importance. The
objective is to find effecient procedures to
generate tests automatically by a computer to test
VLSI.

Recently, Su and Hsieh [i] h~e briefly dis-
cussed the prior work in functional testing area
and outlined two approaches for testing functional
faults in digital systems with the aid of register
transfer language (RTL). Using a different approach,
The first part of this paper considers the test
generation for detecting permanent functional faults
in digital systems whose behavior is described by
register transfer language (RTL). Section II
formally defines the standard statements in RTL by
which a digital system including VLSI chips can be
uniquely described.

In Section III, a procedure for generating
tests for any given functional fault is presented
by using the inverse operation of the RTL de-
scription of the system under test. Some examples
are given to demonstrate the efficiency of the
algorithm. In Section IV, test generation pro-
cedures for microprocessors are presented. Pro-

cedures for testing several types, instead of one
type, of functional faults are given to simplify
the testing.

II. SOME CONCEPTS AND NOTATIONS

Definition i: A RTL statement is formally defined
as

k: (T,C) ~ ÷ f(Rsl,Rs2 Rsv) , + n (i)

where
k - label for representing the RTL statement,

T,C - time and conditions for executing the
RTL statement,

~ + f(Rsl , Rsv) - operation section of

the statement,

R i - registers or data input or data output,

R D - destination register,

Rsl,Rs2,,..,Rsv - source registers,

+ n -jump section of the statement. If
n=k+l, this section is omitted.

There are some special eases:

i. When f=~ (empty), k becomes a jump
statement,

2. When f=l (identity), RD+I(Rsl) means

~*Rsl , which is a register transfer

statement.

Here data input and data output are considered as
registers during the data flow. Once the CPU has
been built using digital hardware components, the
behavior of the CPU of a digital computer can be
described hy RTL. Any statement in RTL is a
special case of the standard statement (i). For
instance, for instruction fetch, the following
three statements are involved:

* This work is supported by the Division of
Mathematical and Computer Science, National Science
Foundation under Grant No. MCS 78-24323 and
Grant No. 8021262.

** Yinghua Min is now a Visiting Scholar in the
Department of Computer Science, State University of
New York, Binghamton, New York, 13901.

Paper 25.1
384

19th Design Automation Conference

0420-0098/82/0000/0384500.75 © 1982 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F800263.809234&domain=pdf&date_stamp=1982-01-01

OUT ÷ PC

PC + PC+I

IR ÷ IN

For an instruction execution cycle~ we may consider

for transfer instruction, f (R 1 , . . . , R s v) = R 1 ,
for manipulation instruction, ~+f(Rsl Rv)(V>O),

for branch instruction, PC ÷ f(Rsl,..0,Rsv).

A functional fault refers to the faulty
execution of some statements which are called
faulty statements.

We shall use k/k' to denote a functional fault
where k denotes the fault-free statement, k' denotes
the statement executed due to the functional fault.
k' may be empty and needs not belong to any RTL
statement for describing a given digital system.

Definition 2: A statement is called an input state~i
ment if for some i, l<i<v, R . = IN (at least one

-- -- S l

source is the input bus). A statement is called
an output statement if Rn=OUT (the destination is
the'output bus). A statement is called an l/O
statement if it is an input and also an output
statement.

Definition 3: The functional fault k/k' is
detectable if there exists an executable statement
sequence

W l , . - . , W p , k , r l , . . . , r q
where w I is an input statement, rq is an output

statement and all wl,...,w are fault-free state-
ments such that the sequence produced by k'

Wl,...,Wp,k',r'l,...,r' q

has the property OUT(rq) # OUT(r'q). Statement rq
is called observable point of fault k/k'.

III. TESTING A GIVEN FUNCTIONAL FAULT

Definition 4: An executable sequence of statements

k, r l , . . . , r q
is called a s__ensitizing sequence if r is an

q
observable point of fault k/k' but points

rl,...,rq_ 1 are not.

Definition 5: Set K_I = {statements whose jump

section is "÷k"} is called predecessor of k.
Obviously, K_~ is non-en~pty, because at least
k-i ~ K_l, unless k itself is the first statement

in the RTL description of a digital system under
which k must be an input statement.

For detecting the functional fault k/k', we
have to find an executable statement sequence
Wl,...,Wp,k,rl,...,r q where k is a faulty statement

and r is an output statement from which we can
q

observe different outputs for fault-free and faulty
systems. The task involves two steps. The first
step is sensitization which finds the conditions
for executing the sequence k,rl,...,rq. I f the
conditions are satisfied, the system will sequen-
tially execute k , r l , . . . , r q so that OUT(rq) #

OUT(r'q). These conditions constitute the con-

straint package C k. In the next step, we shall
obtain the conditlons in C k by applying the input
sequence.

