
A META-COMPILER AS A DESIGN AUTOMATION TOOL

R. MANDELL
G. ESTRIN
Dept. of Engineering
U.C.L.A.
Los Angeles, Calif.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800267.810785&domain=pdf&date_stamp=1966-01-01

A META-COMPIT~RAS A DESIGN AUTOMATION TOOL

R. Mandell
G. Estrin
Department of Engineering
University of California
Los Angeles

~fhis research was sponsored in part by the Information Systems Branch,
Office of Naval Research (Nonr-233(52)) and the Atomic Energy Cc~mission
(AT (ll-l) - Gen i0, Project 14).

A META-COMPTT~R AS A DESIGN AUTOMATION TOOL

by R. Mandell

G. Estrin

Introduction
i| i i

In the field of design automation, in general and in the automatic design

of digital computers in particular, it is frequently necessary to translate

machine descriptions and designer requests from the input language to the

language of the design automation system. This process is very similar to the

translation of artificial computer programming languages into machine language.

Hence, it is reasonable to attempt to apply the techniques developed for

writing compilers to the task of translation required ~ithin a design automation

system. In this paper we will describe the use of one such tool, the meta-

compiler or syntax directed compiler.[1]

A m2ta-compiler is a compiler specifically tailored for the generation of

other compilers. The input to a meta-compiler consists of a description of

the input and output languages of the compiler to be generated and the algorithmic

relationship between them. The use of a meta-cQmpiler reduces the generation of

compilers from an extremely formidable task of assembly language programming to

a more routine task of higher language progranm~Lng.

The Meta-Compiler in Design Automation

Let us now shift our attention to the design automation process. The first

phase of a design automation system [2] must execute the process normally called

system design which involves:

(1) Initial selection of a set of memory elements, transformation

elements, gated transmission paths, counters, and input-output interface

elements.

2

(2) Tailoring the given computational algorithms to meet the constrnInts

imposed by the selected set of processing elements.

The initial selection permits evaluation of sane measure of cost. The assignment

and sequencing of processing elements permits evaluation of some measure of

performance. The first approximation to the system design may then be perturbed

in an attempt to improve the above measures.

We take note of the similarity between the system design process and

traditional program compilation. The input to a compiler is a computational

algorithm expressed in a language other than the language of the machine on which

it is to be executed. The machine is defined by a set of basic operations, an

extended operation set from the library of routines and a set of memory elements.

The compiler is then forced to follow a set of rules for assignment and sequencing

of the operations subject to a memory constraint such that an equivalent algorithm

would be executed on the machine.

In our design automation system, generating the system block diagram is

equivalent to defining a new machine. For each new machine a "compiler" must

be generated in order to do the assignment and sequencing of micro-operations

on the new machine. A meta-compiler is a tool for generating compilers and

therefore an essential ingredient of an effective design automation system.

We must also consider the fact that the input language to the design

automation system is likely to undergo modification with time and application.

We therefore choose to define an intermediate language (I.L.) which we seek to

hold fixed. Up to this point in our development we have experimented with a

simple intermediate language in which each statement has a structure scanned

from right to left as follows:

I OPEm ION I o mm I I oPEmm 2 I

3

A cc~iler Kenerated by a n~ta-ccmpiler has been used to translate frmm Iverson [5]

operations to the intermediate language. The intermediate language serves as a

basis for assi~nt and sequencing of processing elements, which is performed

by a second meta-compiler generated compiler.

Now before we move into an example of the system design process, we must

introduce the nature of the design automation system library. Most work in

computer design automation [3,4] assumes that the designer provides the system

block diagram. We allow this but we also establish a system library in which the

classes of processing elements described in (1) above are filed. Associated

with this system library, we generate a set of conventions which serve to

uniquely select the first trial configuration from the intermediate language

list. These conventions may be overridden by the system designer and do not

act as absolute constraints on the design. The first part of this paper

discusses a simple design example to illustrate the above concepts. The second

section discusses the structure of a meta-compiler. In order to see the

emergence of a system design we are forced to think like a machine. The

resulting system design is then compared with a design which was generated from

the original algorithm by use of Judgement and experience.

A Simple Design Example

We seek to design a mchine which contains a table of numbers (M). When

the machine is activated it looks at an index or table entry and uses it to find

the first positive number following that entry.

Figure 1 gives a modified Iverson programming description [5] of the

computational algorithm. A word description follows below with reference to

the numbered lines in Figure 1.

Lines 1-5 declare that: both I, the start bit, and the error flag, D,

reside in static registers, one bit long which may be manipulated by an external

signal; B is a vector of length G bits stored in primary memory; and M is a matrix

of lO00 vectors, each of length, G bits, stored in primary memory.

Line 5

Line 7

Line 8

Line 9

Line l0

Line ll

Line 12

Line 13-
15

Line ±6-
18

Specifies that the global dimension, G, is 36 bits.

Is labeled L1 and is a conditional transfer that will

cause the system to dwell at L1 until I is set to 1 by some external

control.

Specifies the transfer of the last i0 bits of B to A. This implicitly

defines A as a l0 bit number.

Is a conditional branch which compares the first bit of the Ath row

of M with O. If the bit is zero the next line to be executed is the

one labeled L2 (line 13). Otherwise line l0 is executed.

Diminish A by 1.

if A is zero go to L4 otherwise go to the next line.

Transfer control to the line labeled L3.

Store the first 26 bits of t~ Ath row of M and all of A in B, set

the start flip flop to zero and then go to L1.

Set the start flip flop to zero and set the error flip flop to 1.

Figure 2 shows the intervnediate language (I.L.) program which would be

generated. The discussion below, along with the syntax in Appendix 1 should

enable the reader to follow this step in the process.

5

.DECLARATION

.END DECLARATION

LI

L3

L2

L4

I F/F 1
D F/F 1
B MVECTOR G
M MMATRIX G i000
GLOBAL DIMENSION 36

EXTERN
EXTERN

I:l, # ÷ LI

A ÷ ~I°/B

al/M IA : 0, = ÷ L2

A * TiA-I

A:~ (i0), -- ÷ L4

TO TO L3

B ÷ a26/MIA, A

I+0

GO TO L1

I÷0

D+I

GO TO L1

LINE

FIGURE i

Initial Description of the Computer

I I

RESULT OPERATI ON OPERAND

BEGIN EXAMPLE

1 BDEC

2 I F/F EXT

3 D F/F EXT

4 M MEM

5 ARRAY G

6 B MEM

7 VECTOR G

FIGURE 2

Intermediate Language Description of the Machine

i
2

3
h
5
6

7

8

9

i0

ii

12

13

lh

15

16

17

18

OPERAND

i000

6

LINE

8

9

l0

ll

12

13

14

15

16

17

18

19

2o

21

22

23

24

25

26

27

28

29

3o

31

32

33

34

35

 SVLT
////

L1

L3

$2

$3

$4

$5

$7

$8

$9

L2

$i0

$11

$12

L4

OPERATION

GLOBAL

EDEC

LABEL

WAIT

LABEL

FIELD*

LOD

RREAD

FIELD*

COMPR

EQ

COUNTD

LOD

VECON

CC~PR

EQ

GOTO

LABEL

RREAD

FIETD

CAT

LOD

LOD

GOTO

LABEL

LOD

LOD

GOID

OPERAND

36

I

.O~V~GA (10)

A

M

.ALPHA (i)

$4

$5

A

A

.NEPSILON(10)

A

$9

L3

M

.ALPHA (26)

$ii

B

I

LI

I

D

L1

OPE~ND

TRUE

B

$2

A

$3

FALSE

L2

$?

