Check for
Updates

A META-COMPILER AS A DESIGN AUTOMATION TOOL

R, MANDELL

G. ESTRIN

Dept. of Engineering
U.C.L.A.

Los Angeles, Calif.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800267.810785&domain=pdf&date_stamp=1966-01-01

A META-COMPILER AS A DESIGN AUTOMATION TOOL

R. Mandell

G. Estrin

Department of Engineering
University of California
Los Angeles

¥his research was sponsored in part by the Information Systems Branch,

Office of Naval Research (Nonr-233(52)) and the Atomic Energy Coammission
(AT (1l=1) = Gen 10, Project 14).

A META-COMPILER AS A DESIGN AUTOMATION TOOL
by R. Mandell
G, Estrin

- Introduction

In the field of deslgn automation, in general and in the automatic design
| of digital computers in particular, it is frequently necessary to translate
| machine descriptions and designer requests fram the input language to the
© language of the design automation system. This process is very similar to the
translation of artificial computer programming larguaées into machine lahgua.ge.
- Hence, it 1s reasonable to attempt to apply the techniques developed for
writing compilers to the task of translation required within a design automation
system, In this paper we will describe the use of one such tool, the meta-
compiler or syntax directed compiler.[1l]

A meta-compiler is a compilér specifically tailored for ihe generation of
~other campilers, The input to a meta-campiler consists of a description of
the input and output languages of the campiler to be generated and the algorithmic
relationship between them. The use of a meta-compiler reduces the generation of
| compilers from an extremely formidable task of assembly language programming to
~a more routine task of higher language programming.
- The Meta-Compiler in Design Automation

Let us now shift our attention to the design auﬁomation process. The first
phase of a design automation system [2] must execute the process normally c¢alled
system design which involves:

(1) Initial selection of a set of memory elements, transformation

elements, gated transmission paths, counters, and input-output interface

elements.

(2) Talloring the given computational algorithms to meet the constraints
imposed by the selected set of processing elements.
The initial selection permits evalwation of some measure of cost. The assignment
and sequencing of processing elements permits evaluation of some measure of
performance., The first approximation to the system design may then be perturbed
in an attempt to improve the above measures.

' We take note of the similarity between the system deslgn process and
traditional program compilation. The input to a campller is a computational
algorithm expressed in a language other than the language of the machine on which
it 1s to be executed. The machine is defined by a set of basic operations, an
extended operation set froam the library of routines and a set of memory elements.
The compiler is then forced to follow a set of rules for assignment and sequencing
of the operations subject to a memory constraint such that an equiv;lent algorithm
would be executed on the machlhe,

In our design automation system, generating the system block dlagram is
equivalent to defining a new machine. For each new machine a "compiler" must
be generated in order to do the assigmment and sequencing of micro-operations
on the new machine. A meta-compiler 1s a tool for generating ccmpilers and
therefore an essentlal lngredient of an effective design autcmation system.

We must also consider the fact that the input language to the design
automation system is likely to undergo modification with time and application.
We therefore choose to define an intermediate langusge (I.L.) which we seek to
hold fixed., Up to this point in our development we have experimented with a
simple intermediate language in which each statement has a structure scanned

from right to left as follows:

RESULT | OPERATION | OPERAND 1 | OPERAND 2 |

3

A campiler generated by a meta-camplier has been used to ‘translate fram Iverson [5]
operations to the intermediate language, The intermediate language serves as a
basis for assigrment and sequencing of processing elements, which 1s performed

by a second meta=campliler generated campiler.,

Now before we move into an example of the system design process, we must
introduce the nature of the deslgn automation system library. Most work in
camputer design automation [3,4] assumes that the designer provides the system
block diagram, We allow this but we also establish a system library in which the
classes of processing elements described in (1) above are filed. Associated
with this system library, we generate a set of conventions which serve to
uniquely select the first trial configuration from the intermediate language
1list. These conventions may be overrldden by the system designer and do not
act as absolute constraints on the design. The first part of thls paper
discusses a simple design example to lllustrate the above concepts. The second
section discusses the structure of a meta-compiler. In order to see the
emergence of a system design we are forced to think like a machine., The
resulting system desigh 1s then compared with a desigh which was generated from
the original algorithm by use of judgement and experience.

A Simple Deslign Example

We seek to design a machine which contains a table of numbers (M), When
the machine 1s activated it locks at an index or table entry and uses it to find
the first positive number following that entry.

Figure 1 glves a modified Iverson programming description [5] of the
camputational algorithm., A word descriliption follows below with reference to
the numbered lines in Figure 1.

Lines 1-5 declare that: both I, the start bit, and the error flag, D,
reside in static registers, one bit long which may be manipulated by an external
signal; B is a vector of length G bits stored in primary memory; and M is a matrix

of 1000 vectors, each of length, G bits, stored in primary memory.

Line

Line

Line

Line

Line

Line

Iine

Line

generated,

10
11
iz
13~
15

16=-

18

Specifies that the global dimension, G, is 36 bits.

Is labeled Ll and is a conditional transfer that will

cause the system to dwell at L1 until I is set fo 1 by some external
centrol, |

Specifies the transfer of the last 10 bits of B to A, This impliecitly
defines A as a 10 bit number.

Is a conditional branch which compares the first bit of the Ath row
of » with O, If the bif 1s zero the next line to be executed is the
one labeled L2 (line 13), Otherwlse line 10 is executed.

Diminish A by 1.

If A 1s zero go to L4 otherwise go to the next line,

Transfer control to the line labeled L3,

Store the first 26 bits of the Ath row of M and all of A in B, set
the start flip flop to zero and then ge to Ll.

Set the start flip flop to zerc and set the error flip flop to 1,

Figure 2 shows the intermediate language (I.L.) program which would be

The discussion below, along with the syntax in Appendix 1 should

enable the reader to fellow this step in the process.