The second step is ~ustificatioon which finds
.. where w I is the fault-free sequence Wl,W2,. ,Wp

an input statement such that the conditions in C k

are satisfied after executing the sequence
... Each statement in sequence Wl,...,w p Wl,W2, ,Wp.

has to De fault-free, otherwise the fault in k
may be masked. The procedure given below is for
generating the sequence. If such a sequence does
not exist, the fault will be undetectable. Of
course before w I is executed some conditions for

the constraint package C have to be satisfied.
w I

Generally speaking, we cannot find the Wl,...,w p

and Cwl from k,rl,...,r q and C k by one step. We

have to use the inverse operation step by step,

from k to Wp, from Wp to Wp_ 1 and so on until w 1

is reached. In the first step of the inverse
operation, we construct C to guarantee that the

w
P

conditions in C k will be satisfied after Wp is

executed. So C includes not only the conditions
W
P

needed for executing Wp, but also the conditions

from which the transformation w will transform to
P

the conditions in C k. This inverse operation

process continues until the input statement w I and

C are found. During the inverse operation pro-
w 1

tess, some special cases may occur. For example,
for statement j, t ~,ay exist several statements,
predecessors of j, which precede j, we can choose
anyone. The set of all predecessors of j is J-I

and J~l is a member of J-l" The constraints for

the chosen predecessor J-i is Cj_I. I f there

exists a contradiction in C. , take another state-
J-i

ment in J-i and try again. If all retries fail, we

can choose another faulty statement as k and repeat
the whole process since, in general, for any given
functional fault, there are several faulty state-
ments in the RTL description. If this cannot be
done, then the functional fault k/k' is undetectable.
The formal description of this idea is as follows:

Definition 6: Let (R D) denote the content of

If right after executing the faulty statement k,

(~)=s d for the fault-free system and (RD)#S d for

the faulty system, then s d is called sensitive data

for the k/k' fault.

Definition 7: If f is a transformation from the
set of conditions C. to the set C., then f-l, the

31 3

inverse transformation of f, is the transformation

Paper 25.1
385

from C. to C. such that f'f-l=I (identity).
] 3_ I

f-l(cj) denotes the set of conditions through the

inverse transformation f-i of the conditions in C..
3

For example, suppose f=SHIFT RIGHT,
C.={Q=OI, A=0101}. The f-i = SHIFT LEFT,

3 _ -i - - A =101x}. Because shifting Cj_l-f (Cj)- {Q-lx,

Q=ix to the right one bit produces Q=01, shifting
right 101x produces 0101, that is f.f-l(cj)=Cj.

As another example, if f is addition, then f-l- is
sub traction.

Definition 8: For statement j in sequence
Wl,...,Wp,k, the constraint package Cj is

recursively defined as follows:

i. C k is a set of conditions to guarantee that the

sequence k,rl,...,r q is a sensitizing sequence.

2. For any statement j in the sequence

w I Wp,k, if J-l: (T,C) RD+f(Rsl,...,Rsv),+n

then we have

C u [(~)=f(Rsl Rsv)] u f-l(cj) c Cj_l,

J-1 ~ {J-i }

where f-l(cj) denotes the inverse transformation of

all constraints in Cj for statement J-l"

Procedure for Test Generation for Detecting a Given
Functional Fault

Step i - Search: In the RTL description of the
system, find a statement k which cannot be executed
correctly under the functional fault.

Step 2 - Propagation: Find a sensitizing sequence
for the fault k/k' and construct the constraint
package C k based on Definition 8.

Step 3 - Justification: Find the fault-free
sequence Wl,W2,...,w p and Cw, by sequentially

applying the inverse operations.

From j=k to an input statement, execute the
following statements :

(a) If I IJ_ll l>l then tamp+j, where l lJ_lll denotes
the number of elements in J

--i"

(b) If I I J_lll=0, go to Step 1 to search another k.

(c) Take j_l~{J_l} , {J_l~+{J_l}-J_l (Remove J-l' an

element of J-l' from J_l).

(d) Cj_l+C u [(~)=f(Rsl Rsvl] U f-l(cj)

(e) Solve the equations in C.
]-i

(f) If there exist contradictions in C. , then
3-1

j÷temp else J+J-l"

(g) If j=k go to step 3(b).

(h) If j is a faulty statement other than k then
k÷j, return to step 2.

Ste~ 4: Solve the final constraint equations in
CIN to find out the input patterns for detecting

the functional fault. If this cannot be done, let
k + IN, go to Step 3.

Example i: Fig. i illustrates the RTL description
of a module for multiplication. Following the above
procedure, the test generation for detecting SC
stuck~at~O is given below.