$8

L4

A

$io

A

$12

FALSE

FALSE

TRUE

PIGURE 2 - Intermediate Language Description of the Machine (Cont.)

Lines 1-9 result from tke declaration section of the input description; line 1

and 9 mark the limits of this section. Line 8 defines the global dimension,

G, as 36. Lines 2 & 3 declare I and D to be fllp flops which are available

to external controls. Lines 4 and 5 declare M to be a matrix stored in

memory having a dimension of 36 x 1000. B is defined by lines 6 & 7

to be a 36 bit vector stored in memory.

Lines l0 & ll together have the same meaning as line 7 of Fig. 1. The instruction

L1 LABEL means that whenever control is transferred to L1, the line

immediately following the LABEL instruction (Line ll) will be executed.

Lines 12-14 are the I.L. translation of line 8 of the source code. A FIETD*

instruction gives a name, in this case $2, to a subfield of the vector

l0
specified by the second operand. .OMEGA (10) is a translation of ~ .

Lines 15-18 have the same meaning as line 9 of the source code. Line 15

(row read) means obtain the Ath row of M and call it $3.

Lines 19-20 nave the same meaning as line l0 of the source code. COUNTD A

means count A down by 1.

Lines 21-24 have tne same meaning as lines ll and 12 of the source code. Line

21 defines vector constant $8 as ~(10). .NEPSILON (10) is the coded form

Lines 24-28 are t r a n s l a t e d from l i n e 13. REEAD ob ta ins the Ath row o f M and

gives it the name $10. Line 27 gives the name, ill, to the first 26

bits of $i0 and line 27 gives the name $12 to the catenation $11 and A.

Lines 29-35 are a direct translation at lines 14-18.

We now consider the generation of the configuration from the intermediate

language. The flow of the process shown in Figure 3, has been completely

specified, but not progran~ued, and in order to test it before we generate the

actual computer code, we have gone through the operations by hand for the simple

" 8

design example presented in the previous sections. In particular this has

helped us in formulation of conventions necessary to access a library and

produce an initial design.

I

Scan the intermediate language description and generate;

1. First part of assigr~ent table.

2. First part of operation table.
I

Determine the maximum dimensions of the inputs and outputs

for the operands in the operation table.

II
L~

Using a set of initial conventions select a set of processor

elements from the system library.

II
LA

Using the properties of the selected operators fill in the

assignment table for all implicity declared variables.

II
Generate a list of the operations necessary for executing

the algorithm on the selected processor set and the set

of interconnections.
!

FIGURE 3

9

The first block of the flow diagram builds up the assigrment table

Fig. 4 showing the size of all operands and the location of all declared operands.

The size of all undeclared operands is deduced from the nature of the operations

which produce them. For instance, llne 13 of Fig. 2 specifies that the result

called $2 will have l0 bits. The next operation LOD A $2 specifies that the

operand A will be loaded from result $2. Hence, A is assigned a length of 10.

The length of the remainder of the operands can be deduced in the same way.

FIGURE 4
ASSIGNM~~T TABLE

1 2 3 4

NAME DECLR. FIRST SECOND
TYPE !DIMENSION DIMENSIO~ TYPE AF~ FOR
E EXPLICIT READ STORE
I IMPLICIT
VC CONSTANT

I E i

D E i

B E 36

M E 36

$2 I i0

A I i0

$3 I 36

$4 I 1

$5 1

$7 I i0

$8 vc

$9 I i

$i0 I i0

$ii I 26

$12 I 36

i000

5* 6* 7" 8* 9* i0"

STORAGE LOCATIO~ SOURCE POINTER MEMORY ADDRE.%S

 F/F

F/F

COUNTR CA

KEG

REG

BZD

COUNTR

WZD

WZD

REG

KEG

CAT

CAT

MR MR MA

MR ~ !MA

MR(I,10) MR(i,i0)

CA

MR MR

MR(l) ~R

BZD

CA

REGISTER BLOCK

WZD

MR

MR(I,26)

;ll

A

i001

CA

1,26

27,36

l0

'~TAIe the assignmenttable is belngfilled with the list of operands, a

second list of operations is being built along with each set of operands used

by it. Since RREAD is used twice in the I.L. description RREAD would appear in

the llst with two sets of operands. In the case of the example, they happen to

be the same. However, this will not generally be the case. The completed list

is shown in Figure 5 although the last column is not filled until block 3 of

Flgure3.

OPERATION

RREAD

COUNTD

COMPR

M~4ORY

OPEHAND SET

M A

M A

A

MR(l) 0

A 0

B

M

MODIFIER

.EQ

.EQ

ASSOCIATED WITH

Mt~ORY

COUNTER

BZD

WZD

MI~4ORY

FIOURE 5

We now use a series of conventions in order to determine what hardware

processors to employ in the first trial design. Any of these conventions may be

overridden by explicit declaration. These conventions are merely default starting

points and are not constraints. The conventions used in the example were:

l) There shall only be one of each type of processor in the

initial system unless more are declared.

2) 1 memory is assumed to be in the system.

ii

3) Exclusive of memory (specified by convention 2) the only storage

elements in the system will be those which are explicitly declared

or are integral parts of selected processors.

4) Processing units will have their own input and output registers

as integral parts of their design.

5) The system library specifies the preferred processor corresponding

to each intermediate language operation depending on the dimensions of

inputs and outputs of the operation. For example, a different

counter may be preferred for a 3 bit count operation than is preferred

for a 20 bit count operation.

6) Matrices will be assigned to memory in blocks of predefined size

in order to save an index adder.

7) The system will have a wired p~ogram so that no instruction

fetch cycles are necessary.

Using this set of conventions, the list of dimensions in the assignment table,

and the system library, the collection of processing elements in Figure 6 is

arrived at.

[Y1

MEMORY

I
~BZD

 .tJ

WZD

I CONTROL
L

FIGURE 6
INITIAL SYSTEM DIAGRAM

12

The fact that a memory, to be Used in the system, has an input/output

register called MR and a pointer register called MA is obtained from the system

library. Similarly the fact that a counter consists of an input/output

register (CA), a logic network (CL) and a secondary rank register (CB) comes

from the library. BZC is a single bit zero detector and WZC is a l0 bit word

zero detector.

While selecting the set of processing elements, the final col~m~ of the

operation table (Figure 4) was filled in. RREAD did not require any unique

processing element since it only occurs in association with the array M

which may be stored for row reading. Had both row and coltm~n reading been

specified for the array M, additional equipment or an additional reordered copy

of M would have been necessary.

The library also specifies the sequence of operations necessary for loading,

reading and operating each element. For example for the counter the read

sequence is empty since the information is always available in CA. The load

sequence is

GATE <SOURCE, TO CA delay 20 usec.

and the operate sequence is

GATE CL TO CB delay 40 ~sec.

GATE CB TO CA delay 20 ~sec.

This information will be employed in generating the sequence of operations

necessary to execute the algorithm on the selected hardware set.

Before the new sequence of operations is specified the remaining columns

of the assignment table (Figure 4) must be filled in. It should be noted that

the variable A (Fig. 5) was assigned to the register (CA) because the counter is

13

used only for manlpulating the variable A (Fig. 5).

All operands that are assigned to the memory are available at the memory

data register after a read sequence. Hence, all subfields of words stored in

memory are assigned to subfields of the memory data register. If there were

other undeclared named variables besides A, these would be assigned to storages

in the memory.

