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ABSTRACT 

Functional testing has become increasingly 
important due to the advent of VLSI technology. 
This paper presents a systematic procedure for 
generating tests for detecting functional faults 
in digital systems described by the register 
transfer langumge. Procedures for testing 
register decoding, instruction decoding, data 
transfer, data storage and data manipulation 
function faults in microprocessors are described 
step-by-step. Examples are given to illustrate 
the procedures. 

I. INTRODUCTION 

One of the reasons which makes the testing 
of VLSI very difficult is that the detailed 
implementation is unknown to the users of the IC 
(integrated circuit) chips because most of the IC 
manufacturers consider the circuit implementation 
of the IC chips proprietary. Therefore, we need 
to test VLSI based on whatever information is 
available to users in the manufacturer's data books 
and application notes from which the behavior of 
the IC chip is known. Functional testing deals 
with the detection and location of faults which 
change the behavior (function) of a digital system. 
Increasing attention and interest have been given 
to this area because of its importance. The 
objective is to find effecient procedures to 
generate tests automatically by a computer to test 
VLSI. 

Recently, Su and Hsieh [i] h~e briefly dis- 
cussed the prior work in functional testing area 
and outlined two approaches for testing functional 
faults in digital systems with the aid of register 
transfer language (RTL). Using a different approach, 
The first part of this paper considers the test 
generation for detecting permanent functional faults 
in digital systems whose behavior is described by 
register transfer language (RTL). Section II 
formally defines the standard statements in RTL by 
which a digital system including VLSI chips can be 
uniquely described. 

In Section III, a procedure for generating 
tests for any given functional fault is presented 
by using the inverse operation of the RTL de- 
scription of the system under test. Some examples 
are given to demonstrate the efficiency of the 
algorithm. In Section IV, test generation pro- 
cedures for microprocessors are presented. Pro- 

cedures for testing several types, instead of one 
type, of functional faults are given to simplify 
the testing. 

II. SOME CONCEPTS AND NOTATIONS 

Definition i: A RTL statement is formally defined 
as 

k: (T,C) ~ ÷ f(Rsl,Rs2 .... Rsv) , + n (i) 

where 
k - label for representing the RTL statement, 

T,C - time and conditions for executing the 
RTL statement, 

~ + f(Rsl , .... Rsv) - operation section of 

the statement, 

R i - registers or data input or data output, 

R D - destination register, 

Rsl,Rs2,,..,Rsv - source registers, 

+ n -jump section of the statement. If 
n=k+l, this section is omitted. 

There are some special eases: 

i. When f=~ (empty), k becomes a jump 
statement, 

2. When f=l (identity), RD+I(Rsl) means 

~*Rsl , which is a register transfer 

statement. 

Here data input and data output are considered as 
registers during the data flow. Once the CPU has 
been built using digital hardware components, the 
behavior of the CPU of a digital computer can be 
described hy RTL. Any statement in RTL is a 
special case of the standard statement (i). For 
instance, for instruction fetch, the following 
three statements are involved: 
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OUT ÷ PC 

PC + PC+I 

IR ÷ IN 

For an instruction execution cycle~ we may consider 

for transfer instruction, f ( R 1 , . . . , R s v )  = R 1 ,  
for manipulation instruction, ~+f(Rsl ..... Rv)(V>O), 

for branch instruction, PC ÷ f(Rsl,..0,Rsv). 

A functional fault refers to the faulty 
execution of some statements which are called 
faulty statements. 

We shall use k/k' to denote a functional fault 
where k denotes the fault-free statement, k' denotes 
the statement executed due to the functional fault. 
k' may be empty and needs not belong to any RTL 
statement for describing a given digital system. 

Definition 2: A statement is called an input state~i 
ment if for some i, l<i<v, R . = IN ( at least one 

-- -- S l  

source is the input bus). A statement is called 
an output statement if Rn=OUT (the destination is 
the'output bus). A statement is called an l/O 
statement if it is an input and also an output 
statement. 

Definition 3: The functional fault k/k' is 
detectable if there exists an executable statement 
sequence 

W l , . - . , W p , k , r l , . . . , r q  
where w I is an input statement, rq is an output 

statement and all wl,...,w are fault-free state- 
ments such that the sequence produced by k' 

Wl,...,Wp,k',r'l,...,r' q 

has the property OUT(rq) # OUT(r'q). Statement rq 
is called observable point of fault k/k'. 

III. TESTING A GIVEN FUNCTIONAL FAULT 

Definition 4: An executable sequence of statements 

k, r l , . . . , r  q 
is called a s__ensitizing sequence if r is an 

q 
observable point of fault k/k' but points 

rl,...,rq_ 1 are not. 

Definition 5: Set K_I = {statements whose jump 

section is "÷k"} is called predecessor of k. 
Obviously, K_~ is non-en~pty, because at least 
k-i ~ K_l, unless k itself is the first statement 

in the RTL description of a digital system under 
which k must be an input statement. 