EXTERNAL INPUT: XS, X /*MULTIPLICAND*/

YS,Y /*MULTIPLIER*/

START /*MULTIPLICATION COMMAND*/

EXTERNAL OUTPUT: Q(O.. I), A(0.. i), AS

INTERNAL REG'S: M,BS,B,QS,E,SC
/*E=overflow bit, SC=sequence counter*/

(0) M+START /*strobe multiplication command*/
(!) (M=O), ÷ 0
(2) B+X, BS ÷XS, Q+Y, Q S÷YS
(3) AS+QSOBS /*calculate the sign bit*/
(4) A~-00, E+O, S C+O
(5) (Q(1)=O) ,+7
(6) EoA÷A+B /*partial sum of the product*/
(7) SHR EoAoQ /*shift right i bit*/
(8) SCwSC-I /*decrement sequence counter by i*/
~(9) (SC~O), + 5
(i0) M+O, + 1 /*end of multiplication*/

Fig. 1 - RTL Description of
Multiplication System

Ste~l; From Fig. 1 it is easy to see that if SC
stuck-at-0, the statement g will not be executed
correctly, So we choose k=8.

Step 2; After 8 is executed, SC=I for the fault-
free system, SC=O for the faulty system, so 1 is
the sensitive data and before 8 is executed, SC=0.
SC=O is then a condition belonging to C 8. Among

several choices, we take a sensitizing sequence
8->9+5+7. Suppose (EoAoQ) = XlX2X3X4X 5 where ''°''

denotes concatenation, 5+7 implies xs=O, After 7

is executed, we have (EoAoQ) = 0 XlX2X3X 4 for the

fault-free machine. But, for the faulty machine,
the following sequence is taken: 8÷9+10÷1÷0, so
(EoAoQ) will not be changed. Thus we obtain the
constraint package C8={SC=0 , x5=O, XlX2X3X4X5#

0 XlX2X3X 4, (E°A°Q) = XlX2X3X4X5}.

SteR 3. The only way to reach statement 8 is from
7, so we have {8 1 } = 7. Let us construct C 7 from
C 8. Under this inverse transformation, since

executing a shift right operation always inserts a
0 into the left-hand bit, Xl=O and (EoAoQ) =

x2x3x4x5x6, thus we obtain C 7 = {SC=O, x5=0, Xl=0,

0 XlX2X3X4, (EoA°Q) = x2x3x4x5x6 }. xlx2x3x4x 5

Continuing the backward tracing process, we find
that statement 7 can come from 5 or 6, so {7_1} =

{5,6}. First let us choose 7 .=5. 5÷7 is possible
' _±

only when x6=O. Considering 5_1=4 we have (x2x3x4)=

000 and C4={SC=O,x5=0,Xl=O,x6=0,(x2x3x4)=000,

Paper 25.1
386

XlX2X3X4X 5 # 0 XlX2X3X4}. Obviously, there is a

contradiction in C 4. Therefore, we have to take

another choice 7_1=6 and repeat the process. The

constraints for the whole process are given below.

Step i: If SC s-a-0, then statement 8 cannot be
executed correctly.

Step 2: 8 SC=0 /*SC=I sensitive data*/

9 (EoAoQ)= XlX2X3X4X 5

/'9+10÷1+0 for ~aulty system*/
5 x5~0

/*we have two choices 5->6 or
547, choose 7*/

7 (EoAoQ) = 0 XlX2X3X4# XlX2X3X4X 5

/*output statement*/

Step 3: 8 l=7,Xl=0

(EoAoQ) = x2x3x4x5x 6

/,f-i is SHL*/

7_I=5,x6=0

/*{7_i} = {5,6}, choose 5*/

5 l=4,(x2x3x 4) = 000

0 XlX2X3X 4 # XlX2X3X4X 5

/*impossible, choose 6*/

7_l=6,A+B=(x2x3x 4)

6_i=5,x6=i

5_I=4,E=0, A=0 Let B=b0b I

hence x2=O , B=(x3x4) = (b0bl)

Step 4: Equation 0 XlX2X3X 4 ~ XlX2X3X4X 5

000 b0b I # 00 h0b I 0

0 b0b I # b0b I 0

b0#0 or b0qb I or bl#0

thus X = 01 or i0 or ii
and Y = x5x 6 =01
The input patterns are
(01,01), (10,0l), (11,01).

We obtain the following input patterns for
detecting SC s-a-0.

X=01 or 10 or ii, Y=01

If in Step 2, 6 is chosen instead of 7, the follow.-
ing test patterns will be obtained:

(01,10), (10,10), (11,10), (00,10),
(00,i i) , (10,11), (11,11)

Therefore, we get all possible test patterns for
detecting SC s-a-0 by using this procedure.

In the next example, we shall show how a
functional fault can be detected by using instruc-
tion sequence.