The next task of the configuration generation program is to generate a

sequence of operations which will be performed in order to execute the desired

algorithm on the selected set of processors. This sequence will be specified in

a fonm very similar to Gorman's design table [3]. Figure 7 shows the translation

between the intermediate language and this form.

In performing the translation the translator uses the assignment table to

find out what device holds the operands. It then consults the library to

determine what read or load sequence must be included in the new version of the

algorithm. Suppose for example, the command LOD A B appears in the I.L.

description of the algorithm. The LOD conm~nd has the following meaning:

execute the read sequence for the second operand (B) followed by the load

sequence for the first operand (A). From the assignment table we would find

that the variable B is in memory at address 1001 and that after the read

sequence for memory is finished, B will be in MR. The read sequence for the

memory that is in the system configuration is

GATE ,ADDRESS~ MA

GATE TRUE MEM1

DELAY 40

DELAY 2000 REPLY M~'43

The constant 1001 is substituted for ,ADDRESS~ in the read sequence and the

sequence is inserted in the sequence of instructions. The location of A is

then found in the assignment table and its load sequence is looked up. MR

is substituted for ,SOURCE~ in the load sequence for A, and the resulting

sequence is inserted in the code being generated.

14

The operation GATE in column 3 of Fig. 7 means gate the operand in column 4

to the location in column 5. BRC is a conditional branch instruction. It

means transfer control to the instruction whose label is in column 4 if the

bit whose name is in colun~ 5 is true. Otherwise execute the next sequential

instruction. SET means set the fllp flop named in column 4 to the value given

in column 5. Column 6 is used to indicate that two or more operations must

occur in parallel, and column 7 gives the time required for each operation.

If an operation generates a completion signal, its name is placed in column 8.

15

FIGURE 7

Sequence of operations for performing the algorit~n shown in Figure 1

on the system shown in Figure 5.

1 2 3 4 5 6 7

STEP LABEL OPERATION OPERAND OPERAND PARALLEL DE~r.~Y
WITH

8

REPLY

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
I

LI

L3

L3

L2

L4

LABEL

WAIT

LABEL

GATE

GATE

GATE

GATE

GATE

GATE

BRC

GATE

GATE

GATE

BRC

BRU

LABEL

GATE

GATE

GATE

GATE

GATE

SET

BRU

LABEL

SET

SET

BRU

I 1

i00110 MA 2O

TRUE MEMI 2000

MR(27,36) CA 20

CA MA 20

TRUE MEM1 2000

MR(l) BZDI 20

L2 BZD 40

CL CB 20

CB CA 20

CA WZDI 30

L4 WZD 20

L3 4O

CA MA(I,10)

TRUE

CA ~LR(27,36)

i00110 MA

TRUE MD43

I FALSE

L1

I

D

L1

FALSE

TRUE

19

2O

2000

20

20

2000

20

40

20

20

20

M~43

M~3

16

The completed design including transfer paths deduced from Figure 7 is

shown in Fig. 8a. Fig. 8b shows the system generated by a designer using

traditional methods and judgement.

~ MEMORY ~ ~,~CA~-~CLMCBp ,, ~?.- ~MORY

I II II I I I :~¢3-1 I - I I I I I
"" , 59 , I ,I. I____I L__I L_J L--I L_]

' " lL_ , , , , , , , I I ~ - ~ - - - - ~ ~
I I I

' " ' " ~ , , , I 4 I
' , I , ' , m m , - ~ - - , i ! i i r~ I m i i,, i ~ ~ t - - - - ~ ~t_N_~

' " - - 1
! I I
I m !
I I m ~__

', , , - I , , , I B Z O i I l i " ' , , I ' " I T
I I I

CONTROL m , , , , , , : I CO~V~OT, [J , ' , ' , com~oT.
r - - - I I ~ , , m m _ I i

i I ~-= I i I ~ I

, I] : 1 I ~ : , I Z l I
i ' , ; • , , '
" ' ' I ' ' ' ,I , ' , , , ',, , ;,

I i

I I I I ~ I I
i I ' I ' - - ' - - - - I - - I I l I I I ~ I I

i i I D i -- i i I , , I D I - , i
I | , -- l l ' I l l , l
I I L I I I I I I I I
I I I I I J I I

I ~. - I I I I . I I

! . I I I

t . J I_

FIGURE 8a FIGURE 8b

The System Designed According to
the Design Algorit~n

The System Designed by
a Designer

The designer recognized that MA could be used as the primary rank of the

counter, in place of CA, and that faster operation could be achieved by comparing

for zero at the secondary rank of the counter. The designer also recognized

that the memory access at lines 16 to 18 of Fig. 7 is unnecessary because the

information is already in ?aq.

The differences in the designs shown, Figure 8, point up optlmizations that

will be achieved during a timing sequence analysis of the code in Figure 7.

This phase of the design will not be discussed in this paper.

17

THE META III Meta-Compiler

The second section of this paper will discuss a m eta-compiler which is in

essence of the META III meta-compiler written by Fred Schneider and Glen Johnsen

[1]. Several instructions were added to the META III language in order to make

the meta-compiler a more useful tool in deslgn automation. The extended meta-

compiler has been used to construct a compiler which translates a subset of the

Iverson language into the intermediate language described above. Additional table

manipulation instructions are planned in order to facilitate the construction of

the configuration generator described in the first part of this paper. Figure 9

is a general diagram of the META III program for the IBM 7094.

SYNTAX
FOR
COMPILER

I Iii

I
I IBMAP]

SOURCE I
CODE "--

I

MErA-COr~PILE TIME

COMdPILER

KERNEL

IBMAP

- COMPILE TI~4E

DATA OBJECT I CODE

KERNEL

. OBJECT
TIME

FIGURE 9 The FL~fAIII System

18

The cempiler to be generated is described by a group of syntax equations,

coded in the meta language described below. These are translated into MAP

by META III. The MAP code is then assembled by IBMAP. The resulting program

is a cempiler which accepts source code and translates it into MAP. When this is

assembled by IBMAP it becomes the object program.

The kernal of the meta-cc~piler is a set of service routines, written

in ~t~P, which may be used by the meta-compiler, the compiler and the generated

object program.

Fortunately, the meta-compiler itself has been described in meta-lan~ge.

Hence, the meta-language itself may be modified by a process of boot-strapplng

in which the syntax description of the modified meta-compiler is produced.

This often entails the hand generation of a new service routine to be added to

the kernel.

The meta-compiler may be viewed as a simulated computer along with a

program. The simulated computer will be called the meta-machine. The meta-

machine is simulated by means of the subroutines in the kernel. Any attempt

to transplant the meta-compiler to a new machine would involve constructing

a new simulator for the meta-machine.

As shown in the block diagram of Figure 10, the meta-machine consists of

a number of arrays of registers which function as push down stacks. Each array

has a pointer register which points to the cell which is currently functioning

as the top of the stack. The pointer is moved up or down by incrementing or

decrementing the contents of the pointer register. "When a piece of data is

added to the stack, the pointer is moved up by 1.

J--4

o~

-7- .Ira,.

D,.

19

8~

r,D

i °
r,D

c~

0

H

D~

.,-I
X~
0

0 r-I

6I

20

Programs (syntactic equations at meta-compile time, source code at compile

time or, data at object time) enter the machine through the input buffer and

classifier, (IBC) where they are treated as a continuous string of characters.

