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A b s t r a c t  

Queueing Network Models - QNM's with population 
size constraints and delayed blocked customers occur 
due to MultiProgramming Level - MPL constraints in 
computer systems and window flow-control mechanisms 
in Computer Communication Networks - CCN's. The 
computational cost of existing algorithms is 
unacceptable for large numbers of chains and high 
population sizes. A fast approximate solution technique 
based on load .concealment is presented to solve such 
QNM's. The solution procedure is non-iterative in the 
ease of fixed rate Poisson arrivals, while iteration is 
required in the case of quasi-random arrivals. Each 
iteration requires the solution of a single chain network 
of queues comprised of stations visited by each chain. 
We then present an algorithm to detect saturated chains 
and determine their maximum throughput. A fast 
solution algorithm due to Reiser for closed chains is also 
extended to the case of quasi-random arrivals. The 
accuracy of the proposed solution techniques is 
compared to previous techniques by applying it to a test 
case, reported in the literature, and a set of randomly 
generated examples. 

1.  I n t r o d u c t i o n  
Queueing network models - QNM's have been used 

extensively in the modeling and analysis of computer 
systems and networks. The very low computational cost 
and, adequate accuracy of QNM's in predicting the 
performance of multiprogrammed computer systems has 
been generally established. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984 A C M  0-89791-141-5/84/008/0202 $00.75 

A class of QNM's known as product-form or separable 
QNM's [2], has been of particular interest due to their 
low solution cost made possible by the convolution and 
Mean-Value Analysis (MVA) algorithms and their 
variations [15] (referred to hereafter as exact methods). 
Solution time and space requirements can be reduced 
substantially in QNM's when chains visit a small subset 
of the stations in the network (sparseness property) 
and/or chains are clustered in certain parts of the 
network (locality property) by using the Tree 
Convolution Algorithm - TCA [13]. In addition, fast 
approximate solutions have been developed for product- 
form networks [1, 5, 6, 15, 21, 25], when the cost of 
exact solutions is excessive, but the QNM does not have 
any special properties. A specialized iterative method 
was developed in [7] to analyze QNM's with large 
numbers of remote and local chains in the context of a 
distributed system. 

Assumptions resulting in analytical tractability of 
QNM's, do not allow for representation of certain 
important characteristics typical of many systems [4]. 
In this paper we are interested in developing efficient 
solution methods to take into account blocking 
constraints representative of fixed memory size in 
multiprogrammed computer systems and fixed 
population constraints due to window flow control 
mechanisms in Computer Communication Networks 

CCN's. In a multiprogrammed computer system 
(window flow controlled network) when the maximum 
MPL (window size) is reached, jobs (messages) are 
queued pending activation. This situation differs from 
the case with population size constraints, where blocked 
customers are lost [10]. Generally, solutions taking into 
account customer blocking are necessary when one is 
interested in user level performance measures (rather 
than the performance of a subsystem, e.g., the 
communication subnet). 
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Approximate solutions of Single Chain Population 
Constrained Queueing Networks - SCPCQN's are 
readily obtained using a combination of hierarchical 
decomposition and flow-equivalence techniques [15, 17]. 
The queueing network is substituted by a Flow- 
Equivalent Service Center - FESC (state-dependent 
exponential server}. The resulting system can be 
represented by a single-dimensional birth-death process 
when the arrival process is random or quasi-random and 
solved accordingly. However, the application of this 
technique to Multiple Chain Population Constrained 
Queueing Networks MCPCQN's is not as 
straightforward. For the MCPCQN problem the 
solution can be obtained by first solving the network 
consisting of a set of K chains and M stations (K ~-~ IK[ 
and M ---- ]M I are the number of chains and stations) for 
all possible population combinations n ~--- [nl,...,nK] up 

to the maximum population size vector W ---~ 

[W.,...,W. ] using an exact method The resulting 
1 /% 

composite queue with throughputs Tk(n), 0 ~ n ~ W 

and V k e K, is then substituted for the subnetwork. A 
multi-dimensional Markov chain incorporating the 
arrival process to the network then need be constructed 
and solved for steady-state probabilities (queue-length 
distribution) to compute the performance measures for 
the system. 

The drawback of the above approach is that the time 
and space requirements for the solution of the Markov 
chain (for the higher level model) grow rapidly with the 
number of chains in the QNM (for a detailed discussion 
the reader is referred to [22]), making the approach 
infeasible except for very small models. For this reason 
several approximate solution methods have been 
proposed for efficiently solving such models. 

Brandwajn [31 and Menasce and Almeida [18] (B-MA, 
for short) independently developed a non-iterative 
approximate solution technique for solving MCPCQN's. 
Their approach is based on a mmanifold application of 
equivalence and decomposition" [3]. The approximate 
solution technique requires the solution for throughputs 

Tk(n ) for all 0 _~ n ~ .  W and V k e K. This 
requirement alone incurs a computational cost 

K 
proportional to O(KM I-I [Wk+l ] ), when the 

k~---I 
throughputs are obtained using a general purpose exact 
method. 