For detecting the functional fault k/k', we 
have to find an executable statement sequence 
Wl,...,Wp,k,rl,...,r q where k is a faulty statement 

and r is an output statement from which we can 
q 

observe different outputs for fault-free and faulty 
systems. The task involves two steps. The first 
step is sensitization which finds the conditions 
for executing the sequence k,rl,...,rq. I f  the 
conditions are satisfied, the system will sequen- 
tially execute k , r l , . . . , r  q so that  OUT(rq) # 

OUT(r'q). These conditions constitute the con- 

straint package C k. In the next step, we shall 
obtain the conditlons in C k by applying the input 
sequence. 

The second step is ~ustificatioon which finds 
.. where w I is the fault-free sequence Wl,W2,. ,Wp 

an input statement such that the conditions in C k 

are satisfied after executing the sequence 
... Each statement in sequence Wl,...,w p Wl,W2, ,Wp. 

has to De fault-free, otherwise the fault in k 
may be masked. The procedure given below is for 
generating the sequence. If such a sequence does 
not exist, the fault will be undetectable. Of 
course before w I is executed some conditions for 

the constraint package C have to be satisfied. 
w I 

Generally speaking, we cannot find the Wl,...,w p 

and Cwl from k,rl,...,r q and C k by one step. We 

have to use the inverse operation step by step, 

from k to Wp, from Wp to Wp_ 1 and so on until w 1 

is reached. In the first step of the inverse 
operation, we construct C to guarantee that the 

w 
P 

conditions in C k will be satisfied after Wp is 

executed. So C includes not only the conditions 
W 
P 

needed for executing Wp, but also the conditions 

from which the transformation w will transform to 
P 

the conditions in C k. This inverse operation 

process continues until the input statement w I and 

C are found. During the inverse operation pro- 
w 1 

tess, some special cases may occur. For example, 
for statement j, t .... ~,ay exist several statements, 
predecessors of j, which precede j, we can choose 
anyone. The set of all predecessors of j is J-I 

and J~l is a member of J-l" The constraints for 

the chosen predecessor J-i is Cj_I. I f  there 

exists a contradiction in C. , take another state- 
J-i 

ment in J-i and try again. If all retries fail, we 

can choose another faulty statement as k and repeat 
the whole process since, in general, for any given 
functional fault, there are several faulty state- 
ments in the RTL description. If this cannot be 
done, then the functional fault k/k' is undetectable. 
The formal description of this idea is as follows: 

Definition 6: Let (R D) denote the content of 

If right after executing the faulty statement k, 

(~)=s d for the fault-free system and (RD)#S d for 

the faulty system, then s d is called sensitive data 

for the k/k' fault. 

Definition 7: If f is a transformation from the 
set of conditions C. to the set C., then f-l, the 

31 3 

inverse transformation of f, is the transformation 
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from C. to C. such that f'f-l=I (identity). 
] 3_ I 

f-l(cj) denotes the set of conditions through the 

inverse transformation f-i of the conditions in C.. 
3 

For example, suppose f=SHIFT RIGHT, 
C.={Q=OI, A=0101}. The f-i = SHIFT LEFT, 

3 _ -i - - A =101x}. Because shifting Cj_l-f (Cj)- {Q-lx, 

Q=ix to the right one bit produces Q=01, shifting 
right 101x produces 0101, that is f.f-l(cj)=Cj. 

As another example, if f is addition, then f-l- is 
sub traction. 

Definition 8: For statement j in sequence 
Wl,...,Wp,k, the constraint package Cj is 

recursively defined as follows: 

i. C k is a set of conditions to guarantee that the 

sequence k,rl,...,r q is a sensitizing sequence. 

2. For any statement j in the sequence 

w I ..... Wp,k, if J-l: (T,C) RD+f(Rsl,...,Rsv),+n 

then we have 

C u [(~)=f(Rsl ..... Rsv)] u f-l(cj) c Cj_l, 

J-1 ~ {J-i } 

where f-l(cj) denotes the inverse transformation of 

all constraints in Cj for statement J-l" 

Procedure for Test Generation for Detecting a Given 
Functional Fault 

Step i - Search: In the RTL description of the 
system, find a statement k which cannot be executed 
correctly under the functional fault. 

Step 2 - Propagation: Find a sensitizing sequence 
for the fault k/k' and construct the constraint 
package C k based on Definition 8. 

Step 3 - Justification: Find the fault-free 
sequence Wl,W2,...,w p and Cw, by sequentially 

applying the inverse operations. 

From j=k to an input statement, execute the 
following statements : 

(a) If I IJ_ll l>l then tamp+j, where l lJ_lll denotes 
the number of elements in J 

--i" 

(b) If I I J_lll=0, go to Step 1 to search another k. 

(c) Take j_l~{J_l} , {J_l~+{J_l}-J_l (Remove J-l' an 

element of J-l' from J_l ). 