In the course of the analysis of these programs, groups of characters at the head

of this string a~m classified and moved from the IBC to the various arrays in

the meta-machine. After a group of characters is removed from the IBC, all

blanks following the group are deleted and the input string is advanced until

a nonblank character is at the front of the buffer.

The Meta, L a ~

The META III language is built around a special coding of the Backus Normal

Form (BIVF) [6], which is a language for describing the syntax of progranlmlng

languages. To this syntactic laugusge is added a set of imperative instructions

which manipulate or test the information in the various parts of the meta-

machine. For example, consider the BNF equation (1) which defines a ~STAThVME~T>

in terms of other syntactic entities.

<STATEM~T,=~LABEL>.. ~STATEMEh~, I <ARITHMETIC STATEMENT, I <CO~fROL STATEMENT> (?)

This equation, called a syntactic equation, .has the following meanlr4~,:

A <STAT~4ENT, is equivalent to a <LABEL, followed by two periods, followed by

a <~ATEMENT, or a ~STATEM~T, is an ~ARITHMETIC STATEMENT, or a ~CO~fROL STA~,.

Equation (1) translates to the I~TA III language equation

STAT~ = LABEL'.. ' STATEMF/~T

/ ARITHMETICSTAT~24T

/ CON~fROLSTATE~-~4T.,

(2)

As shown in Equation (2) BNF quantities which are enclosed in brackets are trans-

lated to strings of capital letters or numbers with no imoedded blarg<s.

21

Such a string must be headed by a letter and followed by a blank or a symbol

which is neither a letter or a number. This type of string is called an

identifier. A sequence of symbols in the BNF equation which is not enclosed in

brackets is translated to the identical string enclosed in apostrophes (')*

and the BNF slmbol [(meaning exclusive or) is translated to the right-leanlng

slash (/). An equation in the meta-language is always terminated by the

symbol (.,). Identifiers such as LABEL) STATEMENT, and CONTROLSTATEMEN~ must

be defined either by a syntactic equation (i.e. appear on the left of an

equal si~]) or must be an operation in the meta-language (Tables i, 2 & 3).

Though ~ i~e~ifier may be made u~ of any number of characters, only the

first six characters (if there are more than 6 characters are truncated to six

characters for intern~ representation).Thus, the identifiers ARITHM and

ARITHMETICSTAT~A~ are considered to be identical.

~en an identifier appears in a syntactic equation it has the following

meaning. At compile time examine the state of the meta-machine and see if it

matches the state of the machine given in the definition of the identifier.

Consider, for example, the definition for LABEL given in equation 3.

LABEL = ' .L' (NUMBER/ .ID)., (3)

Equation (3) means,determine if the first two characters at the head of the IBC

are .L. If they are, remove them and see if the next group of characters is

either a number or an identifier. If the first characters arenot .L, the

machine is not in the state required in order to meet the definition of LABEL.

If the string .L is found, but is not followed by a number or an identifier,

processing cannot continue because the state of the machine has been changed by

removing .L from the IBC. In this case an error message is printed and compilation

The pair of parentheses is not a part of the symbol

22

is resumed at the end of the statement that was in error. Notice that there are

two alternatives for the second part of the definition of LABEL in equation (3)

and that the equation could have been written

LABEL = '.L' LAB1.,

LAB1 = NU~:R/ .ID.,
(4)

The use of parentheses in Eq. (3) saves the necessity for defining the additional

syntactic variable LAB1.

The strings '.L' and .ID are examples of a test imperative instruction.

There are two types of imperative instructions, tests and actions. A test

imperative tests the status of the meta-machine at compile time and may cause

data to be transfered from one register to another if the test condition is met.

An action imperative merely moves data between registers or produces output.

The test imperatives are defined in Table i of the Appendix and the action

imperatives are defined in Tables 2 and 3 of the Appendix. The third column

of Table 1 indicates what action is taken if the question in column 2 is

answered in the affirmative.

The action imperatives include a pair of imperatives which move information

to the output buffers and cause output to be generated. These imperatives are

.OUT (LIST) and .W(LIST). LIST may be any sequence of the imperatives in Table 3.

After the last imperative in LIST is acted upon, the contents of the buffers

are output and the buffers are cleared. .Oh'2 causes MAP code to be generated;

the LABEL field comes from buffer l, the OPERATION field comes from buffer 2, and

the VARIABLE field comes from buffers 3 and 4. .W causes the contents of all

four buffers to be written out as one line of text, 120 characters wide, on a

separate tape at compile time.

The vectors and matricies used in defining the imperatives are the names of

the parts of the META III machine depicted in Figure 10. Additional imperatives

which are not necessary for the understanding of the example in the Appendix

23

may be found in [i].

Another extremely useful element of the META III language is the symbol $.

Equation 5 is an example of how this symbol is employed

PROGRAM = $(STATEMENTS)., (5)

Equation 5 means: A program is a sequence of statements. The sequence may

have no members. This is exactly equivalent to equation (6).

PROGRAM = STAT~V~2~f PROGRAM/. EMPTY., (6)

Using the $ notation equation 2 becomes

STATemenT = $(LABEL '..') (CONTRO).,

CONCLUSION

Meta-compilers can play a decisive role in building a design automation

system. The first part of this paper showed how a compiler forms the con~nuni-

cation link between the designer and the design automation system. A compiler

for translating a large subset of a design automation language is shown in the

Appendix in order to illustrate how a compiler is expressed in META III language.

The first part of the paper also showed how a compiler can be employed to perform

actual design work in selecting sets of elementary processors, and translating

an input algorithm into a form that is executable on this processor set.

A meta-compiler can also be used as a tool for system integration since

it can accomplish the translation which is often necessary between the input-

output languages of existing programs. For example, it is a relatively easy

task to write a meta-langu~ge program for translating the intermediate language

described ~[n this paper into the PAT (Personal Array Translator) language [12].

This translated version of the initial algorithm can then be executed on the

PAT system to determine whether it actually achieves the desired computational results

24

Additional uses for meta-compilers in design automation are for simulating

logical equations [7] and for translating logical equations into networks of

logic circuit modules.

The authors wish to acknowledge the cooperation of the Systems Development

Corporation in permitting use of their time sharing system, TSS. This work

would have taken many times as long to complete without the rapid turnaround

achieved at the terminal.

25

APPENDIX

The syntax shown in Figure Ii is the META III language version of the

intermediate language compiler. The first line of a META III program always

begins with the word .SYNTAX followed by the name of the first syntactic

equation (PROGR~ in this case) to be executed at the beginning of compile

time. The syntactic equations are arranged alphabetically by name for ease of

reading. Equation PROGRAM begins on line 1430. The imperatives used in the

syntax are defined in Tables 1,2,3 of the Appendix. The reader is guided

through a few lines of the program in the following in order to ease his

understanding.

The first imperative of PROGRAM (.DIAGNOSTIC SYNTAX (RECOVER)) designates

RECOVER (line 1520) as the first syntax equation to be executed after an

error is discovered in the source code. The next imperative sets the .MODE

word in the con~nunication array to T. This causes the meta-compiler to include

certain useful diagnostic traces in the compiler while it is being generated.

.ID (line 1440) is the first test imperative executed by the compiler. This

looks for an identifier which gives the name of the source code being compiled.

When the identifier is found, it is moved from the Input Buffer and Classifier

(IBC) to thetop of the S stack. The next imperative (*4) moves the identi-

fier from S to the top of the fourth column of the recursion array. Next, the

compiler will output a line of coltm~n titles via the .W instruction. The

conm%~s separating the strings 'RESULT', 'OPERATION' etc. indicate that these

strings will be sent to separate output buffers. Each of the four output

buffers fills one of the four columns into which the output page is divided.