Example 2: Let us find an instruction sequence to
test the stuck-at-0 faults in the adder of INTEL
8080 microprocessor. We shall use the ADD M
instruction to detect the stuck-at-0 faults in the

adder and MOV M,A to move the sum to memory so that
the faulty data can be observed in the bus between
the accumulator A and memory M. The RTL statements
for describing the micro-operations for ADD M and
MOV M,A are given in Statements 1 to 7 and
Statements 8 to 13 in Fig. 2, respectively.

i (MI,TI) OUT+PC /*micro-operations for ADD M
starts here*/

2 (MI,T2) PC+PC +i
3 (MI,T3) IRWIN /*instruction fetch*/
4 (MI,T4) ACT+A /*temporary accumulator(ACT)*/
5 (M2,TI) OUT÷(H)(L) /*sending address*/
6 (M2,T3) TMP+((H)(L)) /*reading from memory

specified by address (H)(L)
into temporary register*/

7 (M3,T2) A÷(TMP)+(ACT) /*addition*/
8 (MI,TI) OUT+PC /*micro-operations for MOV M,A

starts here */
(MI,T2) PC+PC÷I
(MI,T3) IR+IN /*instruction fetch*/
(MI, T4) TMP+ (A)
(M2,TI) OUT+(H)(L) /*sending address*/
(M2,T3) O~(TMP) /*sending content*/

Figure 2

Step i; If some bits of the adder stuck-at-0, the
addition statement will be executed incorrectly.
As shown in Fig. 2, the addition statement appears
during state T2 of the cycle M3 of instruction ADD M
which is the 7th statement in the RTL description,
so we take k=7.

Ste_~2_~: We have got the faulty statement k=7.
Now we have to find a sensitizing sequence to let
us observe the wrong data from the data bus. One
way is to use instruction MOV M,A to sensitize
the faults in Statement 7 after executing ADD M.
So we obtain 7 to 13 in Fig. 2 as the sensitizing
sequence. In order to test any bits of the adder
stuck-at-0, let the result of addition for the
good machine (sensitive data) be ii...i.

Step 3: Justification: we load the accumulator A
with a number, then we add a number in memory to A
such that the sum is ii..,i. When we store the
sum into memory through the bus, faults can be
observed from the bus lines.

7_1 (TMP)+(ACT)=II... 1

/*we must have IN+TMP, IN+ACT*/
6_I ((H)(L)):(TMP)

.'. ((H)(L))+(ACT)=II...I /*IN+HL+TMP*/

4_ 1 (ACT) = (A)

.'. ((N)(L))+(A)=II,..I
/*we have to use an instruction to load A
from external source, we choose LDA addr*/

Step 4: To satisfy the last equation, we choose
the following instruction sequence:

LDA addr
ADD M
MOV M,A

satisfying constraint ((H)(L))+(A)=II...I. Many
values of ((H)(L)) and (A) can satisfy the con-
straint. For example, ((H)(L))=II...I and
(A)=00.,.0 will detect and locate any bits of the
adder stuck-at-0.

9
I0
Ii
12
13

Paper 25.1
387

Theorem i: The proecedure mentioned above is
capable of generating tests for testing a detectable
functional fault in digital systems described by
RTL•
Proof: In Step I, the existence of k is obvious,
otherwise k/k' will not be a functional fault in
the digital system. But k need not be unique•
The test sequence

• ,k,rl,... ,rq w I, . . ,Wp

obtained from the procedure under the input patterns
satisfying the conditions in constraint package C

w I

will detect the fault k/k' by observing the output
at r . If there is no test sequence for all faulty
RTL ~tatements, ~hen these statements are redundant•
In this case, for all paths through any faulty
statement, the fault-free system and the faulty
system are just the same.

In Step 2, there exists at least a sequence
from k to an output statement unless k is an
isolated (trap) state in the system or k/k' is
undetectable. (Interruption is not considered in
this paper).

So far we have obtained the conditions which
guarantee the path from k to r is sensitized, In
Step 3, beginning with k, afte~ k_l is found, we

take new conditions C U (RD)=f(Rsl,...,Rsv) and

together with f-l(Ck), the inverse mapping of Ck

under the transformation f to form ~-i" If the

constraint package Ck_ 1 is consistent, the pro-

cedure continues until an input statement (Wl) is

found to provide the input sequence satisfying the
conditions in CIN. Under the input sequence, the

sequence Wl,...,Wp,k,rl,...,rq will detect the

fault k/k'. This process is always possible unless
either CIN is unsolvable which means the fault is

undetectable or there exists an infinite loop which
is one of the four cases shown in Fig. 3.

Cu ' --. ' , o4 T OUT OUT

(i) (ii) (iii) (iv)

Figure 3

(i) The infinite loop includes k and OUT but
excludes IN. In this case, changing the input
pattern will not change the output. Hence the
fault k/k' is undetectable.