(d) Cj_l+C u [(~)=f(Rsl ..... Rsvl] U f-l(cj) 

(e) Solve the equations in C. 
]-i 

(f) If there exist contradictions in C. , then 
3-1 

j÷temp else J+J-l" 

(g) If j=k go to step 3(b). 

(h) If j is a faulty statement other than k then 
k÷j, return to step 2. 

Ste~ 4: Solve the final constraint equations in 
CIN to find out the input patterns for detecting 

the functional fault. If this cannot be done, let 
k + IN, go to Step 3. 

Example i: Fig. i illustrates the RTL description 
of a module for multiplication. Following the above 
procedure, the test generation for detecting SC 
stuck~at~O is given below. 

EXTERNAL INPUT: XS, X /*MULTIPLICAND*/ 

YS,Y /*MULTIPLIER*/ 

START /*MULTIPLICATION COMMAND*/ 

EXTERNAL OUTPUT: Q(O.. I), A(0.. i), AS 

INTERNAL REG'S: M,BS,B,QS,E,SC 
/*E=overflow bit, SC=sequence counter*/ 

(0) M+START /*strobe multiplication command*/ 
(!) (M=O), ÷ 0 
(2) B+X, BS ÷XS, Q+Y, Q S÷YS 
(3) AS+QSOBS /*calculate the sign bit*/ 
(4) A~-00, E+O, S C+O 
(5) (Q(1)=O) ,+7 
(6) EoA÷A+B /*partial sum of the product*/ 
(7) SHR EoAoQ /*shift right i bit*/ 
(8) SCwSC-I /*decrement sequence counter by i*/ 
~(9) (SC~O), + 5 
(i0) M+O, + 1 /*end of multiplication*/ 

Fig. 1 - RTL Description of 
Multiplication System 

Ste~l; From Fig. 1 it is easy to see that if SC 
stuck-at-0, the statement g will not be executed 
correctly, So we choose k=8. 

Step 2; After 8 is executed, SC=I for the fault- 
free system, SC=O for the faulty system, so 1 is 
the sensitive data and before 8 is executed, SC=0. 
SC=O is then a condition belonging to C 8. Among 

several choices, we take a sensitizing sequence 
8->9+5+7. Suppose (EoAoQ) = XlX2X3X4X 5 where ''°'' 

denotes concatenation, 5+7 implies xs=O, After 7 

is executed, we have (EoAoQ) = 0 XlX2X3X 4 for the 

fault-free machine. But, for the faulty machine, 
the following sequence is taken: 8÷9+10÷1÷0, so 
(EoAoQ) will not be changed. Thus we obtain the 
constraint package C8={SC=0 , x5=O, XlX2X3X4X5# 

0 XlX2X3X 4, (E°A°Q) = XlX2X3X4X5}. 

SteR 3. The only way to reach statement 8 is from 
7, so we have {8 1 } = 7. Let us construct C 7 from 
C 8. Under this inverse transformation, since 

executing a shift right operation always inserts a 
0 into the left-hand bit, Xl=O and (EoAoQ) = 

x2x3x4x5x6, thus we obtain C 7 = {SC=O, x5=0, Xl=0, 

# 0 XlX2X3X4, (EoA°Q) = x2x3x4x5x6 }. xlx2x3x4x 5 

Continuing the backward tracing process, we find 
that statement 7 can come from 5 or 6, so {7_1} = 

{5,6}. First let us choose 7 .=5. 5÷7 is possible 
' _± 

only when x6=O. Considering 5_1=4 we have (x2x3x4)= 

000 and C4={SC=O,x5=0,Xl=O,x6=0,(x2x3x4)=000, 
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XlX2X3X4X 5 # 0 XlX2X3X4}. Obviously, there is a 

contradiction in C 4. Therefore, we have to take 

another choice 7_1=6 and repeat the process. The 

constraints for the whole process are given below. 

Step i: If SC s-a-0, then statement 8 cannot be 
executed correctly. 

Step 2: 8 SC=0 /*SC=I sensitive data*/ 

9 (EoAoQ)= XlX2X3X4X 5 

/'9+10÷1+0 for ~aulty system*/ 
5 x5~0 

/*we have two choices 5->6 or 
547, choose 7*/ 

7 (EoAoQ) = 0 XlX2X3X4# XlX2X3X4X 5 

/*output statement*/ 

Step 3: 8 l=7,Xl=0 

(EoAoQ) = x2x3x4x5x 6 

/,f-i is SHL*/ 

7_I=5,x6=0 

/*{7_i} = {5,6}, choose 5*/ 

5 l=4,(x2x3x 4) = 000 

0 XlX2X3X 4 # XlX2X3X4X 5 

/*impossible, choose 6*/ 

7_l=6,A+B=(x2x3x 4) 

6_i=5,x6=i 

5_I=4,E=0, A=0 Let B=b0b I 

hence x2=O , B=(x3x4) = (b0bl) 

Step 4: Equation 0 XlX2X3X 4 ~ XlX2X3X4X 5 

000 b0b I # 00 h0b I 0 

0 b0b I # b0b I 0 

b0#0 or b0qb I or bl#0 

thus X = 01 or i0 or ii 
and Y = x5x 6 =01 
The input patterns are 
(01,01), (10,0l), (11,01). 