.DECLARATION I F/F 1 EXTERN 1
D F/F 1 EXTERN 2
B MVECTOR G 3
M MMATRIX G 1000 b
GLOBAL DIMENSION 36 5
.END DECLARATION 6
Ll I:1, # » L1 7
A+ l0/B 3}
L3 oMt o, =12 9
A« TIA-1 10
A:e (10), = + Lk 11
TO TO L3 12
L2 B« 26 13
I +«0 1k
GO TO Ll 15
Lk I1+0 16
D+ 1 17
GO TO L1 18
FIGURE 1
Initial Description of the Computer
LINE RESULT OPERATION OPERAND OPERAND
BEGIN EXAMPLE
1 BDEC
2 F/F EXT
3 D F/F EXT
b M MEM
5 ARRAY G 1000
6 B MEM
T VECTOR G
FIGURE 2

Intermediate Language Description of the Machine

LINE HY OPERATICN CPERAND OPERAND
3 B&/%// GLOBAL 36

9 EDEC

10 ° Ll LABEL

11 WATIT I TRUE
12 L3 LABEL

13 $2 FIELD* +OMEGA (10) B

1h LOD A $2

15 $3 RREAD M A

16 $4 FIELD* +ALPHA (1) $3

17 $5 COMPR $4 FALSE
18 EQ $5 L2

19 $7 COUNTD A

20 10D A $7

21 $8 VECON JHNEPSILON(10)

22 $9 COMPR A $8

23 | EQ $9 L

24 GOTO L3

25 L2 LABEL

26 $10 RREAD M A

27 $11 FIELD JALPHA (26) $10
28 $12 CAT 311 A

29 LOD B 312
30 oD i FALSE
31 GOTO Ll

32 L4 LABEL

33 LOD I FALSE
34 LoD D TRUE
35 GOTO Ll
FIGURE 2 - Intermediate Language Description of the Machine (Cont.)

Lines 1=8 result from the déclaration gsection of the input description; line 1
and 9 mark the limits of this Section. Line 8 defines the global dimension,
G, as 36. Lines é & 3 declare I and D to be flip flops which are available
to external controls. Lines U4 and 5 declare M to be a matrix stored in
memory having a dimension of 36 x 1000, B is defined by lines 6 & 7
to be a 36 bit vector stored in memory. -

Lines 10 & 11 together have the same meaning as line 7 of Fig. l. The lnstruction
L1 LABEL means that whenever control is transferred to Ll, the line
immediately following the LABEL instruction (Line 11) will be executed.

Lines 12=14 are the I.L. translation of line 8 of the source code, A FIELD*
instruction gives a name, in this case $2, to a subfleld of the vector
specified by the second operand, L.OMEGA (10) 1s a translation of wlo.

Lines 15-18 have the same meaning as line § of the source code. Line 15
(row read) means cbtain the Ath row of M and call it $3.

Lines 19=-20 have the same meaning as line 10 of the source code. COUNID A
means count A down by 1,

Lines 21-24 have the same meaning as lines 11 and 12 of the source code. Line
21 defines vector constant $8 as €(10). .NEPSILON (10) is the coded form
€(10).

Lines 24-28 are translated from line 13. RREAD obtains the Ath row of M and
gives it the name $10. Line 27 gives the name, $11, to the first 26
bits of $10 and line 27 glves the name $12 to the catenation $11 and A.

Lines 29-35 are a direct translation at lines 1l4-18.

We now consider the generation of the configuration fram the intermediate
language. The flow of the process shown in Figure 3, has been completely
specified, but not programmed, and in order to test it before we generate the

actual computer code, we have gone through the operations by hand for the simple

deslgn example presented in the previous sections, In particular thls has
helped us in formulation of conventions necessary to access a library and

produce an initial design.

Scan the intermediate language descriptlon and generate;

1, First part of assigmment table.

2. Pirst part of operation table.

3

Determine the maximum dimensions of the inputs and outputs

for the operands in the cperation table.

I

Using a set of initial conventicns select a set of processor

elements from the system library.

R .

Using the properties of the selected operators fill in the

assignment table for all jmplicity declared variables,

Generate a list of the operations necessary for executing
the algorithm on the selected processor set and the set

of interconnections.

FIGURE 3

The first block of the flow dlagram builds up the assigmment table

Fig. 4 showing the size of allroperands and the location of all declared operands.

The size of all undeclared operands is deduced from the nature of the operations

which produce them,

called $2 willl have 10 bits.

The next operation LOD A $2 specifies that the

For instance, line 13 of Fig. 2 specifies that the result

operand A will be loaded from result $2, Hence, A is assigned a length of 10.

The length of the remainder of the operands can be deduced in the same way.

FIGURE 4

e — Assmw@ir TABLE

1 2 3 4 o# G¥ T# B# g% 10#%
NAME] DECLR., FIRST SECOND STORAGH LOCATION| SOURCE] POINTER JMEMORY JADDRESS

TYPE DIMENSION| DIMENSION TYPE AFTER FOR REGISTER|IBLOCK

E EXPLICIT READ STORE

I IMPLICIT

VC CONSTANT

f i
I E 1 F/F
D E 1 F/F
B [E 36 vEm MR MR MA 1001
M E 36 1000 MEM MR MR MA 0
$ 2 41 10 REG MR(1,10)IMR(1,10)
A I 10 COUNTR | ca CA
$ 3L 36 REG MR MR
$ 4| il REG MR(1) MR
$ 511 1 BZD BZD
$7 11 10 COUNTR | ca CA
$ 8 Jve WZD
$ 9|1 1 WZD WZD
$10 I 10 REG MR
$11 JI 26 REG MR(1,26)
$12 I 36 CAT 11 1,26
CAT A 27,36

* Filled in by Block #4, Figure o i

10

While the assignment table is being filled with the list of operands, a

second list of operations 1s being bullt along with each set of operands used

by it. Since RREAD is used twice in the I,L, description RREAD would appear in

the list with two sets of operands.

In the case of the example, they happen to

be the same. However, this will not generally be the case. The completed list

is shown in Figure S although the last column is not filled until block 3 of

TMpure 3.

OPERATION OPERAND SET MODIFIER ASSQCTIATED WITH
RREAD M A MEMORY

M A
COUNTD A COUNTER
COMPR MR(1) O EQ BZD

A 0 LEQ WZD
MEMORY B MFEMORY

M

FIGURE 5

We now use a series of conventions in order to determine what hardware

precessors to employ in the first trial desipgn,

overridden by expliclt declaration.

peints and are not constraints.

Any of these conventions may be
These conventlons are merely default starting

The conventlons used in the example were:

1) There shall only be one of each type of processor in the

initial system unless more are declared.

2) 1 memory is assumed to be in the system,

3)

4)

5)

6)

7)

11

Exclusive of memory (specified by éohvention 2) the only storage
elements in the system will be those which are explicitly declared

or are Iintegral parts of selected processors.

Processing units will have their own input and output registers

as integral parts of thelir desigm.

The system library specifies the preferred processor corresponding

to éach intermediate language operation depending on the dimensions of
Inputs and outputs of the operaticn., For example, a different

counter may be preferred for a 3 bit count operation than 1is prefez_'red
for a 20 bit count operation,

Matrices will be assigned to memory in blocks éf predefined size

In order to save an index addér.

The system will have a wired program so that no instruction

fetch cycles are necessary.