A second approximate solution technique based on 
iteration was independently developed by Brandwajn [3] 
and Lazowska and Zahorjan [16] (B-LZ for short). The 
technique is similar in spirit to [3, 18] in that the multi- 
dimensional Markov chain representing the MCPCQN is 
solved "one-dimension-at-a-time1. The approach differs 

from the first approach primarily in that it doesn't 
require complete decomposition (i.e., computation of 
throughputs for all possible states). Specifically, in 
computing the queue-length distribution for chain j, we 
use throughputs obtained by solving a multi-chain QNM 
where the effect of the other chains is represented by 

their mean active population, Ti(nl,n2,...,ni,...nK) , 
4 J 

1 ~ nj ~ Wj. Note that for n. > W. the throughput 
J J 

remains constant at the value for W.. Since the mean 
J 

queue-lengths for other chains are unknown a priori, an 
iterative technique is suggested. The iteration is started 
by setting all other chain populations at a reasonable 

value, e.g., min(Wk, nk) , V k e K, where ..~ is obtained 

ignoring population size constraints. 

The computational cost of the above technique is 
largely dependent on the method used for obtaining the 

throughputs --Ti(nl'n2'""nJ'"'nK)" Exact solution 

K 
techniques would incur a per-iteration cost of O(KM l'I 

k-----1 
[W, +1] ). Variations of exact techniques have to be 
use~ when other population sizes are non-integral, 
resulting in increased cost [8]. Computational cost is 
reduced significantly by using either of two approximate 
techniques based on MVA. The first technique is the 
Bard-Schweitzer algorithm [1, 25] which has 

computational complexity of O(K2M), where M is the 
number of queues (servers) and K is the number of 
chains. The second is the Linearizer algorithm, an 
improved version of the Bard-Schweitzer algorithm 
developed by Chandy and Neuse [5], which gives more 

accurate results at slightly higher computational cost of 
O(KVM). Assuming that W k -~ W, V k e K, per- 

iteration cost is then O(K3MW) and O(K4MW) when 
using the Bard-Schweitzer and Linearizer algorithms, 
respectively. 

The accuracy of the B-LZ solution technique was 
verified in 13 , 16] using simulation. It tends to be less 
accurate than the first technique and its accuracy 
depends on the underlying algorithm used, i.e., greater 
accuracy is obtained using the Linearizer versus the 
Bard-Schweitzer approximation. 

While the above two methods provide substantial 
savings over "exact m decomposition, it is clear that for 
MCPCQN's consisting of a large number of chains 
computational cost can still be quite significant. These 
costs become even more significant when the maximum 
population constraint (e.g., MPL for high capacity 
transaction processing systems) for each chain is quite 
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large. We illustrate this point in Table 1-1. We first 
give the computational complexity of the algorithms 
discussed above, followed by the computational 
complexity of the three procedures we present in 
Sections 4 and 5. For those algorithms which are 
iterative, the cost given is per iteration. Computational 
costs are expressed in terms of: K ~ IKI -~- number of 
chains, M = IMI ~-~ number of stations, [Hkl ---~ H k ---- 

H ---~ number of stations visited by chain k (assumed to 
be equal), and W k ~-~ W ----- population constraint of 

each chain (assumed to be equal), V k ~ K. 

Consider a QNM consisting of 32 closed chains (i.e., 
virtual routes) and 64 stations (i.e., channels), similar to 
the network studied in [13]. However, we now assume 
that there are external arrivals to each chain and there 
is blocking due to flow control window size constraints. 
We first consider a QNM in which arrival processes to 
all chains are fixed rate (for which we propose 
Procedure "1"), and then consider a QNM in which 
arrivals to all chains are quasi-random (for which we 
propose Procedures "2 = and =3°). Letting H ---~ W ---- 
3, gives the computational costs shown in the last  
column of Table 1-1. As can be seen in Table 1-I, 
Procedures 1, 2, and 3 achieve considerable reductions 
in computational cost. Note that for this particular 
example (with sparsity and locality properties) the 
application of TCA would result in substantial savings 

in computational cost especially when using the B-MA 
solution method (refer to [13] for details). However, the 
solution cost would still be significantly higher than the 
proposed procedures. 

The need for such efficient algorithms to solve very 
large QNM's with population constraints (particularly 
large QNM's of CCN's) provides the primary motivation 
for presenting the computational procedures in this 
paper. We present a solution procedure for solving such 
QNM's at a very low computational cost compared to 
the aforementioned techniques and with acceptable 
accuracy. As with the above approaches, our technique 
reduces computational costs by decomposing a multi- 
chain problem into a set of single chain problems. 
Interaction at stations between interfering user chains is 
taken into account by using load concealment [17], 
which has been previously used in solving various 
QNM's arising in computer system modeling 
[12, 17, 26, 27]. 

It is interesting to note an "inverse' problem. Due to 
the high cost of solving closed QNM's with large 
numbers of chains, there have been several attempts to 
replace closed chains with open chains with equal 
throughputs [19, 21]. In [11] the accuracy of such 
methods is estimated by varying the delay in a 'source" 
node and it is shown that this approach becomes 
relatively inaccurate when this delay tends to zero. 