We obtain the following input patterns for 
detecting SC s-a-0. 

X=01 or 10 or ii, Y=01 

If in Step 2, 6 is chosen instead of 7, the follow.- 
ing test patterns will be obtained: 

(01,10), (10,10), (11,10), (00,10), 
(00,i i ) ,  (10,11), (11,11) 

Therefore, we get all possible test patterns for 
detecting SC s-a-0 by using this procedure. 

In the next example, we shall show how a 
functional fault can be detected by using instruc- 
tion sequence. 

Example 2: Let us find an instruction sequence to 
test the stuck-at-0 faults in the adder of INTEL 
8080 microprocessor. We shall use the ADD M 
instruction to detect the stuck-at-0 faults in the 

adder and MOV M,A to move the sum to memory so that 
the faulty data can be observed in the bus between 
the accumulator A and memory M. The RTL statements 
for describing the micro-operations for ADD M and 
MOV M,A are given in Statements 1 to 7 and 
Statements 8 to 13 in Fig. 2, respectively. 

i (MI,TI) OUT+PC /*micro-operations for ADD M 
starts here*/ 

2 (MI,T2) PC+PC +i 
3 (MI,T3) IRWIN /*instruction fetch*/ 
4 (MI,T4) ACT+A /*temporary accumulator(ACT)*/ 
5 (M2,TI) OUT÷(H)(L) /*sending address*/ 
6 (M2,T3) TMP+((H)(L)) /*reading from memory 

specified by address (H)(L) 
into temporary register*/ 

7 (M3,T2) A÷(TMP)+(ACT) /*addition*/ 
8 (MI,TI) OUT+PC /*micro-operations for MOV M,A 

starts here */ 
(MI,T2) PC+PC÷I 
(MI,T3) IR+IN /*instruction fetch*/ 
(MI, T4) TMP+ (A) 
(M2,TI) OUT+(H)(L) /*sending address*/ 
(M2,T3) O~(TMP) /*sending content*/ 

Figure 2 

Step i; If some bits of the adder stuck-at-0, the 
addition statement will be executed incorrectly. 
As shown in Fig. 2, the addition statement appears 
during state T2 of the cycle M3 of instruction ADD M 
which is the 7th statement in the RTL description, 
so we take k=7. 

Ste_~2_~: We have got the faulty statement k=7. 
Now we have to find a sensitizing sequence to let 
us observe the wrong data from the data bus. One 
way is to use instruction MOV M,A to sensitize 
the faults in Statement 7 after executing ADD M. 
So we obtain 7 to 13 in Fig. 2 as the sensitizing 
sequence. In order to test any bits of the adder 
stuck-at-0, let the result of addition for the 
good machine (sensitive data) be ii...i. 

Step 3: Justification: we load the accumulator A 
with a number, then we add a number in memory to A 
such that the sum is ii..,i. When we store the 
sum into memory through the bus, faults can be 
observed from the bus lines. 

7_1 (TMP)+(ACT)=II... 1 

/*we must have IN+TMP, IN+ACT*/ 
6_I ((H)(L)):(TMP) 

.'. ((H)(L))+(ACT)=II...I /*IN+HL+TMP*/ 

4_ 1 (ACT) = (A) 

.'. ((N)(L))+(A)=II,..I 
/*we have to use an instruction to load A 
from external source, we choose LDA addr*/ 

Step 4: To satisfy the last equation, we choose 
the following instruction sequence: 

LDA addr 
ADD M 
MOV M,A 

satisfying constraint ((H)(L))+(A)=II...I. Many 
values of ((H)(L)) and (A) can satisfy the con- 
straint. For example, ((H)(L))=II...I and 
(A)=00.,.0 will detect and locate any bits of the 
adder stuck-at-0. 

9 
I0 
Ii 
12 
13 
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Theorem i: The proecedure mentioned above is 
capable of generating tests for testing a detectable 
functional fault in digital systems described by 
RTL• 
Proof: In Step I, the existence of k is obvious, 
otherwise k/k' will not be a functional fault in 
the digital system. But k need not be unique• 
The test sequence 

• ,k,rl,... ,rq w I, . . ,Wp 

obtained from the procedure under the input patterns 
satisfying the conditions in constraint package C 

w I 

will detect the fault k/k' by observing the output 
at r . If there is no test sequence for all faulty 
RTL ~tatements, ~hen these statements are redundant• 
In this case, for all paths through any faulty 
statement, the fault-free system and the faulty 
system are just the same. 

In Step 2, there exists at least a sequence 
from k to an output statement unless k is an 
isolated (trap) state in the system or k/k' is 
undetectable. (Interruption is not considered in 
this paper). 