(ii) The fault is again undetectable.

(iii) The infinite loop includes IN and k. If the
input statement makes it possible to find the input
patterns for detecting the fault, our goal is
reached. Otherwise, the conditions in C are not

w I
completely satisfied, the fault is still un-
detectable.

(iv) The infinite loop includes IN but excludes k

and OUT, the case is similar to (iii), QED

IV, TEST GENERATION PROCEDURES FOR MICROPROCESSORS

Microprocessors are widely used components in
digital systems, In Section III we have developed
a formal procedure to find input patterns for
detecting a given function fault in digital systems,
But it will not be very efficient to detect all
function faults in a microprocessor exhaustively.
Therefore, we need test generation procedures to
test microprocessors. For instance, once we detect
that the microprocessor cannot execute multiplication
instruction correctly, we can use the procedure in
Section III to detect every given function fault in
RTL description for multiplication.

Two criteria can be used for judging the
effectiveness of a test procedure. One is the fault
coverage, another is the efficiency, including the
time needed for test generation and testing. The
more faults a test procedure covers and the higher
efficiency it has, the better it will be. Thatte
and Abraham, in their significant contribution [2],
gave eight procedures for detecting four types of
function faults. For the register decoding function
fault, [2] combines READ and WRITE decoding faults
into one. In this paper, to increase fault coverage,
we test WRITE and READ decoding faults separately•
On the other hand, for improving the efficiency we
use one procedure to test several types of function
faults to shorten the computing time. As a matter
of fact, when we test register decoding function,
correct execution of I+R means that the instruction
decoding for this instruction, the data transfer and
storage for data i and the register decoding for
writing R are all correct• There are some other
differences between [2] and this paper. We check
three types of instruction decoding faults simul-
taneously instead of individually as shown in
Procedure 2~4 of [2]. We present a cover matrix to
guarantee the .consideration of all possible data
transfer paths from one register to another and
between ALU and registers. Shrink..the matrix each
time after a chain is formed until all register
transfers are covered.

In this section, we present three procedures
to test five types of faults. Here we restrict our-
selves to detect single permanent functional fault.
For example, RI/R 2 is a single register decoding

functioned fault: which uses R 2 whenever R I appears

in a RTL statement. We also consider single data
transfer function faults, for example, fault

RI+R2/RI->R2,__ means __RI instead of R 1 is transferred

into R 2 .

4.1 ..Testing Register Decoding and Data Storage
Faults

Definition 9: R={RI,...,R n} is called the explicit

register set if and only if R.(l~iNn) can be a
i

source register or the destination register of at
least one instruction.

i i i Definition i0: WRITE (R i) = {I i'" } is the
•'~S.

l

shortest instruction sequence for writing register
R. from IN. READ (R.) can similarly be defined.
1 1

Paper 25.1
388

Here IN and OUT are the input and output data buses
for the CPU. Notice that the sequence WRITE (RI)
and READ (R i) may not be unique. The corresponaing

destination register sequence is denoted by

{WRITE (Ri) }={RD(lil) RD(I i
, s)},

where
l

RD(lis.) = R i
l

The writing distance is

]]WRITE (Ri)]l= s i

Similarly define

READ(Ri) = {111,112, i i }
'''' t+

i . i) }where {READ(Ri)}={RD(I 1) RD(I t.
i

--~(lit.) = OUT
i

I IREAD(Ri) I] = t i

The following lemmaes are obvious, hence their
proofs are omitted.

Lemma i: The registers in {WRITE (ri)} are

different from each other. The same argument holds
for {READ(El) }.

Lemma 2: If register R is in the ith position of
a writing (reading) sequence, it will be in the
ith position of any other writing (reading)
sequence.

Lemma 3: {WRITE(Ri)}c{WRITE(Rj)} only if

{WRITE(R i)} is a subseqnenee of {WRITE(R.)}.
J

In order to write (read) all registers with-
out disturbing the others, we write into (read
out from) registers in the order of decreasing
(increasing) writing (reading) distance. The
following sequences are obtained

R w Writing order = RlW,R2W,...,
n

Reading order = Rlr ,R2r , . . . ,Rnr

The register sequence for writing R. w should not
l

go thourgh R. w for all j<i. The register sequence
J

for reading R. r should not go through R• r for
i j

all j>i.