After the column titles are output the I.L. conm~ $0 BEGIN <N~ME, is output

where the name of the program is substituted for ,NAME, by the *4 imperative

on line 1450. Next the compiler attempts to find a STATEMENT followed by zero

26

or more statements. A STA~/~E~ is defined on iLnes 1990-2050. A statement

may have an optional LABEL followed by either a CO~ROL, a ST or a DECLARATION.

I~BEL, CONTROL, ST and DECT_ARATION are defined on lines 620, 300, 1780 and 420

respectively.

Figure 12 of the A~oendix is a coded version of the program given in

Figure 1. Coding was necessary because same of the symbols of the original

Iverson description were not available on the key punch. For example, since

(binary value) is not on a key punch, .BV. is substituted for it. Also since

subscripting is not possible, subscripts and superscripts are replaced by bracketed

M ~A quantities. Thus, becomes .MR.M(.BV.A,). The symbol MR. preceeds M in order

to indicate that the symbol M represents a matrix whose elaments are single bits.

As will be seen from the syntax (lines 940 and 860) this tag preceeds the

identifier M into the S stack ~nd is carried with M durLn~:] most of the compilation

process to identify the tyoe of quantity represented by the identifier, M.

i i I I '
, i I ;

r ! ! I I
II I : i

I i
5 I I :l ;

I ' I I
i ; ,

ol I i o o l o o l o o • o o [o o ; o o l o o o o : o o o o o o , o o ' o o
h.-~ o,.I ~c,"~ .,4-1t..~ ,.O:1"-- 00 Or, O',,.--.t cM.o'J -..l"iL("~ '..OI('M ~ 4" ~ ,..O r-...:00 0 ' ~ o ,.-4;(x.I eel
O O ~ O O 1 0 O ' , O O O ,--~J,-~ ,--J ,--J ,.--J t, ,--~ ,--.4 c',,I c ~ l l : ' M , ~ c,,I c~.cx,I , '~ .eq c,'~ cq
O O 1 0 O] O O ; O O O O O C, O O , O O ; O O O • O O ~ O O O O • O

' l

• 2 ,7
f

t
o o o o • o l o o ! (: : :) o p o o • o l

cq ¢q o ~ c q ~ c~-.1- -.1- 4- 4- :-.t -.~- 4- <1-i
O O O O O O O O O O O O O O

A

I-- I.--
Z3Z :)
O •
-..1: .-'4:

h i 3 0

~ u 3

I
, I -- I - -

e,j r l r l
I I • •

~ ! LLI LLI
* I--'- J'--

O •

ol ~ '

- cE; r',."
C3 ,...4 IJJ .LLI

" & t ' - - : ' -
<~- k . /] '

- - ' -

~ 0 m ; n " l
',r'r" ~-- I ~1 LU,

I X II I I

~1---

!11

i<
~Cl..
j._.

• ~ r r 3
I

I

I
F
F
i
I

!
: !

I

. I
u :¢

>...

I-.-
(3.. - #

- . ~ I

. _ 1 7 , - . - I

cO ~
~ O

LLI ~ .

~ > u i
- i . u ~.O, • ,

c k l

1 4 • I
- !

I

I

>-.
c~

0..
O

L /

r ~

LLI

I I
, , .- I

I--

w

!

o2

c~

c~

I---

Z

D

%)

v

I1
I--

u
z
O
k.)

r - ' l

Z
0
L.)
LLI

d

N:

I-.-

: E

..A

t.L

, --4

13_
O

O
k.)

._J
LL
K3

UJ

F--

q

O
U
Lt.l

| |

O

. ' O
• k .)

~u~

I

n,-

I I I
! d
: 0

" i0
elL, .}

o2

01

c~ . ~ .

o4 ;

! • i

i W • -
i T ~ : ~...[

D • D i

i

- LLI CZ:
0 7- 13. - .
I.-- (3._. I--- ~ -

X , - , O - :
O tLI~CY k..)
L9 rY! . ,~ • O._

d,.-

X ~ " U O i

! J - - L U I > -

l i b - - ! ~ I L I J

I - ~ " i " I "

i ~ < I "

i

I

I

i •

O

i

VY

i -
i*

II
b -

Z

U

* * i

-" -'i
Oj ...j I
LOLOl

" " i
D

" ~ . - %

......,%,

3 : ~ i L)
• • L L I

CE CE C3
ILl LLI LLI
CI3 C[3 --

Z Z ~ :

d _J
LLI .,~ <l: ~--
CL m CI3 .U
~ ' O O W
F - - _ J _._1 : ~
U ~.'.9 ~ l . x J
k l J • • •

• " % ~ . . ~

u

EB

L)
u J

II (~
: Z n q
' . O •

' . <

Id
~ U ,~luJ

t i ¢ " ~
i
I
i
I
I
I

I
i

I
I
i
i
1

i
i
J
I

Q)

" ,-4
• , -4

: I i 2 8
i i

i I , '
i

!
i 0 0 0 0 0 0 . 0 0 0 o 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 o 0 . 0 0 O 0 0 0 ' 0 0 0 0 0
il~- oo O~ 0~-~ cxl e~ ~I-,~ ~0 .oO O~ 0 ~-~c~l c~ <I-L~ ~0 ,ao O~ O~, - . i , " 4e~ l -,-I- u-~ .,0:,1~ oO O~ O . , - - I C X l ! e q .,,1- Li '~,,O o 0 .
,-,,1" -,t" ~ ,-,"l ,..£1 i...q.i.~ ,.i'l I.i'l t.E% t£1:1~ L~ ,.,9 ',.0 ',D "43 '.,0 '-0 ",0 "40 ' .0 "~ I',--.:r-.- i".- ~ I"..-:1 ~ I " - I I "~ I'--- I "~,. 00, .30 o0<30 oo oO o o i c o
' . 0 I ~ C I 0 O 0 C , 0 0 c J 0 0 0 C I 0 0 0 0 0 O 0 0 0 0 ~ 0 0 ' . 0 0 0 0 ! 0 0 0 0 0 0 ~ 0 0 0 0 , 0

!

I
!

I

I|
kk/

El.
>-.
b -

U

:C3

',C.<

,4.

", L.%.
, - -4 •

XLY-~

~LC b--
i-- ~J
.-r t.'l

C'J ~

i l l • •
~L

I, I---~ .'7 --7

e

-- - • [~ "-. >- ~-

~ ~ " ~ ~ , 0 J

C.L

.-i ~ , j
;.~ _I ~ 'iLl

•) , I (- -

,--4 ~i.~ •
• __J

-- • i l l •

t .J LL - -

LLt ~ LL.

"l] U _ • e~

-J -- t J

(~ k.) ,'13
7< t ~ • __] - ~
L'J I ~ ;A_ •

<o ~.< Ld V--
tJ_l •)- -- EL

• EL I-- I,I

(~ [~ 111

• .I--

111

II ,--i
(_7
_ I ,._I
LtJ i~i
i --< i,~ i - - i

Lt_ e ! L i _
i
!

i.

1
i

1 :

i
iii
~d
iuJ
r~

• d

I--

~2

<
o.
.<

t/)
._/ re"

r~

tO L.LI LLi
• ;> 7>

- "-3 0
;-£ >-

• -4 L._]

• 0 >

• : < 0

LCl

0 • 0"~
.--I • •

LIJ 'ILl (Z~
I-- l.i

~ - U_I
II ~ 6]
£3 0 0

• ._J • =~Z • ~7.