Algori thm Computat ional  Cost  Numerical  Example 

B-LZ with I 0 (K4~) per iteration 0 (2.0 • 108) 
L i n e a r i z e r  I per iteration 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

B-LZ with I 0(K3~)  per iteration 0(6 .3  • 106 ) 
Bard-Schw I per iteration 

K 
B-MA I O(KM~ [Wk+l]) 0 ( 3 . 8  • 1022) 

k=l  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Algori thm I I O(KWH) excluding iteration 0(2.9  • 102) 
I or Pros la, when required 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Algori thm 2 I 0 (KWH) 0 (2 .9 .  • 10 2) 
I per iteration per iteration 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

^Igor i thm 3 [ O(K2W2H) 0 ( 2 . 8  • 10 4 ) 
[ per iteration per iteration 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T a b l e  1-1: Comparison of Computational Costs for a Large QN model 
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Our paper is organized as follows. In Section 2 we 

present a generalized MCPCQN model and define the 
necessary parameters. In Sections 3 and 4 we present 
procedures for solving several variations of the basic 
MCPCQN. In Section 5 results obtained using our 
procedures are compared against results obtained using 
the approximate solution techniques mentioned earlier 
and against simulation results when available. We 
present our conclusions in Section 6. 

2. M u l t i p l e - C h a i n  Population Constrained 
Model 

The general MCPCQN model used in this paper 
consists of a set of M service stations and a set of K 
job-types or chains [15]. The number of stations and 
chains is denoted by M and K, respectively. Each chain 
is specified by it 's arrival process to the network and it 's 
service demands at each service station in the network. 
Service times at all stations are assumed to be 
exponentially distributed with parameter Pkh ----- Ph' h e 

Hk, where H k is the set of stations visited by chain 

k. These assumptions are necessary when the queueing 
discipline at all stations is FCFS and can be relieved for 
a PS discipline. Service demands are given as Dkh ----- 

Vkh Pkh' where Vkh is the mean number of visits of a 

chain k customer to station h. In the case of quasi- 
random arrivals, this is relative to one visit to the 
source. In the context of computer communication 
networks Vkh ---~ 1, assuming loop-free routing 

algorithms. Arrival processes are either Poisson with 
arrival rate k k for chain k or quasi-random. A quasi- 

random process might be due to a set of sources 
(interactive terminals), which is typically specifigd as 
follows, kk(nk) ---- (L k - nk) / Z k where L k is the 

number of sources (terminals) and Z k is the mean source 

delay (user think time), and n k is the number of 

outstanding requests in chain k. Lastly, Wk, is the 

population constraint parameter for chain k. 

3. Solution Procedure for a Multiple Chain 
QNM with Population Constraints and 
Fixed Rate Arrivals 

In this section we present a procedure for solving a 
MCPCQN in which all chains are characterized by fixed 
rate arrivals according to a Poisson process. 

Our method is based on using decomposition such that 
the queueing network is represented by a FESC for each 
chain. The key point is to represent the effect of all 
other chains in a suitable manner. It is a well-known 
result in mixed networks, that in solving closed chains 
the effect of all open chains can be substituted by their 

contribution to station utilizations [15]. This result was 
proven in [19] in solving a mixed QNM for studying 
congestion control in a tandem channel network with 
interfering .traffic and has been derived by others under 
more general contexts [14, 20, 24]. The derivation based 
on MVA is particularly simple and is given in the 
Appendix for the case of open chains sharing a single 
server. 

We apply this result by "inflating m the service 
demands of the chain under consideration by the 
utilizations of all other open chains at all stations visited 
by the chain, i.e., the load concealment method [17]. 
The modified service demands of this chain are then 
used to compute the throughput characteristics of its 
corresponding FESC. This is an approximation since 
the other chains are not truly open (i.e., the distribution 
of the number of customers is affected by population 
size constraints). The utilizations due to other chains 
will remain unaffected, however 

It should be noted that if none of the chains are 
detected to be saturated then Procedure 1 is non- 
iterative. However, if a chain k is classified to he 
saturated then the contribution of chain k to station h 
utilization is Ukh ----- Dkh Tk(Wk) , h E H k. We are 

assuming that  a closed chain can be treated as an open 
chain [11]), which is just a reapplication of the load- 
concealment method we used for open chains with 
population-size constraints. The detection of chain k 
saturation is tantamount to invalidating results obtained 
for all preceding chains. It should he noted that false 
initial classifications are possible, e.g., a chain is 
classified to be saturated due to the fact that  station 
utilizations by other chains, which are later determined 
to be saturated, were overestimated. Also Tk(Wk) is an 

under-estimate for all chains classified tentatively to be 
saturated, except for the last chain to be detected 
saturated (in this case it is an overestimate). An 
iterative scheme can be adopted such that the iteration 
stops when consecutive iterations result in no chain re- 
classifications from the previous iteration and the 
effective chain throughputs converge. 

When none of the chains is saturated, W k -~-- W and 

H k ---- H, V k e K,  and excluding the computation of 
state probabilities (Pn'S) and performance measures, the 

computational cost is O(KHW). The previous procedure 
becomes inefficient when solving MCPCQN's consisting 
of many saturated chains since several iterations will be 
required. The following procedure obviates the need for 
iteration through the use of a one-pass algorithm for 

classifying chains. This procedure may he invoked only 
when Procedure 1 detects saturation. In turn, 
Procedure l a  invokes Procedure 1 after resetting the 
throughputs of closed chains to their maximum value. 
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P r o c e d u r e  1. Analysis of a Multiple Chain Population Constrained Queueing 
Network with Fixed-Rate Arrivals. 

• Input the arrival rate to chain k, kk, V k e K, service demands for all chains 

at all stations Dkh , h e Hk, V k e K (H k is the set of stations visited by chain 

k), and the population constraints for all chains Wk, Y k e K. 