Using this set of conven‘;ibns, the list of dimensions in the assigrment table,

and the system library, the collection of processing elements in Figure 6 is

arrived at.

Shica | fen CB

LMEMORY MA ‘

R]

WZD

|
I :BZD

[S
D

CONTROL
FIGURE 6

INITIAL SYSTEM DIAGRAM

12

The fact that a memory, to be used in the system, has an input/output
register called MR and a pointer register called MA is obtained fram the system
library. Similarly the fact that a counter consists of an input/output
register (CA), a logle network (CL) and a secondary rank register (CB) comes
from the library, BZC 1s a single bit zero detector and WzC is a 10 bit word
zero detector.

While selecting the set of processing elements, the final celum of the
operation table (Figure 4) was filled in, RREAD did not require any unique
processing element since 1t only occurs 1in association with the array M
which may be stored for row reading. Had both row and column reading been
specified for the array M, additional equipment or an additional reordered copy
of M would have been necessary,

The library also specifies the seguence of operations necessary for loading,
reading and operating each element. For example for the counter the read
sequence is empty since the information is always available in CA. The load

sequence 1s
GATE <SQURCE> TO CA delay 20 usec.
and the operate sequence is

GATE CL TO CB delay 40 wusec,

GATE CB TO CA delay 20 usec.

This information will be employed in generating the sequence of operations
necessary to execute the algorithm on the selected hardware set.

Before the new sequence of operations 1s specified the remaining colums
of the assignment table (Figure 4) must be filled in, It should be noted that

the variable A (Fig. 5) was assigned to the register (CA) because the counter is

13

used only for manipulating the variable A (Fig. 5).

All operands that are assigned to the memory are available at the memory
data register after a read sequence, Hence, all subfields of words stored in
memory are assigned to subfields of the memory data reglster. If there were
other undeclared named variables besldes A, these would be assigned to storages
in the memory,

The next task of the configuration generation program is to generate a
sequence of operations which wlll be performed in order to execute the desired
algorithm on the selected set of processors. This sequence will be specified in
a form very simllar to Gorman's design table [3]. Figure 7 shows the translation
bgtween the intermediate language and this form.

In performing the translation the translator uses the assignment table to
find out what device holds the operands. It then consults the library to
determine what read or load sequence must be included in the new version of the
algorithm, Suppcse for example, the command LOD A B appears in the I.L.
description of the algorithm. The LOD command has the following meaning:
execute the read sequence for the second operand (B) followed by the load
sequence for the first operand (A). From the assignmeht table we would finc
that the variable B is in memory at address 1001 and that after the read
sequence for memory is finished, B will be in MR, The read sequence for the
memory that 1s in the system configuration is

GATE <ADDRESS> MA DELAY 40

GATE TRUE MEML DELAY 2000 REPLY MEM3
The constant 1001 1s substituted for <ADDRESS* 1n the read sequence and the
sequence is inserted in the sequence of instructions, The location of A is
then found in the assignment table and its load sequence 1s looked up., MR
is substituted for <SOURCE> 1n the load sequence for A, and the resulting

sequence 1s inserted 1n the code being generated.

14

The operation GATE in column 3 of Fig. ¥ means gate the operand in column 4
to the location in column 5. BRC is a condltlonal branch instruction. It
means transfer control to the instruction whose label is in column 4 if the
bit whose name is in colum 5 is true. Otherwlse execute the next sequential
instruction. SET means set the flip flop named in colum 4 to the value given
in colum 5. Colum 6 is used to indicate that two or more operations must
occur in parallel, and column 7 gives the time required for each operation.

If an operation generates a completion signal, its name is placed in column 8,

FIGURE 7

15

Sequence of operations for performing the algorithm shown in Figure 1

on the system shown in Figure 5.

1 2 3 't 5 6 T? TB
STEP | LABEL |J OPERATION | OPERAND OPERAND PARALLEL, | DELAY | REPLY
WITH
po— # Jr -
1 Ll LABEL
2 WAIT I 1
3 L3 LABEL
4 L3 GATE 1001,, MA 20
5 GATE TRUE MEM1 2000 JMEM3
6 GATE MR(27,36) CA 20
7 GATE CA MA 20
8 GATE TRUE MEM1 2000 |MEM3
9 GATE MR(1) BZDI 20
10 BRC L2 BZD 4o
11 GATE CL CB 20
12 GATE CB CA 20
13 GATE CA WZDI 30
14 BRC L4 WZD 20
15 BRU L3 4o
16 L2 LABEL
17 GATE CA MA(1,10) 20
18 GATE TRUE MEML 2000 |MEM3
19 GATE CA MR(27,36) 20
20 GATE 10014, MA 19 20
21 GATE TRUE MEM 3 2000
22 SET I FALSE 20
23 BRU Ll Lo
2k L4 LABEL 20
25 SET I FALSE 20
26 SET D TRUE
27 BRU Ll 20

16

The completed design including transfer paths deduced from Figure 7 is
shown in Fig, 8a, Fig, Bb shows the system generated by a designer using
tradiftional methods and Jjudgement .

MEMA MEMORY MEM2| MEMORY va Lol belc
MERI3 ME43-

MR WZD

Tt

|

________________________ L e e e e e e e — = == = =i
FIGURE 8a ' FIGURE 8b
The System Designed According to The System Designed by
the Design Algorithm a Designer

The designer recognized that MA could be used as the primary rank of the
counter, in place of CA, and that faster operation could be achieved by comparing
for zero at the secondary rank of the counter, The designer also recognized
that the memory access at lines 16 to 18 of Fig, 7 is umnecessary because the
information is already in MR.

The differences in the designs shown, Figure 8, point up optimizations that
will be achieved during a timing sequence analysis of the code in Figure 7.

This phase of the design will not be discussed in this paper.

17

THE META III Meta-Compiler

The second section of this paper will discuss a meta-compller which is in
©essence of the META III meta-compliler written by Fred Schneider and Glen Johnsen
{1]. Several instructions were added to the META III language in order to make
the meta-compiler a more useful tool in design autamation. The extended meta-
compiler has been used to construct a compilef which translates a subset of the
Iverson language into the intermediate language described above. Additional table
manipulation instructions are planned in order to facilitate the construction of
the configuration generator described in the first part of this paper. Figure 9

is a general diagram of the META III program for the IBM 7094.