Notice that for any register R, there exists
at least a writing sequence {WRITE(Ri)} such that

Rg{WRITE(Ri}. From Lemma 1-3, we can partition

all registers into various levels according to their
position in writing sequence, as shown in Fig. 4.
We may have register transfer statements in the RTL
description performing transfer at the same level
or from a higher level to a lower level or from

jth level to (J+i) th level. But it is impossible
to transfer from jen level to (J+i) th level (i>2)
(otherwise the (J+i) th level registers should
belong to (J+l) th level.) Howeyer, it is possible
to transfer from (J+i) th level to jth level for
i>l. Furthermore, depending upon the RTL
description, it is not necessary to have transfer

statement from any register to any other register.
From now on, we order RI,,..,R according to their

I I n II N
level as R I,...,R nI,RIII,...,R n2 '''''R i'''''

RNnN •

I level R I

1 el l R II R lI I
II level I___ % nz i R i ' ~ * o-. J ~ l

~-~ ~ - " " ' ~ i i I

N level
u__ "'"

Figure 4

In order to test register decoding function
fault, we need to write all registers with different
data and read out respectively to check the con-
tents of the registers. To test register storage
fault, we need to write every register with a speci-
fied data to check if there exist any stuck-at
faults and bridging faults [7,8] in some bits of
the registers. The procedure is given below.

Procedure i: Testing register decoding and data
storase fault.s

Step i: Write all registers according to the order

RWl,RW 2 R w with data 1,2,...,n respectively.
n

Read RW 1

Next, write all registers with 1,2,...,n and

read Rw2 .

Repeat above process for RW 3 Rw n until

R w is read out.
n

Step 2: Write all registers according to the order

RWl'RW2'''''RWn with data 1,2,...,n respectively.

(This is necessary because in the reading process in
Step i, the contents of some registers may be
destroyed.)

Step 3: Write Rrl with data ~ (the complement of

0...01). Read all registers according to the order

R r Rrl'Rr2''''' n" Next write Rr 2 with data 2 and

read all registers. Repeat above process for

R r R r Rr3''''' n until n is written with ~.

Step 4: Repeat Steps 1-3 with data 1,2,...,n.

Step 5: Apply 1...10...0 to all bits of all
registers. For n registers of m bits each, we have
mn bits for each pattern.

Repeat this step for the following data:

[ii 1 00 0 Ii 1 00 Ol
D- 111000 11.100.0 11.100;0 11.100.0

/,.lOlOlOlO. ...lOlO

Paper 25.1
389

Theorem 2: Procedure i detects all single register
decoding, data storage function faults.

Proof: Let us consider the following three cases:

(i) WRITE register decoding fault ~/R' D.

Case i: If R' D is a register other than ~ and

__ ~=RWI,R'D=RWj (i#j), we only consider the i<j case

since the i>j case is similar• Ate, Step i of
Procedure i, since i<j, writing R" i is before

writing R w. . But due to the fault RWi/RW j, i will
3

be written into RWj instead of RWi . When J is

written into Rwj, it erases its previous content.

Therefore, "write all registers" results in

(RWl) = the original content,

(Rwj) = j

Next let us consider two conditions when "read
R i is executed•

Condition i: If reading register decoding is
correct, "read RWi" will obtain the original

content of RW i.

(a) The original content is different from i,
the fault is detected.

(b) The original content is i. The fault is
detected when we apply ~ at Step 4 of
Procedure i.

Condition "2: If reading register decoding is
when read RWi" is executed, the content of wrong,

R w. which is j will be read. Hence, the fault is
3

detected.

Case 2: If R'D= # (empty) then nothing is written

into ~ and after "write ~", ~ keeps its original

content. This is the same as Condition i of Case i.

Case 3: R'D=%n~I. This means that in the process

of writing ~, another register %1 is also

simultaneously written with the same information.

Suppose R w R w there two conditions to ~= i' are ~ 1 = j,
be considered.

C ~ndition 1 : i<j .

At Step 1 of Procedure i, Rw~+J is after

RWi+i and thus the fault is masked. Therefore, if

READ decoding is correct, the fault cannot be
detected by Procedure i. However, it can be
detected by Procedure 2 when the data transfer is

If READ decoding is also wrong, "read RWi '' tested.

will read both i and j simultaneously and hence
produces the data other than i and hence the fault
can be detected.

Condition 2: i>j
w .

At Step i of Procedure i, R j÷3 before RWi*-i

but due to the fault, i is written into both R w
i

and R w. which destroys the original content of R w. .
3 w 3

The fault is detected when "Read RWj '' since (R ~)

becomes i instead of j.

(ll) READ register decoding fault ~/R' D

The proof is similar to (1) hence it is
omitted.

(lil) Data storage fault (~)/(~)'

Procedure I, writing and reading R n with data
i and T will detect stuck-at faults in aby bits,
writing and reading % with data given by D in

Step 5 will detect any bridging faults among
register bits.