• Compute Ukh , the chain k utilization at station h, given by Ukh = k k * Dkh , 

h e Hk, V k e K (* Note: All chains have been implicitly classified to be 

unsaturated. *) 

• r e p e a t  
fo r  V k E K do 

begin  
• Account for effect of other open chains by ainflating ~ service demands at 

the stations: D [ h  ~- Dkh / (1-  U[h),  where U[h  ----- j ~ l ~ h  , h~ H k. 

• Obtain Tk(n), n = l,..,Wk, by using an exact method for solving chain k 

in isolation using D~ch, h ~ H k. 

• If )'k > Tk(Wk)'  then classify chain as saturated (this classification is not 

final}, set )'k = Tk(Wk), and update Ukh = Tk(Wk) * Dkh, h e Hk, V k 
e K. Else classify chain k as non-saturated. (* Alternately call Procedure 
la  as a co-routine the first time a chain saturation is detected *) 

• Use decomposition by substituting the set of stations visited by chain k {h 
e Hk) with a FESC with throughputs Tk(n), n ~-~ 1,...,W k. Solve the 

corresponding M / M / I  model (with load-dependent server) for the queue- 
length distribution, Pn" Use following equations to obtain chain k 

performance measures. 

• Mean number of customers in chain k: N k ~--- n~;0p n (1} 

• Mean number of customers blocked: m k ~--- ~ (n - Wk) Pn (2) 
n > W  k 

• Mean number of customers active: n k = N'k" ~ak (3) 

• Mean throughput for chain k (this value is equal to k k unless the 

chain is saturated): T k -~ )-~'k Tk(n)Pn, where ----" ~ Pn (4) 
n ~ l  PWk n~_.W k 

• Mean waiting time for ehain k using Little's law (should be ignored 

for saturated chains): D k ----- ~n k / T k (5) 

• Mean active time for chain k: A k ~--- n k / T k (6) 

• Mean response time for chain k (should be ignored for saturated 

chains): R k ~- N k / T k (7) 

end 
• unti l  (No chaine r e c l a s s i f i e d  and convergence obtained on Tk'e)  

E n d  o f  P r o c e d u r e  1. 
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Procedure la .  Algorithm to Determine Saturated Chains in a MCPCQN with Fixed 
Rate Arrivals. 

• Classify all chains to be saturated: S ~--- K, N ---- { }, where S and N denote 
the sets of Saturated/Non-saturated chains. 

repeat 

• Solve closed QNM consisting of all S chains with the population size of each 
chain set to the window-size and their service-demands adjusted by the 
complement of the sum of utilizations by all non-saturated chains (none in the 
first iteration). Compute Ts(e), the maximum throughput for chain s, 

assuming all other chains are saturated. Use Linearizer or the TCA [13] to 
reduce computational cost. 

for s e S do 

• if )~s < Ts(e) then classify chain s as non-saturated: N = N U {s}, S ~-- 

s -  {s} 

until (All re~aining chains in the last pass were all classified to be 

in the same category) 

• if S ~ { } then )'s ----" Ts(e)' V s e S (* Adjust chain throughputs for saturated 

chains *) 

• Call Procedure 1 with adjusted throughputs for saturated chains. Only active 
time is computed for such chains. Ignore statements with (*) when Procedure 
la  is executed in conjunction with Procedure 1. 

End of Procedure la.  

In case we have saturation we are in effect substituting 
a closed (saturated chain) in carrying out the 
computations in Procedure 1. This is in fact the 
'inverse m problem noted in Section 1, which has been 
shown to have relatively low accuracy when the delay at 
the source station (equivalent to user think times) is 
negligible [13]. Validation results for Procedure 1 and 
la are given in Section 5. 

In Table 3-1 we illustrate the manner in which 
Procedures 1 and la determine whether a chain is 
saturated or non-saturated. The given classification 
sequences were performed during the solution of a QNM 
consisting of 4 chains and 5 stations, where all chains 
visit all stations, and Dkh ~ 0.5 time units, V k e K. 

Arrival rates are given by k I ~--- 0.40, )~2 ---~ 0.55, )~3 ~-~ 

0.30, and k 4 -~ 0.45 arrivals/time unit. In Table 

3-1 the letters mS' and "N m are used to form a 
classification vector (for chain 1 through chain 4) to 
specify whether the chain has been classified as 
Saturated or Non-Saturated, .respectively. As can be 
seen, each procedure begins with different initial 

classifications of the four chains, however, both 
eventually converge to identical classifications and 
produce the same performance results (not shown). 
Estimates of maximum throughput obtained for 
saturated chains compare very favorably against those 
obtained using the B-MA algorithm (e.g., typically 
errors of less than three percent}. 

4. Solut ion  Procedures  for a Mult iple  Chain 
QNM with  Popula t ion  Constraints  and 
Quas i -Random Arrivals 

In this section we present two solution procedures 
[Procedures 2 and 3) for solving a MCPCQN in which 
all chains have quasi-random arrivals (i.e., there are a 
finite number of sources with given source delays 
generating requests for each chain}. Both procedures 
rely on the decomposition and load concealment 
approach used in Procedure 1, however, since the 
arrival rate is variable it is not possible to compute a 
priori the utilizations due to chains at the stations, i.e., 

Ukh. Instead, a solution can be obtained by starting 

with an initial estimate of Ukh and iterating until 

convergence is obtained. 