—SYNTAX] META III
FOR
COMPILER
KERNEL . META-COMPILE TIME
r
IBMAP
r —
SOURCE N .
e =1 COMPILER
KERNEL — COMPILE TIME
IBMAP

DATA OBJECT
CCODE
ORJECT
KERNEL TIME

FIGURE 9 The METATII System

18

The canpller to be generated is described by a group of syntax equations,
coded iIn the meta language described below, These are translated into MAP
by META ITI, The MAP code 1s then assembled by IBMAP, The resulting program
is a campller which accepts source code and translates it into MAP. When this is
assembled by IBMAP it becames the object program.

The kernal of the meta-compller 1s a set of service routines, written
in MAP, which may be gsed by the meta=campller, the compiler and the generated
object program.

Fortunately, the meta-campller itself has been described in meta-language.
Hence, the meta-language itself may be modified by a process of boot-strapping
in which the syntax description of the modified meta-compller is produced.

This often entalls the hand generation of a new service routine to be added to
the kernel.

The meta-compiler may be viewed as a simulated computer along with a
program. The simulated computer will be called the meta-machine. The meta-
machine is simulated by means of the subroutines in the kernel, Any attempt
to transplant the meta-compller to a new machine would involve constructing
a new simulator for the meta-machine,

As shown in the block diagram of Figure 10, the meta-machine consists of
a number of arrays of regilsters which function as push down stacks. Each array
has a pointer register which points te the cell which 1s currently functioning
as the top of the stack. The pointer is moved up or down by incrementing or
decrementing the contents of the pointer register. When a plece of data is

added to the stack, the pointer is moved up by 1.

19

% HOTYENED
Cx TOHWAS
200°0°
100°0°
HAOK"
ISAL"
)

| 4

JHOWHW WvHDOUd

HETATISSVID 3 ¥dd40d INdNT

SUTUOBH-BIGH oYL 0T MHNDL
SHAAANG
INdINO _
SRl SOVIS GdTA
SOVIS HOISHNORY :
)
]]] I
DT AIHIdONd
TOHINGD SIOVIS S
ANTHOVH-Y LW
4 J 4 i _

2J

Programs (syntactic equations at meta-compile time, source code at compile
time or, data at object time) enter the machine through the input buffer and
classifier, (IBC) where they are treated as a continuous string of characters.

In the course of the analysis of these programs, groups of characters at the head
of this string are classified and moved from the IBC to the various arrays in
the meta-machine. After a group of characters 1s removed fram the IBC, all
blanks following the group are deleted and the input string is advanced until

a nonblank character 1s at the front of the buffer,

The Meta Language
The META III language is bullt around a special coding of the Backus Normal

Form (BNF) [6], which 1s a language for describing the syntax of programming
languages. To thils syntactic language is added a set of imperative instructions
which manipulate or test the information in the various parts of the meta=-
machine. For example, consider the BNF equation (1) which defines a <STATEMENT>

in terms of other syntactic entities,
<STATEMENT>=<LABEL>, , <STATEMENT > | <ARTTHMETIC STATEMENT> | <CONTROL STATEMENT> ()

This equation, called a syntactic equation, has the following meaning:
A <STATEMENT> 1s equivalent to a <LABEL»> followed by two perieds, followed by
a <STATEMENT> or a <STATEMENT> 1s an <ARITHVETIC STATEMENT> or a <COWTROL STATEMENT>,

Equation (1) translates to the META III language equation

STATEMENT = LABEL'.,'STATEMENT
/ ARITHMETICSTATEMENT (2)

/ CONTROLSTATEMENT. ,

As shown in Equation (2) BNF quantities which are enclosed in brackets are transe

lated to strings of capital letters or numbers with no imoedded blanks.

2l

Such a string must be headed by a letter and followed by a blank or a symbol ‘
which 1s neither a letter or a number. This type of string is called an
identifier. A sequence of symbols in the BNF equation which is not enclosed in
brackets is translated to the ldentical string enclosed in apostrophes (')*
and the BNF symbol | (meaning exclusive or) is translated to the right-leaning
slash (/). An equation in the meta-languagé is always terminated by the
symbol (.). Identifiers such as LABEL, STATEMENT, and CONTROLSTATEMENT must
be defined either by a syntactic equation (1l.e. appear on the left of an
equal sign) or must be an operation in the meta—language (Tables 1, 2 & 3).
Thougn ain iwenuifier may be made wp of any number of characters, only the
first six characters (if there are more than 6 characters are truncated to six
characters for internal representation). Thus, the identifiers ARITHM and
ARITHMETICSTATEMENT are consideréd to be identical,

When an ldentifier appears in a syntactic equation it has the following
meaning. At complle time examine the state of the meta-machine and see if it
matches the state of the machine given in the definition of the identifier,

Consider, for example, the definition for LABEL given in equation 3.
LABEL = ',L' (NUMBER/ .ID)., (3)

Equation (3) means,determine if the first two characters at the head of the IBC
are .L.- If they are, remove them and see if the next group of characters is
elther a number or an identifier, If the first characters are not .L, the
machine i1s not in the state required in order to meeﬁ the definition of LABEL,
If the string .L is found, but is not followed by a number or an identifier,
processing cannot continue because the state of the machine has been changed by

removing L from the IBC, In this case an error message 1s printed and compilation

The natv Af noaranthacac 1e mabk a nark AP +Fla cimbal

22

is resumed at the end of the statement that was in error. Notice that there are
two alternatives for the second part of the definition of LABEL in equation (3)

and that the equation could have been written

LABEL = ',L' LABl .,
LABl =NU]WBER/-ID|’

(4)

The ﬁse of parentheses in Eq, (3) saves the necessity for defining the additional
syntactic variable LAB1,

The strings ',L' and ,ID are examples of a test imperative instruction.
There are two types of imperative instructions, tests and actions. A test
imperative tests the status of the meta-machine at complle time and may cause
data to be transfered from one register to ancther if the test condition is met.
An action Imperative merely moves data between registers or produces output.

The test Imperatives are defined in Table 1 of the Appendix and the action
imperatives are defined in Tables 2 and 3 of the Appendix, The third column
of Table 1 indicates what action 1s taken if the question in column 2 is
answered in the affirmative.

The action imperatives include a palr of imperatives which move information
to the output buffers and cause output to be generated, These imperatives are
.OUT (LIST) and .W(LIST). LIST may be any sequence of the imperatives in Table 3,
After the last imperative in LIST is acted uponsthe contents of the buffers
are output and the buffers are cleared. .OUT causes MAP code to be generated;
the LABEL field comes from buffer 1, the OPERATION fiéld cames fram buffer 2, and
the VARIABIE field comes from buffers 3 and 4, .W causes the contents of all
four buffers to be written out as one line of text, 120 characters wide, on a
separate tape at complle time,

The vectors and matricles used in defining the imperatives are the names of

the parts of the META III machine depicted in Figure 10. Additional imperatives

which are not necessary for the urderstanding of the example in the Appendix

23

may be found in [1].
Another extremely useful element of the META III language 1s the symbol $.