So far we have obtained the conditions which 
guarantee the path from k to r is sensitized, In 
Step 3, beginning with k, afte~ k_l is found, we 

take new conditions C U (RD)=f(Rsl,...,Rsv) and 

together with f-l(Ck), the inverse mapping of Ck 

under the transformation f to form ~-i" If the 

constraint package Ck_ 1 is consistent, the pro- 

cedure continues until an input statement (Wl) is 

found to provide the input sequence satisfying the 
conditions in CIN. Under the input sequence, the 

sequence Wl,...,Wp,k,rl,...,rq will detect the 

fault k/k'. This process is always possible unless 
either CIN is unsolvable which means the fault is 

undetectable or there exists an infinite loop which 
is one of the four cases shown in Fig. 3. 

Cu ' --. '  , o4 T OUT OUT 

(i) (ii) (iii) (iv) 

Figure 3 

(i) The infinite loop includes k and OUT but 
excludes IN. In this case, changing the input 
pattern will not change the output. Hence the 
fault k/k' is undetectable. 

(ii) The fault is again undetectable. 

(iii) The infinite loop includes IN and k. If the 
input statement makes it possible to find the input 
patterns for detecting the fault, our goal is 
reached. Otherwise, the conditions in C are not 

w I 
completely satisfied, the fault is still un- 
detectable. 

(iv) The infinite loop includes IN but excludes k 

and OUT, the case is similar to (iii), QED 

IV, TEST GENERATION PROCEDURES FOR MICROPROCESSORS 

Microprocessors are widely used components in 
digital systems, In Section III we have developed 
a formal procedure to find input patterns for 
detecting a given function fault in digital systems, 
But it will not be very efficient to detect all 
function faults in a microprocessor exhaustively. 
Therefore, we need test generation procedures to 
test microprocessors. For instance, once we detect 
that the microprocessor cannot execute multiplication 
instruction correctly, we can use the procedure in 
Section III to detect every given function fault in 
RTL description for multiplication. 

Two criteria can be used for judging the 
effectiveness of a test procedure. One is the fault 
coverage, another is the efficiency, including the 
time needed for test generation and testing. The 
more faults a test procedure covers and the higher 
efficiency it has, the better it will be. Thatte 
and Abraham, in their significant contribution [2], 
gave eight procedures for detecting four types of 
function faults. For the register decoding function 
fault, [2] combines READ and WRITE decoding faults 
into one. In this paper, to increase fault coverage, 
we test WRITE and READ decoding faults separately• 
On the other hand, for improving the efficiency we 
use one procedure to test several types of function 
faults to shorten the computing time. As a matter 
of fact, when we test register decoding function, 
correct execution of I+R means that the instruction 
decoding for this instruction, the data transfer and 
storage for data i and the register decoding for 
writing R are all correct• There are some other 
differences between [2] and this paper. We check 
three types of instruction decoding faults simul- 
taneously instead of individually as shown in 
Procedure 2~4 of [2]. We present a cover matrix to 
guarantee the .consideration of all possible data 
transfer paths from one register to another and 
between ALU and registers. Shrink..the matrix each 
time after a chain is formed until all register 
transfers are covered. 

In this section, we present three procedures 
to test five types of faults. Here we restrict our- 
selves to detect single permanent functional fault. 
For example, RI/R 2 is a single register decoding 

functioned fault: which uses R 2 whenever R I appears 

in a RTL statement. We also consider single data 
transfer function faults, for example, fault 

RI+R2/RI->R2,__ means __RI instead of R 1 is transferred 

into R 2 . 

4.1 ..Testing Register Decoding and Data Storage 
Faults 

Definition 9: R={RI,...,R n} is called the explicit 

register set if and only if R.(l~iNn) can be a 
i 

source register or the destination register of at 
least one instruction. 

i i i Definition i0: WRITE (R i) = {I i'" } is the 
•'~S. 

l 

shortest instruction sequence for writing register 
R. from IN. READ (R.) can similarly be defined. 
1 1 
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Here IN and OUT are the input and output data buses 
for the CPU. Notice that the sequence WRITE (RI) 
and READ (R i) may not be unique. The corresponaing 

destination register sequence is denoted by 

{WRITE (Ri) }={RD(lil) RD(I i 
, .... s)}, 

where 
l 

RD(lis. ) = R i 
l 

The writing distance is 

]]WRITE (Ri)]l= s i 

Similarly define 

READ(Ri) = {111,112, i i } 
'''' t+ 

i . i ) }where {READ(Ri)}={RD(I 1 ) ..... RD(I t. 
i 

--~(lit.) = OUT 
i 

I IREAD(Ri) I ] = t i 

The following lemmaes are obvious, hence their 
proofs are omitted. 

Lemma i: The registers in {WRITE (ri)} are 

different from each other. The same argument holds 
for {READ(El) }. 