207  



Algorithm 1 Algor i thm la 

Classi- Classi- 
Step fication Comment fication Comment 

I S S N N Chains 1 ~ 2 S S N 8 Initial saturation 
c l a s s i f i e d  as  check: cha ins  1 , 2 , 4  
s a t u r a t e d  => i t e r a t e ,  s a t u r a t e d .  V e r i t y  in  

n e x t  s t e p .  

2 N S N S Chains I & 4 re- N S N S 
classified => iterate. 

Chain 1 r e - c l a s s i f i e d  
=> v e r i f y  c l a s s i -  
f i c a t i o n  of  s a t u r a t e d  
c h a i n s  2 & 4 .  

3 NSNS No change in c l a n s i -  N S N S 
f i c a t i o n .  No T k 

c o n v e r g e n c e  => i t e r a t e .  

No change in classi- 
fication => STOP. 

4 N S N S  No change in c l a s s i -  
f i c a t i o n  and  T k 

c o n v e r g e n c e  => STOP. 

Table 3-1: Comparison ofAlgorithm 1 and 
la Classification.Algorithms 

Dk S Mean Err 
Max Err 

Ak I Mean Err 
~i Max Err 

Case  1: Moderate  Case  2: Heavy 

B-LZ wi th  B-LZ wi th  Algor i thm 1 
L i n e a r i z e r  Alg 1 L i n e a r i z e r  A l l  LF<0.8 

C1) C2) C3) C4) ( s )  

2 5 . 9 0  1 . 8 4  . . . . . .  5 . 2 1  
7 2 . 1 0  2 2 . 1 4  . . . . . .  2 0 . 7 0  

0.94  0 .32  1.95 7.71 0 .93  
8 .45  1.76 8 .50  81.17 3 .10  

Rk ~ Mean Er r  1.58 0.38 . . . . . .  1.20 
S Max Er r  9.62 1.94 . . . . . .  3 .80 

T a b l e  5-1: --Algorithm 1 Validation Results 

Except for the required iteration, Procedure 2 is a 
direct extension of Procedure 1 for the solution of 
MCPCQN's with quasi-random arrivals. Procedure 3, 
on the other hand, is developed within the framework of 
Reiser's approximate~MVA algorithm for the solution of 
product-form QNM's with a very large number of chains 
[21]. However, since Reiser's algorithm also solves each 

chain in isolation, using load concealment to account for 
the effect of interfering chains at a given queue, the 
overall approach is very similar in spirit to that  of 
Procedure 2. The major difference is the manner in 
which the FESC load-dependent throughputs, Tk(n), are 

computed. Instead of directly using the inflated service 
demands to obtain Tk(n), as in Procedures 1 and 2, the 

inflated service demands are used to compute estimates 
of chain k queue-length statistics which are incorporated 
into Reiser's MVA-based heuristic for computing Tk(n ). 

The reader is referred to [21] for a detailed description 
of Reiser's algorithm. 

We now present formal descriptions of both 
procedures. 
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P r o c e d u r e  2: Analysis of a Multiple Chain Population Constrained Queueing 
Network with Quasi-Random Arrivals. 

• Input service demands for all chains at all stations Dkh , h E Hk, V k e K, the 

population constraints for all chains Wk, V k E K, the number of sources for 

chain k, Lk, V k E K, and the source delays Zk, V k e K. 

• Initialize utilizations of all stations due to all chains: Ukh = 0, h e Hk, V k E 

K and all mean response times: R k = 0, V k E K. 

repeat  

• R~ = R k, V k E K (* Save previous values for checking eo,vergence *) 

fo r  V k e K do 
begin 

• Compute utilization at station h E H k by all other chains besides k: 

U~h ----- j ~ U j h ,  h e Hk • 

• Account for effect of other open chains by ~inflating" service demands for 
chain k at the stations: 

D~h = Dkh / (1- U~h), h e  H k. 

• Obtain Tk(n ) by solving chain k in isolation using an exact method for n 

= 1,...,Wk, and using D[h  , h e H k- 

• Compute chain k queue-length distribution, Pn' by solving M/M/1 / /M 

queueing system, using specified variable-rate arrival process and Tk(n), n 

---~ I,...,W k. 

• Obtain Tk, mean throughput for chain k, using equation 4. 

• Obtain station utilizations due to chain k, Ukh = T k Dkh , h e H k. 

end 

unt i l  (IR~r - Rkl / R k < e0 V k ¢ K)  

• Compute performance measures using equations 1 to 7 in Procedure 1. 

E n d  of  P r o c e d u r e  2. 
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Procedure 3: Analysis of a Multiple Closed Class Population Constrained Queueing 
Network using Reiser's Algorithm. 

• Input service demands for all chains at all stations Dkh , h E Hk, V k E K, the 

population constraints for all chains Wk, V k ~ K, the number of sources for 

chain k, Lk, V k E K, and the source delays Zk, V k ~ K. 

• Initialize: Utilizations of all stations due to all chains: Ukh ----- 0, h E Hk, V k c 

K, all mean response times: R k ---- 0, V k E K, and mean queue-lengths of all 

chains at all stations: Lkh[N ] ---: 0, h E Hk, V k ~ K, where 

IN]----[nl,...,nk,...,nKl 

repeat  

' ---- Rk, V k E K (* Save previous values for checking convergence *) • R k 

for V k E K do 
begin  

• Compute utilization at station h E H k by all other chains besides k: 

U~(h ---- j ~ ? j h ,  h ~ Hk • 

• Account for the effect of other open chains by =inflating = service 
demands for chain k at the stations: 

D~h ~ Dkh / (1-  U~h), hE H k- 

• Compute chain k load-dependent throughputs Tk[n], n ~ 1,...,Wk, using 

P r o c e d u r e  3a (Reiser's heuristic [21]). 