Equation 5 is an example of how thils symbol is employed
PROGRAM = $(STATEMENTS) ., (5)

Equation 5 means: A program is a sequence of statements, The sequence may

have no members, This is exactly equivalent to equation (6).
PROGRAM = STATEMENT PROGRAM/. EMPTY ., (6)
Using the $ notation equation 2 becames
STATEMENT = $(LABEL '.."') (ARTTHM/CONTRO) .,

CONCLUSION

Meta-compllers can play a decisive role in building a design automation
system, The first part of this paper showed how a compiler forms the communi-
cation link between the designer and the design automatlon system. A compller
for translating a large subset of a design automation language is shown in the
Appendix in order to i1llustrate how a compiler is expressed in META III language.
The first part of the paper also showed how a compller can be employed to perform
actual design work in selecting sets of elementary processors, and translating
an input algorithm into a form that 1is executable on this processor set,

A meta-compiler can also be used as a tool for system integration since
it can accomplish the translation which is often necessary between the input-
cutput languages of existing programs. For example, 1t i1s a relatively easy
task to wrlte a meta-languaze program for translating the intermediate language
described 4n this paper intc the PAT (Personal Array Translator) language [12].
This translated version of the initial algoritim can then be executed on the

PAT system to determine whether it actually achieves the desired computational results

2l

Additional uses for meta-compilers in design autamation are for simulating
logical equations [7] and for translating logical equations into networks of
logice circult modules.

The authors wish to acknowledge the cooperation of the Systems Development
Corporation in permitting use of their time sharing system, TSS. This work
would have taken many times as long to complete without the rapid turnaround

achleved at the terminal.

25

APPENDIX

The syntax shown in Figure 11 is the META III language version of the
intermediate language compiler. The first line of a META III program always
begins with the word .SYNTAX followed by the name of the first syntactic
equation (PROGRAM in thils case) to be executed at the beginning of campile
time. The syntactic equations are arranged alphabetically by name for ease of
reading., Equation PROGRAM begins on line 1430. The imperatives used in the
syntax are defined in Tables 1,2,3 of the Appendix. The reader is guided
through a few lines of the program in the following in order to ease his
understanding,

The first imperative of PROGRAM (.DIAGNOSTIC SYNTAX (RECOVER)) designates
RECOVER (line 1520) as the first syntax equation to be executed after an
error is discovered in the source code. The next imperative sets the .MODE
word in the communication array to T. This causes the meta-compller to inelude
certain useful diagnostic traces in the canpiler while it is being generated.
.ID (line 1U40) is the first test imperative executed by the compiler. 'This
looks for an identifier which gives the name of the source code being compiled.
When the identifier is found, it is moved from the Input Buffer and Classifier
(IBC) to the top of the S stack. The next imperative (¥4) moves the identi-
fier from S to the top of the fourthr colum of the recursion array. Next, the
campiler will output a line of column titles via the .W instruction., The
commas separating the strings 'RESULT?, 'OPERATION‘-etc. indicate that these
strings will be sent to separate output buffers, Each of the four output
buffers fills one of the four columns into which the output page is divided.
After the column titles are output the I.L., command $0 BEGIN <NAME> is ocutput
where the name of the program is substituted for <NAME> by the *4 imperative

on line 1450. Next the compiler attempts to find a STATEMENT followed by zero

26

or more statements. A STATEMENT 1s defined on lines 1990-2J050. A statement
may have an optional LASBEL followed by elither a CONTROL, a ST or a DECLARATION.
LABEL, CONTROL, ST and DECLARATION are defined on lines 620, 300, 1780 and 420
respectively,

Figure 12 of the Aroendix Is a coded version of the program given in
Figure 1. Coding was necessary because same of the symbcols of the original
Iverscn description were not available on the key punch. For example, since 1
(binary value) is not on & key punch, .BV. is substituted for it. Also since
subscripting 1s not possible, subseripts and superscripts are replaced by bracketed
quantities. Thus, M*A pecomes MR.,M(.BV.A,). The symbol .MR. preceeds i1 in order
to indicate that the symbol i1 represents a matrix whose elements are single bits.
As wlll be seen from the syntax (lines 940 and 860) thls tag preceeds the
ldentifier M into the S stack and is carried with M durlins most of the ccmpilation

rocess to identify the tyve of quantity represented by the ldentifier, i,

.HOpmHmzm.He mwm:wcﬂ op@ﬂoﬁﬂmnﬁ mse HH mm:cH_m

q]
st 23d3 ¢y, 03034
A*..mOJu...\\\\.vi.mmmijz Iv80719* .y /
{x520807094 ¢4/ // /0 IMPY3AWNANTIVEOTID 4/ .
3dA1D3C Qm.vma.uwﬂm.aHBo 123d9*%
AT |zoHbqm‘@uump!f[r,ir:{,

Ao (G%¥ %1001 ¢)M Mo (%6 D")M *=INNQOD

(3]

. oo HALdW3t /N
vl dX3Ue 0y gXTY) lIVMe L/
e LS I
U M Mo (€T 1 YdWOD 1 $D* 1M (
e ey e BHLTHEVY * G SHLTYY
dX3I¥a** 4 dX3IY) 1) s HdWOD 4/

(% 2Te 0L 09s¢)M* 1397¥77 401 409

Me oMt 9e (w928 TTVAY

“‘ ““(““,x“‘Q ..‘i..-;--|--;-,-!!1.j
. :_-.---.ii%lhubw_._uz..ou e
L L I
=y H*
o xs . e e
T* ¢ NOI3A 4D 1M ALdWI® / Q13I4 THOWOD +d14ANT: Ind® 73 INODIA=dOWOD |
‘<0
ALdW3® Gox Y*'u*(x¢Z***¢ , IYONOD €D)M*=1VONCD
. . $ 0 AUYWIHIN/TONOD 1/ NODIA=TJOWOD
<0
Ehat I e
He s aNOTIAT* "¢y NCOTAI 6D)Mo
1 (e HIFGWAN 0) e
TIVLOALWI*/sNOTT4) (sSdIN®T AS*/,Sdd°) AS*)/
e ‘ . ..adsSvdrs Ind® a0/
sANYL® inde T
. e --u..p._<aﬁ.m--_i--k-. ——
(LNOY « 80Ss LNd* ILOOW WMIL 4=4/
1noy advs LNd* 3LA0W WYIL 1+,)SWEIL =3HL14V
[]
T B T Ty i H (% 2k IRSO%IM® 2% 1w =1NOV
[3K]
) T 1IN0V, Qav: Lnd® 3100W=1n0ay)
S L WYH90Hd XVLNAS®