4.2 Testin$ Data Transfer and Instruction Decodln$
Faults

After Procedure I, we have covered the data
transfer paths in {WRITE(RI)} and {READ(Ri)} (l~i~n),

but we have not covered all data transfer paths among
registers and paths from ALU (arithmetic logic
unit) to registers. In this subsection, we will give
some procedures for detecting all data transfer and
M-class (manipulation class) instruction decoding
and manipulation function faults.

Definition ii: The (n+l) x (n+l) matrix

OUT R 1 R 2 ... R n

IN

R 1

A. = R2 1

0

i
a i0

i
R a
n nO

i i
a 01 ... a On
i i

a ii ... a in

i i
a ... a

nl nn

is called the i th step transfer cover matrix where

i IN+R. exists but has not been covered after

t l the ~th step test.
i = IN÷R 4 exists but has been covered after the

a 0j
i th J step test.
IN+R. does not exist.

3
1 R.÷OUT exists but has not been covered after

I t~e i th step test.

aij0 = d R.+OUT3 exists but has been covered after the

i th step test.
0 R.÷OUT does not exist.

S
i ~ +R. exists but has not been covered after

aikj= ~ +R.3 exists but has been covered after the

i th step test.

R~÷R~ does not exist.

Obviously, A 0 can be produced based on the instruc-
tion set. a0ij=l if and only if there exists an

Paper 25.1
390

instruction performing R~+Rj~. After Procedure i,
i

a lj=d if and only if Ri+R 4~ is included in some

{WRITE(Rs)} or {KEAD(Rs)}.

Example:
0111000

0011110

0101010

~= i010010

0100011

i010101

1001100

The register transfer relations corresponding to
matrix A 0 is shown in Figure 5.

Figure

Suppose

{WRITE(RI)}={R I} ,

{WRITE(R2)}={R 2} ,

{WRITE(R3)}={R 3} ,

{WRITE(R4)}={RI,R4},

{WRITE(Rs)}={R3,Rs},

{WRITE(R6)}={RI,R 5

then

AI=

5

{READ(R1)}={R1,R3},
{READ(R2)}={R2,R5},

{READ(R3)}={R3},

{READ (R 4) }={R4, R 6 }

{READ(Rs)}={RS},

,R6}and{READ(R6)}={R6 } ,

'0ddd000 x

001ddd0

01010d0

d0100dO

010001d

d01010d
I

d001100,

Definition 12: A sequence of all registers

C i = {Ril ,Ri2, . . . ,Ri n}

is called a chain if and only if there exist the
following data transfer paths :

IN+R il+R i2 + •..÷Rin+OUT

The set of chains {cl,c2,...,cm}is called a complete
chain set if and only if any register transfer path
specified by one instruction is included in at least
one chain in the set.

Example: As shown above, from AI, we see

a 12=a 21=1, a123=a132=l, a141=l,a152=l,

a145=a154=l, a163=1 and a164=1.

The complete chain set of A 1 is

CI={R3, R 2, R 1, R 4, R 5, R 6}
C2={R2 , R 5, R 6, R 4, R I, R 3}

C3={R2 , R 1, R 5, R 4, R 6, R 3}
C4={R3 , R 5, R 2, ~, R 4, R 6}

C5={RI , R 2, R 3, R 5, R 4, R 6}

Note that the d's in matrix A are "don't cares".
To form a complete chain we can use these d
entries. After we get the complete chain set of
AI, we can test all data transfer paths between any

two registers.

Our testing scheme is illustrated in Fig. 6
with the step-by-step procedure given below.

IN ~ Ri I ÷ Ri2 + Ri 3 ÷ ...÷ Rin ÷ OUT

Initiali-
zation +i

+2 i

+3 2 1

.,. ,..

+ n "~-i A-2 "~ I ...

Rotation l -~ n + n-i + n-2 + ... + 1 +

Figure 6

procedure 2: Testin~ data transfer~ M-class
_instruction decodin~ faults

For all chains in the complete chain set of

AI, for example ci={Ril,Ri2,...,Rin}, do the

following steps :

Step i: Initialization /*write C i with data

{n,n-l,...,3,2,1}*/

Write all registers ~n C i with data {n,n-l,...,3,2,~
according to the order RWl, RW2, ...,RW n by using

the following:

i) write Ril with data i.

Read all registers according to the order

Rrl,Rr2, R r to check to see if (Ril)=l and the
''" n

other registers keep their original contents.

2) Ril+l , Ri2÷Ri 1, Ril÷2.
Read all registers according to the order

r r .. . R r R i 'R 2' ' n"
• " i i i i "

3) Rll÷I,R12÷Ril, Ril÷2, R 3÷R 2' R 2+R 1' Rll÷3
and read all registers.