* Compute chain k queue-length distribution, Pn' by solving M/M/1 / /M 

queueing system, using specified variable-rate arrival process and Tk(n), n 

- -  1,...,W k. 

• Obtain Tk, mean throughput for chain k, using equation 4. 

• Obtain chain k station utilizations, Ukh -~ T k Dkh, h E H k. 

• Obtain mean queue-lengths Lkh[N] for chain k: 

k ~kh(n) Pn' where = Lkh[N] ---- n----1 PWk 

• Compute mean chain k response time, Rk, using equation 7. 

end 
P unti l  (IRk - Rk[ / R k < ~. V k) 

• Compute final performance measures using equations 1 to 7 in Procedure 1. 

End of  P r o c e d u r e  3. 
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Procedure  3a: 

• Input Parameters: Ljh[N], h e  5 '  Y j e  K -  (k}. 

• Solve chain k in isolation with single chain MVA using D~ h' 

obtain queue-lengths: ~kh[n], h e Hk, n ----- 1,...,W k. 

• Compute ekh[n ] ~ ~kh[n] - ~kh[n-1], h e  HK, n ---- 1,...,W k 

Computation of chain k throughputs Tk[n], n ---- 1,...,W k. 

h e Hk, and 

for n = 1 . . . . .  W k do 

begin 

repeat 

• Compute chain k residence time at station h using Arrival Theorem 
[15,17]: 

Rkh[n l = Dkh(1 + i~ Ljh[N] + ~khtn] - ekhtn]), h e  H k. 

• Compute total Chain k residence time (used for testing convergence): 

Rk[n ] = h~R:h[n] • 

• Compute chain k throughput: Tk[n ] ~-- n / Rk[n ]. 

• Compute chain k mean queue-length at station h: 

~kh[n] ~--- Tk[n] * Rkh[n], h e  H k- 

unt i l  (Convergence on R kin] )  

end 

End of  Procedure  3a. 

Assuming W k = W, H ----- Hk, V k e K, and excluding 

the computation of state probabilities (Pn'S) and 

performance measures, the computational cost for 
Procedure 2 per iteration is O(KHW). Under the same 
assumptions the computational cost for Procedure 3 is 
approximately the equivalent of solving Reiser's 
algorithm W times. The computational cost of solving 

K 
Reiser's algorithm is given by [211: O[KH (2 + Y] Wk) ] 

k-~l 

,~ O[K2HW]. Thus the per iteration computational 

cost of Procedure 3 is O[K2HW2]. It should be noted 

that Procedure 3, unlike the iteration in the B-LZ 
algorithm, does not require any complete solutions of a 
K-chain QNM for obtaining the load-dependent 
throughputs Tk[n l. Rather, Procedure 3 only requires 

the "partial" single chain computation required in 
Procedure 3a. This partial solution £pproach alone 
reduces the per-iteration computational cost of 
Procedure 3 by a factor of K (approximately} with 
respect to a comparable B-LZ method using Reiser 
approximate*MVA rather than the Bard-Schweitzer or 
Linearizer approximate solution methods at the lower 
level. We assess the accuracy of this procedure in 
Section 5. 
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5. P r o c e d u r e  V a l i d a t i o n  

5.1. P r o c e d u r e  1 Validat ion 
In this section we validate Procedure 1 against the B- 

MA approximate solution technique based on manifold 
equivalence and decomposition [3, 18]. Although the B- 
MA approach is also approximate, its high degree of 
accuracy should provide a reliable mbenchmark ° against 
which our procedure can be tested and verified. 
Furthermore, based on experience using the B-MA 
approach, we observed that the most accurate results 
are obtained by permuting the order in which the chains 
are solved. Specifically, for a QNM consisting of the 
chains K ----- {1,...,K}, the QNM is solved K times where 
the order in which the chains are solved are specified by 

t(he following s.~}ence: K (1) = {I,...,K-I,K}, K (2) = 
2,...,K,1},...,K = {K,1,..,K-1}, i.e., the order of a 

set is obtained by cyclically shifting the members of the 
=predecessor" sequence. The most accurate results of 
each sequence are obtained for the first chain (which is 
the last chained solved in the B-MA algorithm), and are 
the only results saved for that solution. B-MA results 
for validation are obtained in this manner. 

Our validation consists of solving a QNM consisting of 
K -~ 4 chains and M = H ----- 5 stations (all chains visit 
all stations). We consider two sets of fixed arrival rates 
(Case 1 and Case 2): (I) Moderate network load with 

)'1 = 0.3, )~2 = 0.25, )'3 ~--- 0.2, )'4 = 0.15 arrivals per 

time unit, and (2) Heavy network load with )`1 ----" 0.4, 

)`2 ----- 0.4, )'3 ----- 0.2, )`4 = 0.15 arrivals per time unit. 

All population size constraints are equal, W k ----- 4, V k e 

K and service demands, Dkh , at each device are 

randomly generated from a uniform distribution over  
[0,11. For each QNM generated, we obtain the mean 
response time, Rk, mean active time, Ak, and mean 

waiting time, D k = R k - Ak, for all 4 chains. For Dk, 

Ak, and R k we compute the Mean Error (relative error 

with respect to results obtained using the B-MA 
algorithm} and the Maximum Error over all chains using 
Procedure 1 and the B-LZ algorithm (for fixed rate 
arrivals). 