TIVL iYW 1AS*=300WYW

[J

(LNOY +AI1Ge LNd* ILA0W WHIL /1 / o
LNOY 1 AdWi INd* 3100W WY3ILa%1)$=AT0AdW

(3K J
1AB%s INd® ¥e M* € ITAOW® T IACW® LSILN £t LS3IN T***/)
L1AOW=3100W
&«
M* € TAOW® T JAOW® (E***sTe**) DI*=L00W

e

ST VIV i ¥4CYASYs
TIVL +d8*1AS* =TJOW
[
TIVL sAJ*IASH/
TIVL (AD* 1 AS*=C0N

¢

' € JADW® T JAOM® (ge*esTe**)103*=340Wh
[J

M* G JAOW® TIAQW® |Gert*eT*e* 0T *=7300WN

b9t MPCALWI*/dYNS 1 dYNS () (#8T*** ¢,000 ¢ M* 4°31Q0W=A07

(QI*/838-NNY 1 T%
=134y

[]

TATTIS M {P%¢ %) T4, Q3148214 ALdW3*/

MO(GxSulaxi) s TP ¢ %1440)M v OT4ONT, 1S3L*=T01315

<0

(TO73T2 ¥ (Tx%slangdal*e S0 3031408000 Aldiw3r/
Gyt M
(T e)T ¢ 200314052 M (2740N2 1S3) 2% T%=01314
‘e
. AL¥IdONd
HE A #CHUOLIDTAL ST 2" IM NN W HO1ID3A/
MO T (e Te o€ YIylui Sz e IMe WANAN O XTIV /7
AL (WA SR IMTY s/
(W LIGess)i s L1600/
(a-t/7dese)M s 474400
=2dA123(Q.

01zt ‘s
0021 HIAQDIY wdMIGCKH INnd*/ AT 1S3l /N 1G3L*=1GI LN
0811 ¢
0811 AV LISAL AMVNTYdAN=dOMLAK
0LTT e
0611 ALdWHI* /NTLSNNAN ZIA0OWW WYWLISAVW ANYAIYdAW JdOM1I=3V LS AW
06717 ‘0
On1T Gt [#$ i SNNIAN W 14D)M AYUYHIEAAA =1/
0e1T VO dX3ANW)/
0ZTT (QI*/74® T3NAOWNTAYVRIYAEW)IAOWAE =AYVIWIHdAK
0011 TIYL s AW ITAS® =300WARK
0607 ‘.
080T (
0L0T7 Gt Te=3% (%%x2¢Tx19NT 18D M % 300WW dOMLIAWN 1=/
090T G T—a (#%2¢Tx% 100V)M T 3COWW dOMLIAR i+) 340N IAK=dXINAK
e 0501 L S
0%01 Ceg T=ndouryrt (2o rdgs (T ** ¢ ** 1 aTxaQaso" M T
Q01T =AY LSNNOAW
ONOH ¢
0101 (G~ T-+
Qo001 {#9%CsONVISDO")M T 2Q0WA AYVETHdEY TIVL «ONV*)T AMYWIHdYN
...... . 0660 . .. EWE3lYW
0860 < e
0L60 G (% HwlON®I¢D* 1M ANVWINdYA TIVL 11ON®a/ o
0980 ¥ 2 JACKH® AYYWIUdAW JJOWYW/
0650 s (adXIHWa)0/ o
0%60 QI* 3JJOWHW
) N 0e60 _ o =AYYWIddHNW
0780 , , e e e ik
S 0150 (G=x T=»x . ‘ S
0060 (%9 150190 1M T JOOWW WMILEW TIve +40% 1) SWHI LYW
0680 =dX3dW

30

0191 6
0091 (G=3% T=% (%% 404D)M*Tx LAOW WYILY TIVL +MO* }SWHILIY=4dX3Y¥ _.. _
066GT e
_ 08aT C—% H* d°* (ol
02671 (#$Z°**¢,QYIYDIS"IM* JHLTIHY 154/
09671 (%62 QYUY D*IM® S IFHLIYY))0
06ST =d¥303Y
OvG1 B e
4 0esT (LNIWILVISIS (3579d* I13730*/N¥NLIY NI /o6, JHOYYAS®
0zg1 dYNS=¥3A0D3Y
0T4T $e
005 (
0641 CINYILIXT s IMe (ALWI*/ 00y 1aNE3IXI)G
084 C=ALY3dONd -
O\.I.T._. €0
0S+4T . (LNIWILYLIS)IS INIWSLIVLIS
0641 (¢ INIDIM ¢ M {,OML ONYHILO,
OhHT ¢ INO AONVHIOs ¢ W NOTLYHIAC v LINS3He M by QI* L 3A0W* -
o€yt (YIACDIHYIXVINAS DILSONOVIQ*=WVHO0Hd
0ZHT ‘o)
0T%T v JHLTYY o) /
0041 . G—#% (%S 1SONIWISD*IM® ANVWIYD v~/ -
Oscgt G=x 1AG%) INd* H* x0T+ 1D IM® AUVWINAY /4 v +1/
08ET . =% ANy LNd* %% ¥3gWnN/s
0LET He T AAOW® AUVWIMNAY QOW=ANYWINd
0eetr , ‘ _, S §e o
0cET ﬂ
S 5.4 2 S e . 1lnons Wid3Ls=a/
0ceT 1N0AY WY¥3Li+4)%=5N07d
_...9zeT o R I R
T0TET - TIVL ANV AS®/
00¢T TIVL 1 AdW®IAS*=15T72d0
) e g _ , LAV dAaW TS =15 ek S —
08771 TIVL 1 HO*IASe/
T TRQULEYT T T o o) T o T AIVL 1Qgv*sASY/
—— o GezT . - . o AIVLa8NS*aASt,
ST oezr) o ’ 7 1IYL 2 @av¥TyAS*=151Td0 T
0#21 ‘ o e) .
TTTToery 0 o - - HIgGWNN 7/ T
02271 e 194 _AS*® =gWNN