__1
j , - ,

<C i - -

~ t L
C:3 •

[I
C5

" 0

c_~

"el
>

0

.'zJ

0

-_I •

- LL •

"~I ILl
tO! e.

II • ! ~ II .
r--I ~ i e i - -
r 7 I ~

~ . C) 0

i

13[]
% •

D

I--
D
in

,g..

,+~

I.---
o7 =3

0

[,i

0 ~--~
Z i)~
• O ~

r~

no_

• LLJ

~-- ~r~

'~ 0-0
LLI • ; ~
I'--
7 LLI

I--- n."
o"i ,"7 LLI
• 0 l--

ill "~.
I--

I-- .~

Z ;11
II . !)

I..L..I : ,.-+-I :i.-.-i
I----+ • IC~

C 3 i e ~_~

• ~ l ~ .i ~-

d

r F

tO

II
L~
E~

0

, . ~ ' -

29

0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 O 0 O 0 O 0 0 0 0 0 0 0

O 0 0 O 0 0 0 0 0 0 0 , ~ ,-~ ,-I ,-~ ,-~,--I,-4 r-~ ,-~ ,--I ,-4 ,-4 ,-~,-4 ,-~,-4 ,--~ ~-I ,-~ ,-~ ~ ~

n," I
O *

t J I

LLI
C3
0

n,"
b.J
I - -
C~

._I,
I . - - .4

<~
F--

r ~
0

r ~

I I
rl

: X
LxJ

~ 1::12

II
>--
n /
<~
: t [

n,"
0..

~ , t Y

u~

I
:¢

D

0

w *

O L < ~
V - *

> -
>--L~_

< ~ S ~

n ,_.~

- ._1

• ~_ 0 I ~
X ~ _

l.tJ kkl or" --
C~ rv" : E l--
0 ~- "~ 0

c..3

u

~ ua

I

L-'J I

0

<

o2

II
',~_

. . . .

rC
L;-

_ I

F--

r 'h

<:C-.

> -
¢,.-

C~
D,_
C~

II
v

I--
t ~
z

:>

I

Lf%
I ~-~

~-~ I

I

! ;22

I ~c ,_]3 #

"~ u')

;,': [~J kLJ - -
" ~ 7 > "

- - L~_I 0 0 L1.)

, -~ > - ~ -

- 0 }-- H .

• | l - - ~ L.z..I ~]_
• - - - L u > >

> ' 0

,,--n ~ o . > ~ I

- 0 > : ~ . ~ .

~ , b> Cd
L..} ! ~_~ II ¢ ~

• ! II L~ ' ~'~-

- ~ - >< O ' CC.
• LLi ~ " D__

i > , , : > , , >

!
i l

t - -
Q..

LJ

".L
<
F'-'--

c-j
[Lt

0

: 'Z

F--

<

:-,9

-- [
0,-- . t

£3-
0 ~
~ I

fl il

<~ 0

u') F.--

D~

Z>
0
L '
LLJ
~~

IU

d)

t---

CL

r_CI

U')
l ~
F'-'-

2
z

co

,r
F--
,.,9
ta2

Z

.

t
I

r r - - - _

i i
t I

l +
i 1 II ' , 1 "

~1] o,,I C',l: I c',,,I c'~, m c q c<'~ m ee~ m ' ec~ ,-q c q -.:1" ,,-I" -,1" <1" .4- .4" ..t- ~ 4 " 4 " Lr~ , .~ t .~ G'~ u'~ G'~ L n ~+'~ t.r~ u~ , .0 , .0

l

I

!

3o

, ~ 1 . 1 1 1

~ , ,nl

II
r n

Z

i

i

._+I !

l--b<{

r~G:+

<luo
f :" ' I+.

, - ' 4 1

"a-I
o01

J

> . . .
c k c 3

! ~ ' z '

i

> !

I" "i

-la.
olo

I
I

I
I
I
I
I
I.
I
I
I
I

I -
k-- : :3
: D O
O : D
,_0__~ .~.0

t2K ;I.LI
a J i ~ - '

i '
I "

2 D
~ J l

1
I
I

+i

4 -
,.H I

:=¢
LI_I

O Z
:>Z. - -

I - -
D

>-- 13..

~ . 4 "
,.-.+ #

q ~::
LLI
I:T3

O : : D

II
> -

<:I::
.>--
I--4

mr+y ,

U.J
Z
O i---

r ~ + ,,_tJ

' ,~ .q] ~ F-.
I LI.I , ~ <~:

0 ~ 'J)

- 0 uJ

,.--, L"3 L,9
t.-- I - - - - __1

CL r'," U LL
• LU • ~ •

I ' Y O +-'4~ ~ . LIJ
• -- • G:: I---

~x I I - - _J

9, D::: ...J i-- ~ ~ Z
+ - I L l : Z) F - ::~ rv"

~ D OIJJ ~ ~I l--
' J ~ U D ~ " ~-~ ~ ~ LLI

_ - ¢ - ~ cl . <~: 13_ -
• +" X ~ 0 1 - - ~ £2~

>-" • F - - $ ~ • I l l

G:: ,+n- LLI UC) ill - +,

r Y ' . ,~ i - . i.-.- o ILl - - -

• ~ . n,," <~ ~_~ 1 - - LLI U
-~1 :3_ I D L L I cO I - - Ct:::

: -- < { : C ~ ! X P-,.. <~:
' - - + O i t H] ~ I ~ W

+ I - +:::::~ ~ : i - ~ '.Z:cO.

" ~ ~ " ~ II &-- ,~. II

t + - i m
t r Y U._l

O . 0 : U
+,. n," ,', £::Z: ~,!LLI
,+ 13_ Q.13_ •] P,"

!

i

c ~

t.J..I •
r Y •

• L£J
~ L+',,]
. S ~ U

" U

o

Lt_r •
SIZ ~+~
I - - LU J

r Y I - -
<~ ,....+ .£~

r.,.+.

II
i

13. . i
X ~
I..LJ :

o r Y

A
~."+l

I

I-,-I

I

o,

n.-

o

D

J

f - 4

t N
r h

0

r~
LU

J

F-

0

!rY

r~
, II

iX
: . u . I . ,

!

I

1
I.

i

, I
' i I ,
I I
I J
I I
I I

= O ! O O ! O O ' O

gi

w

rn~
o.

nl
°i

i
,.--I: *?

Q_i

rv
, r~ I

)_.! oF;

I ~ i - l ! I - - -

. ~ - I < i
~ - .~--~ ~ ! •

I , < J ; Li - -

i' ~ ' ~ ,Yi ee' I

i' _ !c~ .I a:n
a_ i z - , < I

I - ° I rr!
I

I o o l

I
t
I
t

i I
i
i
i

i I
i

i_ [

~. . I n , -
I
i
I
i
I
i
i i
i
i
I
i

- r [- . -

i
I
I
i

; 31
i

o ! o o i o o ! o o o o l o o ! o o o o ' o o : o o o o o o i o o o o o o o o o o o o . o o
0 ~ 0 , - I . ~ 1 G l i . . ~ ~ ,.0 P"..:oo 0 ~ ! 0 ,-4 cxl ~ ..t" ~"~:,.0 I ~ co 0~ 0 ,--~:cM (~'l. -.t'- ~ ,.o I ~ co C~ O ~ ?xl cq..@" L¢~
,.0 P- I'-- P"- t~-:l"--P--. I--.-I'..-ir-.- I ~ l o o oo co co o0 o o c o co n0 o 0 0 ~ 0~ i0~ 0~ 0~ (:m 0'~ C~ 0~ 0~ O O O O O O

I

I

I
:¢

:¢

J

ol

: ¢ .

i

r"~:
O l

_.:1 __1 ~.-~ !