Lemma 2: If register R is in the ith position of 
a writing (reading) sequence, it will be in the 
ith position of any other writing (reading) 
sequence. 

Lemma 3: {WRITE(Ri)}c{WRITE(Rj)} only if 

{WRITE(R i)} is a subseqnenee of {WRITE(R.)}. 
J 

In order to write (read) all registers with- 
out disturbing the others, we write into (read 
out from) registers in the order of decreasing 
(increasing) writing (reading) distance. The 
following sequences are obtained 

R w Writing order = RlW,R2W,..., 
n 

Reading order = Rlr ,R2r , . . . ,Rnr  

The register sequence for writing R. w should not 
l 

go thourgh R. w for all j<i. The register sequence 
J 

for reading R. r should not go through R• r for 
i j 

all j>i. 

Notice that for any register R, there exists 
at least a writing sequence {WRITE(Ri)} such that 

Rg{WRITE(Ri}. From Lemma 1-3, we can partition 

all registers into various levels according to their 
position in writing sequence, as shown in Fig. 4. 
We may have register transfer statements in the RTL 
description performing transfer at the same level 
or from a higher level to a lower level or from 

jth level to (J+i) th level. But it is impossible 
to transfer from jen level to (J+i) th level (i>2) 
(otherwise the (J+i) th level registers should 
belong to (J+l) th level.) Howeyer, it is possible 
to transfer from (J+i) th level to jth level for 
i>l. Furthermore, depending upon the RTL 
description, it is not necessary to have transfer 

statement from any register to any other register. 
From now on, we order RI,,..,R according to their 

I I n II N 
level as R I,...,R nI,RIII,...,R n2 '''''R i''''' 

RNnN • 

I level R I 

1 el l R II R lI I 
II level I___ % nz i R i ' ~ * o-. J ~ l 

~-~ ~ - " " ' ~ i i I  

N level 
u__ ...... "'" 

Figure 4 

In order to test register decoding function 
fault, we need to write all registers with different 
data and read out respectively to check the con- 
tents of the registers. To test register storage 
fault, we need to write every register with a speci- 
fied data to check if there exist any stuck-at 
faults and bridging faults [7,8] in some bits of 
the registers. The procedure is given below. 

Procedure i: Testing register decoding and data 
storase fault.s 

Step i: Write all registers according to the order 

RWl,RW 2 .... R w with data 1,2,...,n respectively. 
n 

Read RW 1 

Next, write all registers with 1,2,...,n and 

read Rw2 . 

Repeat above process for RW 3 ..... Rw n until 

R w is read out. 
n 

Step 2: Write all registers according to the order 

RWl'RW2'''''RWn with data 1,2,...,n respectively. 

(This is necessary because in the reading process in 
Step i, the contents of some registers may be 
destroyed.) 

Step 3: Write Rrl with data ~ (the complement of 

0...01). Read all registers according to the order 

R r Rrl'Rr2''''' n" Next write Rr 2 with data 2 and 

read all registers. Repeat above process for 

R r R r Rr3''''' n until n is written with ~. 

Step 4: Repeat Steps 1-3 with data 1,2,...,n. 

Step 5: Apply 1...10...0 to all bits of all 
registers. For n registers of m bits each, we have 
mn bits for each pattern. 

Repeat this step for the following data: 

[ii ..... 1 00 ..... 0 Ii ..... 1 00 ..... Ol 
D-  111000 11.100.0 11.100;0 11.100.0 

/,.lOlO . . . . . . .   ..lOlO.  ...lOlO 
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Theorem 2: Procedure i detects all single register 
decoding, data storage function faults. 

Proof: Let us consider the following three cases: 

(i) WRITE register decoding fault ~/R' D. 

Case i: If R' D is a register other than ~ and 

__ ~=RWI,R'D=RWj (i#j), we only consider the i<j case 

since the i>j case is similar• Ate, Step i of 
Procedure i, since i<j, writing R" i is before 

writing R w. . But due to the fault RWi/RW j, i will 
3 

be written into RWj instead of RWi . When J is 

written into Rwj, it erases its previous content. 

Therefore, "write all registers" results in 

(RWl) = the original content, 

(Rwj) = j 

Next let us consider two conditions when "read 
R i is executed• 

Condition i: If reading register decoding is 
correct, "read RWi" will obtain the original 

content of RW i. 

(a) The original content is different from i, 
the fault is detected. 

(b) The original content is i. The fault is 
detected when we apply ~ at Step 4 of 
Procedure i. 

Condition "2: If reading register decoding is 
when read RWi" is executed, the content of wrong, 

R w. which is j will be read. Hence, the fault is 
3 

detected. 

Case 2: If R'D= # (empty) then nothing is written 

into ~ and after "write ~", ~ keeps its original 

content. This is the same as Condition i of Case i. 

Case 3: R'D=%n~I. This means that in the process 

of writing ~, another register %1 is also 

simultaneously written with the same information. 