0%0¢ !
0¢07 NOTLlv¥v123a/
0707 18/ .
01072 N0 LINOD)
b} 0002 {ALAWI*/ (1 138Y T %70 138V})
0661 _ =IN3IW3LVLS
e . DOBET T S
0L61 IS V4 aNT S/
0961 b 6% MY (ALdWI®/dUNS 1dUNS® i) (%ST***¢, Q0T é)M*(
0661 Y* JCOWW JdXIAAW =4 AUYWNINdARW/
Oh61 de LQOW dX3¥Wi=s AYVYWIYIHW/ B o
0e6T ¥ 1Q0W dXIdi= ANYWIYY) /
0Z61 N GO SNTd Wd3di/ R
0161 {
L 0061 a0 ATQAdW/) S
0591 {
) . ogeT god SNd Lnons Wy3l/ B)
0L91 {
o 09871 , 07 SATd LNONS 1T LlNd* Nilnde/s S o
: 06871 INNGD 1 QINNOD W LNd* 1 *) aTadi=1/
o 0487 , (]
0¢8T Q07 SN7d LNOAav wWy3l/
o 02871 , (
0187 ao7 SN1d 1Noav s Telnde Ny lnge/ ‘
. . o0ogry INADD S NINAOD LING® ¢)y Ta)+)AI*TIVIIAG® I AS* 1 = AHVIWI Y/
06L1 1138 D1138YHITY «3a0W* 1/
_ oeLy 1S dV¥NS odVYNS*a=1S
0LIT ‘o i
B 09LT ‘ , Cixeb6®** a8 **uxal®* v
0SLT SOt Gttt sttt ettt xt axa T ka0 ST MOVLS MY ALdWI*=dY¥YNS
R .4 % S , S T, ¢
! 0T FIVL 4I5S 4 AS/
S - S o . N TIVL adS*aASYYY
_ 0TLT TIVL W 1S®* AS® =d014IHS
| 0691 (G=% T=a (%4 NV 9D IM® Tx LAOW AUYWINHY TIVL (ANY* 4) SAYYWINdH=WYI 1Y m
f’-)romo.m A R . ¢ -
_ 00971 T=% 288V INGY T (ALdWI*/LIVONOD AUVWIHGY ¢4) H0LDIA=AYVWTIYdY
09971 P i
T 0691 , TIVL 1 HO* WA/ ﬁ
R)3 S ‘ N TIVL 2 QNV*a AS2=d0
0€E9T)
0291 e _ AYYWINdNW= XIHIVWN

i

L A R ke in L e ma aat B R m —h = a S e a3 kAR Lk A s e h RS ek e e e -~ ———

32

N
oS 09N

300000000

(AR N~ g e WENO I arlife BN o CRE v I

4 F T
RN

IS RSN BN B SN IV AN

<O
— 0y
£ 3

00+%2Z
Dsez
O0gee
0LzZ
D9ce
06¢e2
0He?
0ec?
0zcz
01ez
00¢g”
Ca22
tgzz
0LzZ?
06¢z
052z
Ohz7z
0ez?
0zzz
01?272
00z2
0671¢
09tz
0LTZ
0512
06712
0%12
0cte
0ctz
0T1¢
0012
0602
0802
0L0¢
0902

INTe
[}
(3% TSGR T e)Ry TH0YT 169 L33008
= 1S 178 HX
‘e
Z123n/
(Alclae/

Gox MY M (xSTCeE, 2HODNI SO MY XIHLIVWY o/ 4/ .
Gus MOW® (670 aeé 03 600)% XINIVIY /70) TLD3A=Y0LD3A
[
Gy MMy (xSgeesszameieyme vy, Ivdy dOL4IHS UICWNN/) o -
Gy MO MY (¢ CIYIZP S MeANYNINGY 1 /1 dO¥ =2133IA
¢ e

(ALdWI* 7/ (1 dX3ANSy Ty
dX3C3Y ¥* T JA0RW®
(H® T JAGW® AUVWINGAL SACHIW/ ANV T gl /
tvdlIg/
d#* T ZATKR® o (a dX3E a1/
C=a H%¥{x ¢ LU 2 A AUVNINdY TTIvl 11ON*/
T=s % M Ts 2RLIAY TQOW/
dChO2/
AI*)=Ti03A
[3]

O —

s 0 H3GHAN Y TIVL s vOIWHOC L AS/
s CaNIOWNN) e TTIVLE s ¥HATIV® s AS®*=NODJA
(3K]

¢ 157240 % 1S7Td0s) 11d0® i =d0OML
[]

N —

(%%) H0L23As 8)M BRNN 4 HOL2IANL/

de (s fTres ey XIHIVH S)M GANN GWAN o XIH LYW
=3dAl
]
TIVL 1 a3N®s ASe/
Iyl W03 AS
=1531
0
{1N2y ATCr LNd* J1CGOW AdVKINd 17/
INCy Adile INg® ILACGW AUV Idd 1%)SAYVRIdd= W¥3l
e
AldWar /7 *a=1v1 o
4
102y +9nSy 1nd* 3130x=1N0ns o
[3N]

G=% |
(¢ %S MOQWOD DI MY ALdWI*/
(%% 0% 2FYNSH DM AIAMAN 2 ¢4) HITWNN=IXIENS

33

EXAMPLE

BDEC

F/F EXTERNAL
F/t ERTERNAL

(J 1 ®

MOMMATRIX 1CGCC G
5 MVECTOR G
+GLOBAL 6

o CDEC

oLl #WAIT(Ilasl)es
A= 4OMEGA(LIC) /2

.
pr]

oL3 2 CUMPRIUWALPHATILI) /s ReitioVeAl)lea0)ebuinsell
[I8 4

+EVeAT OV e A1

«Y

e COMPR (A s o NEPS(1C)) eC Qe sl

«00 TC «LU3

o L2 Bl ALPHAIZE] feiRalile3VeAT)] A

FIGURE 12 'The Coded Version of Figure 2- The Example Machine

TABLE 1 TEST IMPERATIVES

24
34

TEST IMPERATIVE

TEST

DATA MOVED IF TEST
CONDITION IS MET

COMMENT

.iD

ALPHAB
DIGIT

NUVMBER

*p

tpt

SV TP

TP

lEQ(-l-Pl’onoP

5)

JTEST 'P*

-

Is an identifier
in IBC?

Is first character
in IBC a letter?

Is first character
in IBC a digit?

Is the first string
of characters in IEC
a number?

Does the identi-
fler on the top
of the stack have
the property P in
its symbol table
entry?

Is the first
sequence of char-
acters 1n IBC the
same as P?

Is the first
sequence of char=
acters in P in IBC
the same as P?

Is the value of

the mode cell in
the CA the same

as P?

Execute,,.P. and
«+.P_(Tablel 2) then
co the new top
cells of the stack
if they are the same
the test is met.
After the test rest-
ore the stack to its
original condition.

Is the top of the
stack the same as
P?