I.-- ' I..-.

- I - r v
._1 n," L,~
c0, u') c0

0 1 • •

o j @ •

, i

o !
~.-.

u.-i

• ~ ' r I
o t /) l

l

u~

@

-4"

c~

:¢

,-- I

o ~

• •

I . - - - -

F - ' , ~

IK i'.O
LLI

|1
o,

Z
t ~

0
. J

co

_J
cl

D O

L,I <I:

7 1 -

o r , d:l
L;' • O

E L I - - D
• ::2) _1

- E L O _

• ~ I---
- : D

, ~ O
- C::l

,-4 ~<1 : :

in,"
: + ILl

~C3

F'-- , •

u~j .d

L~, I--

CIr. •

; Z II I

i l l > -
- r~ F'F

I O _ O ~
i

I | 1

0
_1

cO

_1
O_

D " D

U c O

I - - - -
Z I - -
D ~
0 o _
U •

O. . I - -
o : D

- O .

O . ' ~

, - - I

I

0
_1

cO

.__1
o_

I--
D
0

cO

~ :>_ :
n,-
1.1_1
I--

@

o

rF

g
I-- >-

~i,l 7_C
• • LLJ

"%. •

c~ c~_ ~ 'LLI CL
0 o C ~ . ~
J O Z -

CL ._..J I.--- CL L~ Z

" . ~ , u ' ~ 0 I_LI>_: •
2 D ~ r , " -

_ 1 Z - ~ - J Z
13- CL -- II ~ -- 0

X II -- @ ~ ,--,

0:~ rv" >-.- c v ,--.~ o . d . ~
U-I - rF <~ • Ld 0
t,.-- II "~: :~_. • J")' _J D,L'_

--.Z ,--~ + • _.l LLI I..-- _J

od', ~ 0 . . ! - a_: ' ~ 0 ',,0 u.J

,-4: ~ X:_J ~; II

rF I ~ !-- ZI t-
O_, • ~ LLIj Z
rF; ~ o', ILl

• ,I--]
' • £/)~

II

32

O ' r ~ . O O O
, O I ~ cO Ch O ,.-4 c,,J e q ..,I" t (h ,.{3 1 ~ {30 Ox O , - - . I c,J { 'q -..I" u q ,.D b-- a0 0", O , - - ~ P,i c q <I + u'~ ,0 i'-- oO (~ 0 , - - , I ~1 cq ,4- ,-"h ".0 i"-- cO 0", O r - I
0 0 0 0 ,-..I ,--,I ,--4 ,--4 ,.-.-I ,--I ,--I ,,--I ,'--I ,---I ,"X,I ,"XI rW ~ e'x,I {X,I C'-J C~,l C,,J ~ { 'q ~ ".q o ' , {~'~ r 'q ('] ',-'h ~ {~] '.-.1'- ~ -4" ~ --.t x t -.1" --.1" --T --21" ~1 uh
{'XI. {XI P4 cxJ ~ ~ { " j { '~ {'XJ {X,I o 4 .'?'4 ('xJ {'X.I ,"XI { '4 {',,I f-,,I .XI (XI o, I o,.I c",,I : '4 ,"q "XI { x I o,J :XI . '4 cxI 0 4 P,J c 4 CXI c,J .'x,I ?J c-J c..I - '4 "4 o J J-,j 0 4 '-'4

D

%
l l , ll~

t O ~,
LLJ --
r v ' ~

a_O 0

~O ~_
- 0

U -

o

r F
L ~
FL]) -

--~ O L q
Y C > - I

b._l
r q

: E
D

II
EL
X
LLI
: r r]

F--

LD

0
<

LO

',0

F--
>-

~. F-

ILl 'UJ
F--

" i f I "

F - :11
. E) : - - J
. 0 i ,-..,

• cO - l i - - , ,
i
+
i
t

I--F--
D D
O 0

>->

: E O~

F - t - -
D _ D
O_ LL

L/.I b J
F - F -
E] g h
O 0
2E ;£

>->-

Ed_____

..- .~-

EdCC
O_ 13-

~9
>-

<
~z

I--i

of
o_
II

bJ
I--

J
j .--..
, . - . <

' <~ i -
l - -

• ~ L J

LLI •

: >
> u 9
C.,O •

I 1
I.-.
{.,o;

,,, L d l

- - r£J _-D
X C E H- :E Z
H 0 cO D-

}-> 0 - ._I

• , ,,, - .._I < : [

s 0 1 1 3 u) - L 9

D D ~-~ I}E

0 __I •
- - <C-

2 E C Z ~ o >
D O - - ~ 9

I--- - •
u CL L m . ' - ~

- ~ 0 cO
X > • •

II O~ X II Z
LLII-- ~- 0
0... -<C 0 U

• , > - .] ~] - , ~ . , I_lJ
• I-- - • I-- •]>

u,'h
I

~d

r ~ Lf~

I ~-"

U2 •
• • • [~

F-- t . J • •

• " C) ~ 2C CL
t J :-C LLJ b-- 0]E

• • CE D'- L J 0
- < U t .)

:',-- < (~ o OZ U "
>-. ,-'~ ~Z > - • ~,~ • U

• < (L:.I [C EL. LJ ~ . :
-'-E > ~ . [.]_ : f< • O_ • ; ~

i " d ~ : D-. L',_J • 2£~ ~

,--~ LE IJJ L ~ "~- > - ' - " C~ '--~

J ~ 0 - <co <F-

ZC < O " CY_ - .--. 12Z Cd ~ >-.

C.Y_ - LLJ >.- ,.'-~ LLI ,L"d EZ~ ~ . - . 7

0 ~ kdD - ~ - -- - (X I

0 L-~ • ~ I-- ,-~ 0 - - ~-~

~ - ~ U X . I--P__£_ ~ 0 LLI X

i ~ c c l ~ II
I I ~ ~ I I

' t - - t - - I - -

" . ! UJ - - LLI ~ b J
o > , > o >

t

I I
l . --
t./]
i.--i
_ J
E<

~ L L
. X

,2,£
o

__I

o,.

T
e ~

~ 4

_ J
L_!

<
_...J

I---
~r}

Ld
I - -

(_ I
z

,~. LLI

33

EXAMPLE
. B D E C
i F / F EXTERNAL
D F / F EXTERNAL
!I M~dATRIX lOCO G
B NVECTOR G
• GLOBAL 6
. E ~ E C !J

• LI .WAIT(I..I).,
A=.OMEGA(ID)/3

.L3 .COi dPR(.ALPHA(I

.BV.A=.DV.A-1

09

.CO~IPR(A...~!EPS(IO)
6~

.GO
m~

.L2

I=O

• GO TO . L I
. 9

• L4 I = 0

D 1

• GO TO . L 1

.END

/ . i . 4 . 1 4 (.L~V. AS I • . 0 1 . ~ w . , . L 2

. E Q . , . L 4

TO . L 3

c - (. & L D ' J / , (2 6) / . i ' - : R o ~ i (. • V o '~ q")) , A

FIGURE 12 The Coded Version of Figure 2- The Exa~le Machine

TABLE 1 TEST IMPERATIVES

TEST IMPERATIVE

.ID

ALPHAB

DIGIT

NUMBER

*p

,p,

.SV 'P'

.TP

.EQ(...P1,...P 2)

.TEST ' P'

TEST

Is an identifier
in IBC?