For Case I, error statistics were computed from 50 
randomly generated sets of service demand data. As 
can be seen in Table 5-1, results obtained using 
Procedure 1 (column 2) were very accurate when 
compared against B-MA results. Mean errors for 
Procedure 1 averaged less than 2 percent for all 
performance measures, outperforming the B-LZ 
algorithm (column I). 

For Case 2, error statistics were computed from 25 
randomly generated sets of service demand data. Most 
of the 25 cases contained at least one chain operating 

near saturation, while in 6 cases at least one chain was 
actually saturated. In Table 5-1 we show results only 
for A k {since statistics for D k and R k are not 

particularly meaningful when saturated chains exist). 
From Table 5-1 (column 4) it can be seen that the mean 
error for Procedure 1 is still quite acceptable, however, 
the procedure is susceptible to large errors when there 
are chains at or near saturation, as indicated by the 
large maximum error obtained. Results (column 3) 
using the B-LZ algorithm are far more robust. 

The last result shown in Table 5-1 (column 5), 
represents statistics for a special group of Case 2 results. 
The subset of Case 2 results used in computing these 
error statistics are selected as follows. First we define 
the chain k Load Factor as LF k = )`k / (Maximum 

Chain k Throughput). We then only use results 
obtained from those sets of data in which LF k < 0.8, V 

k e K. Using this screening procedure we filter out 
results which produce abnormally high errors due to 
saturation/near-saturation conditions, while retaining 
those results which still stress Procedure 1 under more 
realistic heavy load conditions {from a CCN modeling 
point of view}. Under such conditions, results obtained 
using Procedure 1 are still quite acceptable. 

5.2. P r o c e d u r e  2 and  3 Validat ion 
In this section we validate Procedures 2 and 3 by 

comparing them against simulations performed by Sauer 
[23] for a timesharing QNM consisting of a CPU (queue 

1), four equally loaded disks (queues 2 through 5), and 
two interactive customer classes with independefit 
memory constraints. The service demands for customer 
classes 1 and 2 are given by Dlh = (0.1, 0.0875, 0.0875, 

0.0875, 0.0875) and D2h = (2.0, 0.175, 0.175, 0.175, 

0.175), respectively. Mean user think times are Z 1 = 5 

and Z 2 --~ I0 time units. Simulations were conducted 

for 9 models, varying in the number of terminal users, 

Lk, and memory size constraints, Wk, for each class, as 

shown in Table 5-2. Models were chosen such that 
examples of low, moderate, and high memory contention 
were represented. Each simulation was terminated 
when the relative width of the 90~ confidence interval 
for class-independent mean response time was 5%. 

Tables 5-3, 5-4, and 5-5 summarize results for class 1 
and 2 response times, and CPU utilization, respectively, 
as obtained using decomposition, simulation, Procedure 
2, and Procedure 3. Decomposition results were 
obtained by Sauer [23] by solving the underlying 
Markov process of a flow-equivalent model using a 
recursive technique due to Herzog, Woo, and Chandy 
[9]. In addition, for comparison purposes, we indicate 
results obtained using the B-LZ algorithm (with 
Linearizer), the B-LZ algorithm (with Bard-Schweitzer) 
and the B-MA algorithm. Results pertaining to this 
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Sauer ' e  Simulat ion B-LZ w/ B-LZ w/ 
No. Decomp C.I .  Linear  Bd-Sch Alg 2 Alg 3 B-MA 

1 0.80 ( 0.77, 0.80) 0.798 0.808 0.820 0.803 0.795 
2 0.93 ( 0.90, 0.95) 0.928 0.935 0.984 0.931 0.922 
3 4.83 ( 4.68, 4.93) 4.922 4.948 4.981 4.950 4.830 

4 1.06 ( 1.03, 1.08) 1.066 1.091 1.165 1.079 1.061 
5 1.17 ( 1,13, 1.19) 1.173 1.190 1.314 1,184 1.171 
6 4.10 ( 3.97, 4.17) 4.155 4.202 4.445 4.189 4.102 

7 1 .50  ( 1.47, 1.54) 1.528 1.559 1.741 1.541 1.504 
8 1.69 ( 1.87, 1.74) 1.704 1.750 1.919 1.727 1.683 
9 2.33 ( 2.30, 2.42) 2.338 2.368 2.735 2.354 2.333 

Table  5-2: Comparison of Class 1 Mean Response Time 

Sauer ' s  Simulat ion B-LZ w/ B-LZ w/ 
No. Decomp C.I .  Linear  Bd-Sch Alg 2 Alg 3 B-MA 

1 4.66 ( 4.49, 5.09) 4.701 5.267 4.727 4.590 4.675 
2 5.08 ( 4.71, 5.31) 5.135 5.756 5.142 5,534 5.096 
3 4.09 ( 3.88, 4.31) 4.099 4.352 4.191 4.252 4.090 

4 7.59 ( 6.70, 7.64) 7.793 9.269 7.608 8.625 7.599 
5 9.13 ( 8.42, 9,69) 9.396 11.413 9.020 11.114 9.139 
6 6.44 ( 6.08, 6.95) 6.464 7.280 6.499 7.127 6.443 