Move the ldentifier
from the IBC to the
top of S,

Move the letter from
IBC to thetop of S,

Move the digit from
IBC to the top of S.

Move the number from
IBC to the top of S.

Delete P from IBC.

If the test result
is true the first
slx characters of P
are put on top of 3.

If the test is met,
remove the top of S
otherwlse leave it

unchanged,

A number is a string
of 6 or less digits,

P is a letter of
the alphabet,

P 1s any sequence
of characters,

P 1s a sequence
of characters,

P 1s a letter,

P 1s a string of
up to 6 characters.

TABLE, 2 ACTION IMPERATIVES

2
35 >

IMPERATTIVE

ACTION

COMMENT

FALSE

JHEMPTY
+P

+MODE P

.O‘P

.MOVE P

%p

¥p

.SEARCH(EX)

«Test « 0O

The conditions required by the syntac-

tic equation in which .FALSE appears
are not met

The conditions required by the syn-
tactic variable are met no matter
what the state of the meta-machine,

Put P in the property register
along with any letters that may
already be there.

Put P in the cell mode in CA at
Meta=-compile time.

Move the contents of the Pth
cell from thetop of S to the
top of S. The top of S is in-
dexed O.

Same as ...P except that the
Pth cell from the top of S 1s
squeezed out of the stack.

Remove the contents of the top cell
of S from S and put them in the cell
which is the Pth colum of the top
of the recursion stack,

If the Pth colum of the top of the
recursion stack does not tontain
zero, move its contents to the top
of S. If Pth colum of the top row
contains zero, get an arbitrary but
unique symbol from the symbol
generator and move it to the top of
S. Also put it in the Pth column.
of the recursion stack.

Put the top of S in %P in the
communication array.

Move ¥P in the communication array
to the top of S,

" Repeat the execution of EX until the

conditions specified by EX are met,

P 1s a letter.

P is an alphabet charac-
ter.

P is a digit.

P is a digit.

P is a digit
lsPsi

P is a digilt
l1sPc<i

5<P<b

5<P<b

EX 1s a set of
alternative sequences
of tests and actions

26

36
TABLE 2 (Continued)

IMPERATIVE ACTION COMMENT

.DIAGNOSTIC P is specified as the name of the P is an identifier.

SYNTAX (P) syntax equation which specifies

the action to be taken when the
error occurs,
.DELETE Remove the first character from IBC.
S P .S sets P into the MODE cell in CA. P is alphabetic,
This action occurs at compile time
and not at meta compile time as in.MODE
REMOVE and R Pop the S stack by moving its pointer
down 1,

P Move the pointer of S up.

INSERT Moves the contents of ,.TEST totop of S

stack leaving .,TEST unchanged,

JPUT 'P? Places P on top of the S stack. P 1s a sequence of up
to 6 characters inclu-
ding blanks.

CLEAR Clear the property register,

SET Enter the identifier on top of S in

the symbol table and give it the
properties currently held in the
property register.

OR Find the entry in the symbol table
for the identifier currently on top
of the S stack and replace the contents
of the corresponding property fleld
with the logical-or of the property
register and the property field.

FI Move top of S to the top of the FIFO
stack,

FO Move the bottam of the FIFO to S.

*»

Push down the recursion stack and 111
in the top of the array (all four
colums) with zeroes.

Pop up the recursion stack by
incrementing its pointer.

The = has meaning only
after the first ildenti-
fier in an equation.

+» has meaning only at
the end of an equaticn.

TABLE 3 ACTION IMPERATIVES FOR QUTPUT

27
37

IMPERATIVE

ACTION

COMMENT

*p

%5

'..P

C

IPI

Move the top of S to the current output
buffer.,

Nondestructively move contents of the
Pth column of the top of the recursion
stack to the output buffer.

Nondestructively move the top of S
without altering the top of S,

Move the Pth cell down from the top of
S nondestructively to the current out-
put buffer.

Move the contents of #5 (in communica-
tion array) to ¥6. Then add 1 to the

contents of *6 and put the result both
in ¥5 and the output buffer,

Place P in the output buffer,

Advance the buffer pointer to the next
buffer. All subsequent data trans-
ferred to the output buffers wlll go
to the buffer pointed to.

/ applies only to the .QUT imperative,
/ causes the current contents to be
output as MAP instruction. After the
instruction is output the buffers are
cleared.

P is a digit

P is a digit.

P is any sequence of
characters,

38 -

REFERENCES

1. Schneider, F.W., and G, Johnson, "A Syntex-Directed Compiler Writing
Compiler," Proc. of the ACM Convention, 1964,

2. Mandell, R., and G. Estrin, "Specifications for a Design Automaticn
System," Proc. of the SHARE Design Automation Workshop, June 1965.

3. - Schorr, H., "Computer-Aided System Design and Analysis Using & Regis-
ter Transfer Languege," IEEE Transactions on Electrenic Computers,
Vol. EC-13, Dec. 1964, pp. 730-738.

4, Gorman, D.F., and J.P. Anderson, "A Logic Design Translator," Proc.
of the FJCC, 1962, pp. 251-261, -

5. Iverson, K.E., A Programming Language, John Wiley and Sons, Inc,, New -
York, 1962.

€. Cheatham, T.E,, and F, Sattler, "Syntax-Directed Compiling," Proc. of
the Spring Joint Computer Conference, 1964, pp. 31-37.

7. Rutman, R.A., "LOGIK, A Syntax-Directed Compiler for Ccmputer Bit-Time
Simulation," M.S. Thesis, UCLA Library, August 196k,

OTHER META-COMPILERS

8. Reynolds, John C,, Cogent Prograrming Manual {ANL-T022), Argonne National
- Laboratory, Clearinghouse for Federal Scientific and Technical Informa-
tion, National Bureau of Standards, Springfield, Virginia,.

9. Feldman, J.A., "A Formzl Semantics for Computer Languages and Its
Application in a Compiler-Compiler,” Communications of the ACM, Vol. 19,
No. 1, Jan. 1966, pp. 3-9.

10. Ross, D.T., "AED JR., An Experimental Language Processor,” Electronic
Systems Laboratory, Dept. of Electrical Engineering, Massachusets In-
stitute of Technology, Cambridge, Mass., ESL-TM-211, Sept. 196L,

11. Oppenheim, D.K., "The METAS Language and System," System Development
Corperation, 2500 Colorade Ave., Santa Monica, Calif., TM-2396/000/01,
1/25/66. '

AN IVERSON LANGUAGE TRANSLATCR

12. Hellerman, H., "PAT Manual," Internaticnal Business Machines Corp.,
Yorktown Heights, New York.