Is first character
in IBC a letter?

Is first character
in IBC a digit?

Is the first string
of characters in IBC
a number?

Does the identi-
fier on the top
of the stack have
the property P in
its symbol table
entry?

Is the first
sequence of char-
acters in IBC the
same as P?

Is the first
sequence of char-
acters in P in IBC
the same as P?

Is the value of
the mode cell in
the CA the same
as P?

Execute...P and
• ..Pp(Table I 2) then
compare the new top
cells of the stack
if they are the same
the test is met.
After the test rest-
ore the stack to its
original condition.

Is the top of the
stack the same as
P?

DATA MOVED IF TEST
CONDITId~ IS MET

Move the identifier
from the IBC to the
top of S .

Move the letter from
IBC to the top of S.

Move the digit from
IBC to the rod of S.

Move the number from
IBC to the top of S.

Delete P from IBC.

If the test result
is true the first
six characters of P
are put on top of S.

If the test is met,
remove the top of S
otherwise leave it
unchanged.

24

~4

A number is a strin~
of 6 or less digits.

P is a letter of
the alphabet.

P is any sequence
of characters.

P is a sequence
of characters.

P is a letter.

P is a string of
up to 6 characters.

25
35

TABLE 2 ACTION IMPERATIVES

I~ERATIVE

.FALSE

.FMPTY

+F

.MODE P

. . .P

.MOVE P

*p

*-p

*p

*-p

.SEARCH()

ACTION

..Test ÷ 0
The conditions required by the syntac-
tic equation in which .FALSE appears
are not met

The conditions required by the syn-
tactic variable are met ,no matter
what the state of the meta-machine.

Dat P in the property register
along with any letters that may
already be there.

Put P in the cell mode in CA at
Meta-ccmpile time.

Move the contents of the Pth
cell from thetop of S to the
top of S. The top of S is in-
dexed 0.

Same as ...P except that the
Pth cell from the top of S is
squeezed out of the stack.

Remove the contents of the top cell
of S from S and put them in the cell
which is the Pth column of the top
of the recursion stack.

If the Pth column of the top of the
recurslon stack does not ~ontain
zero, move its contents to the top
of S. If Pth column of the top row
contains zero, get an arbitrary but
unique symbol from the symbol
generator and move it to the top of
S. Also put it in the Pth column.
of the recur slon stack.

Put the top of S in *P in the
ccmmunicatlon array.

Move *P in the commmaicatlon array
to the top of S.

Repeat the execution of EX until the
conditions specified by EX are met.

cOr~ME~rf

P is a letter.

P is an alphabet charac-
ter.

P is a digit.

P is a digit.

P is a digit
I<_P~4

Pisa~git
I~P~4

5~P~6

5~Pg6

EX) is a set of
alternative sequences
of tests and actions

26

IMPERATIVE

.DIAGNOSTIC
SYNTAX (P)

.DELETE

.S P

REMOVE and .R

.P

INSERT

.PUT 'P'

CLEAR

SET

OR

FI

FO

.J

TABLE 2 (Continued)

ACTION

P is specified as the name of the
syntax equation which specifies
the action to be taken when the
error occurs.

Remove the first character from IBC.

.S sets P into the MODE cell in CA.
This action occurs at ccmpile time
and not at meta compile time as in.MODE

Pop the S stack by moving its pointer
down 1.
Move the pointer of S up.

Moves the contents of ..TEST totop of S
stack leaving ..TEST unchanged.

Places P on top of the S stack.

Clear the property register.

Enter the identifier on top of S in
the symbol table and give it the
properties currently held in the
property register.

Find the entry in the symbol table
for the identifier currently on top
of the S stack and replace the contents
of the corresponding property field
with the logical-or of the property
register and the property field.

Move top of S to the top of the FIFO
stack.

Move the bottom of the FIFO to S.

Push down the recursion stack and fill
in the top of the array (all four
coltm~s) with zeroes.

Pop up the recursion stack by
incrementing its pointer.

36

COMMENT

P is an identifier.

P is alphabetic.

P is a sequence of up
to 6 characters inclu-
ding blanks.

The = has meaning only
after the first identi-
fier in an equation.

•, has meaning only at
the end of an equation.

TABLE 3 ACTION IMPERATIVES FOR OUTPUT

27

37

IMPERATIVE ACTION COM]~F_.,]~,'~I ~

* p

* S

coop

.C

,p,

/

Move the top of S to the current output
buffer.

Nondestructively move contents of the
Pth column of the top of the recursion
stack to the output buffer.

Nondestructively move the top of S
without altering the top of S.

Move the Pth cell down from the top of
S nondestructively to the current out-
put buffer.

Move the contents of *5 (in communica-
tion array) to *6. Then add 1 to the
contents of *6 and put the result both
in *5 and the output buffer.

Place P in the output buffer.

Advance the buffer pointer to the next
buffer. All subsequent data trans-
ferred to the output buffers will go
to the buffer pointed to.

/ applies only to the .OUT imperative.
/ causes the current contents to be
output as MAP instruction. After the
instruction is output the buffers are
cleared.

P is a digit

P is a digit.

P is any sequence of
characters.

$8 L

REFERENCES

I. Schneider, F.W., and G. Johnson, "A Syntax-Directed Compiler Writing
Compiler," Proc. of the ACM Conyention, 196h.

. Mandell, R., and G. Estrin, "Specifications for a Design Automation
System," Proc. of the SHARE Desisn Automation Workshop, June 1965.

. Schorr, H., "Computer-Aided System Design and Analysis Using a Regis-
ter Transfer Language," IEEE Transactions on Electronic Computers,
Vol. EC-13, Dec. 196h, pp. 730-738.

Gorman, D.F., and J.P. Anderson, "A Logic Design Translator," Proc,
of the FJCC, 1962, pp. 251-261.

5. Iverson, K.E., A Programmin~ Language, John Wiley and Sons, Inc., New
York, 1962.

6. Cheatham, T.E., and F. Sattler, "Syntax-Directed Compiling," Proc. of
the Sprin5 Joint Computer Conference, 1964, pp. 31-37.

. Rutman, R.A., "LOGIK, A Syntax-Directed Compiler for Computer Bit-Time
Simulation," M.S. Thesis, UCLA Library, August 1964.

OTHER META-CO~I LERS

. Reynolds, John C., Cogent Programming Manual (ANL-7022), Argonne National
Laboratory, Clearinghouse for Federal Scientific and Technical Informa-
tion, National Bureau of Standards, Springfield, Virginia.

. Feldman, J.A., "A Formal Semantics for Computer Languages and Its
Application in a Compiler-Compiler," Communications of the ACM, Vol. 19,
No. l, Jan. 1966, pp. 3-9.

i0. Ross, D.T., "AED JR., An Experimental Language Processor," Electronic
Systems Laboratory, Dept. of Electrical Engineering, Massachusets In-
stitute of Technology, Cambridge, Mass., ESL-TM-211, Sept. 1964.

ll. Oppenheim, D.K., "The M3ETA5 Language and System," System Development
Corporation, 2500 Colorado Ave., Santa Monica, Calif., TM-2396/000/01,
1/25/66.

AN IVERSON LANGUAGE TRANSLATOR

12. Hellerman, H., "PAT Manual," International Business Machines Corp.,
Yorktown Heights, New York.