7 13.30 (12.16, 14.10) 14.087 18.279 12.698 15.520 13.303 
8 12.48 (11.98, 13.28) 12.803 14.909 12.115 14.117 12.484 
9 14.47 (13.48, 15.15) 14.551 18.161 13.552 17.890 14.474 

Table  5-3: Comparison of Class 2 Mean Response Time 

Sauer ' e  Simulation B-LZ w/ B-LZ w/ 
No. Decomp C.I .  Linear  Bd-Sch A1 g 2 AIK 3 B-MA 

1 0.62 (0.60, 0.63) 0.617 0.806 0.615 0.613 0.618 
2 0.60 (0.59, 0.81) 0.802 0.581 0.800 0.595 0.603 
3 0.49 (0.48, 0.50) 0.485 0.480 0.482 0.481 0.487 

4 0.84 (0.83, 0.88) 0.832 0.804 0.827 0.818 0.838 
5 0.80 (0.79, 0.81) 0.795 0.785 0.791 0.789 0.800 
6 0.69 (0.89, 0.71) 0.692 0.673 0.681 0.677 0.696 

7 0.98 (0.98, 0.97) 0.945 0.914 0.946 0.926 0.958 
8 0.95 (0.95, 0.96) 0.948 0.914 0.940 0.927 0.954 
9 0.87 (0.87, 0.88) 0.871 0.827 0.857 0.830 0.872 

Table  5-4: Comparison of Total CPU Utilization 
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example using a "delay technique" are reported in [28] 
and shown to be more accurate than the mean 
population technique (the B-LZ algorithm} however are 
not discussed in this paper. 

For Procedure 2, all of the class 2 response times 
obtained were within the simulation confidence 
intervals, while class 1 response times were all slightly 
outside the given confidence intervals (i.e., results for 
cases with low to moderate CPU utilizations were 1 to 8 
percent outside their confidence intervals, while results 
for cases with high CPU utilizations were slightly 
further outside their confidence intervals}. Over half of 
the values obtained for CPU utilization were within 
their confidence intervals, while the maximum distance 
of those outside their confidence intervals was less than 
1.5%. 

Results obtained using Procedure 3 show that results 
were comparable to those results obtained using the 13- 
LZ algorithm with Bard-Schweitzer, with Procedure 3 
giving slightly better results for class 2 performance 
measures. Over half of the mean response times 
obtained for class 1 were within their respective 
confidence intervals; all other class 1 mean response 
time results were within one percent of their confidence 
intervals. For class 2 mean response times, results for 
cases 1 and 3 were within their confidence intervals, 
with deviations ranging from 2 to 18 percent for the 
remaining cases. Using a convergence criteria of e 
0.001 (see Procedure 2 and 3 descriptions} for solving 
the nine models, both Procedures 2 and 3 required 
approximately 4 to 5 iterations for convergence, while 
the B-LZ approaches required approximately 3 to 4 
iterations. 

6.  C o n c l u s i o n s  
We presented three procedures for solving multiple 

class population constrained QNM's, Our emphasis was 
on developing computationally efficient procedures for 
solving very large QNM's associated with computer 
communication networks. 

Procedure 1, which is based on load concealment, was 
shown to be a fast and accurate procedure for solving 
MCPCQN's in which there are fixed rate arrivals to all 
chains. The procedure was observed to be comparable 
in accuracy to computationally more expensive 
techniques using manifold equivalence and 
decomposition. Largest deviations occurred when the 
QNM contained chains which were at or near 
saturation. 

Procedures 2 and 3 were proposed for solving 
MCPCQN's in which all chains are characterized by 
quasi-random arrivals. Procedure 2 was a direct 
extension of Procedure 1, while Procedure 3 was an 
adaptation of Reiser's approximate MVA algorithm for 
solving product-form QNM's [21]. Results obtained 
using both procedures compared favorably against 
techniques [3, 16, 18l having significantly higher costs. 
Procedure 2 has the lower computational cost of the two 
procedures, while Procedure 3 tends to be more robust. 
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Terminals  MPL C o n s t r a i n t  
Case C l a s s  1 C l a s s  2 C l a s s  1 C l a s s  2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 20 2 4 2 
2 3 1 
3 1 1 

4 30 3 7 2 
5 5 1 
6 2 1 

7 40 4 14 4 
8 9 3 
9 5 I 

T a b l e  5-1: Parameters for Sauer's Simulation Test Cases 
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I.  A p p e n d i x  
Consider a single-server station with a PS queueing 

discipline, which services K chains with Poisson arrivals. 
The arrival rates are k k and the mean service times are 

Xk, k ~ I,...,K. The utilization of the server by each 
ctiain is denoted by Pk ---~ )~k Xk' k ~--- 1,...,K. The total 

K 
server utilization is p ---- i~ pk and p < 1, i.e., none of 

the chains is saturated. Since Poisson arrivals see time 
averages, the mean response time for chain k is, 

i( 

k=l 
C0) 

= X k (1 + n ) ,  k= 1 . . . . .  K 

where n k is th'e mean population of chain k, n is the 

total population, and the second factor expresses the 
expansion of service time due to the presence of other 
chains. Multiplying the above equations by ~k and 

summing the equations we obtain: h'--~ (1 + ~ p. It 

follows that: n---- p/(1 - p). Substituting into equation 
8 we have: 

n k = p k / ( 1  - p) (9)  
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