Continue the process until {Ril,Ri2...Ri }=
n

{n,n-l,...,l}. In each substep, the data expected
in the chain are shift right to the next register

and RII is written with a new data, then all

registers are read according to the order

Rrl,Rr2 ,...,Rrn. Note that in the above process,

Paper 25.1
391

we read all registers at each substep so that we
can check to see if the contents of any other

i i
registers are changed when R _i+R j+l" The purpose

is to remedy the deficiency of Procedure I
mentioned in the proof of Theorem 2, Item (i),
Case 3, Condition i.

Step 2: Rotation for transfer: Read R i
n'

circulating (rotating) shift the data n,n-l,...,I
to the right one register. From the output we can
observe the data sequence 1,2,3,...,n.

Step 3: Repeat Steps 1-2 using the following
patterns :

n,n-l,...,3,2,1

Step 4: Apply i...i0...0 to all bits of all
registers. For n registers of m bits each, we
have mn bits for each pattern. Repeat above steps
for the following data given by D in Step 5 of
Procedure i.

Step 5: Initialization: This step is the same
as Step i without reading.

Step 6: Rotation for manipulation: For every
manipulation in M-class instructions, take the

first group of registers in C i as the source
registers, the next register as the destination
register, execute the instruction.

Take the addition as an example, the following
operations are performed.

Rll + R12 + R13

Ri 2 + R13 ~ R14

• . + R i R13 + R14 5
. , . . .

R i + Rin 1 ÷ R i n-2 n

and then rotate to output.

Theorem 3: Procedure 2 is capable of detecting
all data transfer and T-class (transfer), M-class
(manipulation) instruction decoding function
faults if the complete chain set exists.

4.3 Testin$ data manipulation, faults

We now present Procedure 3 for M-class
instructions which includes all kinds of data
manipulation statements in RTL description to
detect data manipulation function faults by using
different operands.

Procedure 3 : Detectin$ data m.a. nipulatio.n
function faults

For every M-class instruction, do the
following :

Step i: Write all registers with 1,2,...,n

according to the order of RWl,RW2, R w
"''' n"

Step 2: Take any specified registers as source
registers, take another as destination register,
select proper operands, write them in. Here
"proper operands" means that they can easily
cause the wrong result of the operation. The
selection is difficult if the logical level

description of the functional unit is not available.
In this case, more input patterns are needed.

Step 3: Execute the instruction to be tested.

Step 4: Read all registers according to the order

r r By analyzing contents of Rrl 'R 2 ' ' ' ' ' R n"
R. (l~iSn) obtained in Step 4, we may detect the
I

data manipulation function faults if it occurs.

V. CONCLUSION

Since the behavior instead of the detailed
implementation of a VLSI chip is known to the users
of the IC chips, RTL (Register Transfer Language)
seems to be an effective tool for describing the
behavior of a digital system. From the results
in this paper, it is interesting to know that once
the behavior of a digital system is described by
RTL, similar ideas used in testing generation for
stuck-at faults can be pushed up to RTL level with
each RTL statement as a "component" of the system.
For a given functional fault, this paper presents
a procedure to generate all possible test patterns.
For a new product of microprocessor, this paper
presents three procedures to generate test for
detecting five types of function faults. All
procedures given in this paper can be programmed

(Due to the page limitation, the proof for Theorem 3
has been omitted.)

REFERENCES

[i] S.Y.H. Su and Y.I. Hsieh; "Testing Functional
Faults in Digital Systems Described by
Register Tran[fer Language," Digest of papers,
1981 Test Conference, pp. 447-457. Revised
version published in Journal of Digital
Systems, June 1982.

[2] S.M. Thatte and J.A. Abraham, "Test Generation
for Microprocessors," IEEE Transactions on
Computers, pp. 429-441, June 1980.

[3] J.A. Abraham and S.M. Thatte, "Fault Coverage
of Test Programs for a Microprocessor,"
Digest of Papers, 1979 Test Conference,
pp. 18-22.

[4] S.Y.H. Su, "A Survey of Computer Hardware
Description Languages in the U.S.A.,"
Computer, Dec. 1974, pp. 45-51.

[5] Intel 8080 Microprocessor Systems User's
Manual, Intel Corporation, Santa Clara,
California, September 1975.

[6] S.M. Thatte and J.A. Abraham, "A Methodology
for Functional Level Testing of Micro-
processors," Digest of Papers FTCS-8, 1978,
pp. 90-95.

[7] M. Karpovsky and S.Y.H. Su, "Detecting
Bridging and Stuck-at Faults at Input and
Output Pins of Standard Digital Components,"
Proceedings of 17th Design Automation
Conference, pp. 494-505, June 1980.

[8] M. Karpovsky and S.Y.H. Su, "Detection and
Location of Input and Feedback Bridging
Faults Among Input and Output Lines," IEEE
Transactions on Computers, pp. 523-527,
June 1980.

Paper 25.1
392