Suppose R w R w there two conditions to ~= i' are ~ 1  = j, 
be considered. 

C ~ndition 1 : i<j . 

At Step 1 of Procedure i, Rw~+J is after 

RWi+i and thus the fault is masked. Therefore, if 

READ decoding is correct, the fault cannot be 
detected by Procedure i. However, it can be 
detected by Procedure 2 when the data transfer is 

If READ decoding is also wrong, "read RWi '' tested. 

will read both i and j simultaneously and hence 
produces the data other than i and hence the fault 
can be detected. 

Condition 2: i>j 
w . 

At Step i of Procedure i, R j÷3 before RWi*-i 

but due to the fault, i is written into both R w 
i 

and R w. which destroys the original content of R w. . 
3 w 3 

The fault is detected when "Read RWj '' since (R ~) 

becomes i instead of j. 

(ll) READ register decoding fault ~/R' D 

The proof is similar to (1) hence it is 
omitted. 

(lil) Data storage fault (~)/(~)' 

Procedure I, writing and reading R n with data 
i and T will detect stuck-at faults in aby bits, 
writing and reading % with data given by D in 

Step 5 will detect any bridging faults among 
register bits. 

4.2 Testin$ Data Transfer and Instruction Decodln$ 
Faults 

After Procedure I, we have covered the data 
transfer paths in {WRITE(RI)} and {READ(Ri)} (l~i~n), 

but we have not covered all data transfer paths among 
registers and paths from ALU (arithmetic logic 
unit) to registers. In this subsection, we will give 
some procedures for detecting all data transfer and 
M-class (manipulation class) instruction decoding 
and manipulation function faults. 

Definition ii: The (n+l) x (n+l) matrix 

OUT R 1 R 2 ... R n 

IN 

R 1 

A. = R2 1 

0 

i 
a i0 

i 
R a 
n nO 

i i 
a 01 ... a On 
i i 

a ii ... a in 

i i 
a ... a 

nl nn 

is called the i th step transfer cover matrix where 

i IN+R. exists but has not been covered after 

t l  the ~th step test.  
i = IN÷R 4 exists but has been covered after the 

a 0j 
i th J step test. 
IN+R. does not exist. 

3 
1 R.÷OUT exists but has not been covered after 

I t~e i th step test. 

aij0 = d R.+OUT3 exists but has been covered after the 

i th step test.  
0 R.÷OUT does not exist. 

S 
i ~ +R. exists but has not been covered after 

aikj= ~ +R.3 exists but has been covered after the 

i th step test. 

R~÷R~ does not exist. 

Obviously, A 0 can be produced based on the instruc- 
tion set. a0ij=l if and only if there exists an 
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instruction performing R~+Rj~. After Procedure i, 
i 

a lj=d if and only if Ri+R 4~ is included in some 

{WRITE(Rs)} or {KEAD(Rs)}. 

Example: 
0111000 

0011110 

0101010 

~= i010010 

0100011 

i010101 

1001100 

The register transfer relations corresponding to 
matrix A 0 is shown in Figure 5. 

Figure 

Suppose 

{WRITE(RI)}={R I} , 

{WRITE(R2)}={R 2} , 

{WRITE(R3)}={R 3} , 

{WRITE(R4)}={RI,R4}, 

{WRITE(Rs)}={R3,Rs}, 

{WRITE(R6)}={RI,R 5 

then 

AI= 

5 

{READ(R1)}={R1,R3}, 
{READ(R2)}={R2,R5}, 

{READ(R3)}={R3}, 

{READ (R 4) }={R4, R 6 } 

{READ(Rs)}={RS}, 

,R6}and{READ(R6)}={R6 } , 

'0ddd000 x 

001ddd0 

01010d0 

d0100dO 

010001d 

d01010d 
I 

d001100, 

Definition 12: A sequence of all registers 

C i = {Ril ,Ri2, . . . ,Ri  n} 

is called a chain if and only if there exist the 
following data transfer paths : 

IN+R il+R i2 + •..÷Rin+OUT 

The set of chains {cl,c2,...,cm}is called a complete 
chain set if and only if any register transfer path 
specified by one instruction is included in at least 
one chain in the set. 

Example: As shown above, from AI, we see 

a 12=a 21=1, a123=a132=l, a141=l,a152=l, 

a145=a154=l, a163=1 and a164=1. 

The complete chain set of A 1 is 

CI={R3, R 2, R 1, R 4, R 5, R 6} 
C2={R2 , R 5, R 6, R 4, R I, R 3} 

C3={R2 , R 1, R 5, R 4, R 6, R 3} 
C4={R3 , R 5, R 2, ~, R 4, R 6} 

C5={RI , R 2, R 3, R 5, R 4, R 6} 

Note that the d's in matrix A are "don't cares". 
To form a complete chain we can use these d 
entries. After we get the complete chain set of 
AI, we can test all data transfer paths between any 

two registers. 

Our testing scheme is illustrated in Fig. 6 
with the step-by-step procedure given below. 

IN ~ Ri I ÷ Ri2 + Ri 3 ÷ ...÷ Rin ÷ OUT 

Initiali- 
zation +i 

+2 i 

+3 2 1 

.,. ,.. 

+ n "~-i A-2 "~ I ... 

Rotation l -~ n + n-i + n-2 + ... + 1 + 

Figure 6 

procedure 2: Testin~ data transfer~ M-class 
_instruction decodin~ faults 

For all chains in the complete chain set of 

AI, for example ci={Ril,Ri2,...,Rin}, do the 

following steps : 

Step i: Initialization /*write C i with data 

{n,n-l,...,3,2,1}*/ 

Write all registers ~n C i with data {n,n-l,...,3,2,~ 
according to the order RWl, RW2, ...,RW n by using 

the following: 

i) write Ril with data i. 

Read all registers according to the order 

Rrl,Rr2, R r to check to see if (Ril)=l and the 
''" n 

other registers keep their original contents. 

2) Ril+l , Ri2÷Ri 1, Ril÷2. 
Read all registers according to the order 

r r .. . R r R i 'R 2' ' n" 
• " i i i i " 

3) Rll÷I,R12÷Ril, Ril÷2, R 3÷R 2' R 2+R 1' Rll÷3 
and read all registers. 

Continue the process until {Ril,Ri2...Ri }= 
n 

{n,n-l,...,l}. In each substep, the data expected 
in the chain are shift right to the next register 

and RII is written with a new data, then all 

registers are read according to the order 

Rrl,Rr2 ,...,Rrn. Note that in the above process, 
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we read all registers at each substep so that we 
can check to see if the contents of any other 

i i 
registers are changed when R _i+R j+l" The purpose 

is to remedy the deficiency of Procedure I 
mentioned in the proof of Theorem 2, Item (i), 
Case 3, Condition i. 

Step 2: Rotation for transfer: Read R i 
n' 

circulating (rotating) shift the data n,n-l,...,I 
to the right one register. From the output we can 
observe the data sequence 1,2,3,...,n. 

Step 3: Repeat Steps 1-2 using the following 
patterns : 

n,n-l,...,3,2,1 

Step 4: Apply i...i0...0 to all bits of all 
registers. For n registers of m bits each, we 
have mn bits for each pattern. Repeat above steps 
for the following data given by D in Step 5 of 
Procedure i. 

Step 5: Initialization: This step is the same 
as Step i without reading. 

Step 6: Rotation for manipulation: For every 
manipulation in M-class instructions, take the 

first group of registers in C i as the source 
registers, the next register as the destination 
register, execute the instruction. 

Take the addition as an example, the following 
operations are performed. 

Rll  + R12 + R13 

Ri 2 + R13 ~ R14 

• . + R i R13 + R14 5 
. . .  . . ,  . . .  

R i + Rin 1 ÷ R i n-2 n 

and then rotate to output. 

Theorem 3: Procedure 2 is capable of detecting 
all data transfer and T-class (transfer), M-class 
(manipulation) instruction decoding function 
faults if the complete chain set exists. 

4.3 Testin$ data manipulation, faults 

We now present Procedure 3 for M-class 
instructions which includes all kinds of data 
manipulation statements in RTL description to 
detect data manipulation function faults by using 
different operands. 

Procedure 3 : Detectin$ data m.a. nipulatio.n 
function faults 

For every M-class instruction, do the 
following : 

Step i: Write all registers with 1,2,...,n 

according to the order of RWl,RW2, R w 
"''' n" 

Step 2: Take any specified registers as source 
registers, take another as destination register, 
select proper operands, write them in. Here 
"proper operands" means that they can easily 
cause the wrong result of the operation. The 
selection is difficult if the logical level 

description of the functional unit is not available. 
In this case, more input patterns are needed. 

Step 3: Execute the instruction to be tested. 

Step 4: Read all registers according to the order 

r r By analyzing contents of Rrl 'R 2 ' ' ' ' ' R  n" 
R. (l~iSn) obtained in Step 4, we may detect the 
I 

data manipulation function faults if it occurs. 

V. CONCLUSION 

Since the behavior instead of the detailed 
implementation of a VLSI chip is known to the users 
of the IC chips, RTL (Register Transfer Language) 
seems to be an effective tool for describing the 
behavior of a digital system. From the results 
in this paper, it is interesting to know that once 
the behavior of a digital system is described by 
RTL, similar ideas used in testing generation for 
stuck-at faults can be pushed up to RTL level with 
each RTL statement as a "component" of the system. 
For a given functional fault, this paper presents 
a procedure to generate all possible test patterns. 
For a new product of microprocessor, this paper 
presents three procedures to generate test for 
detecting five types of function faults. All 
procedures given in this paper can be programmed 

(Due to the page limitation, the proof for Theorem 3 
has been omitted.) 
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