
A COMPUTER SYSTEM PROVIDING MICROCODED APL

Charles A. Grant
Mark L. Greenberg
David D. Redell

Center for Research in Management Science

University of California

Berkeley, California

A new computer system is now under development at the Center for

Research in Management Science (CRMS) of the University of California,

Berkeley. It is an inexpensive, medium-scale time-sharing system,

whose primary application is the implementation of multiterminal,

interactive simulation experiments for the purpose of social science

research. This paper describes the APL-language subsystem implemented

on this system.

The CRMS APL language system includes a microcoded APL interpreter

which is implemented on a high-speed microprocessor. In addition to

an extremely high rate of execution, CRMS APL offers a unified facility

for terminal input/output, file accessing, and multi-process synchro-

nization and inter-communication in APL.

A COMPUTER SYSTEM PROVIDING MICROCODED APL

Charles A. Grant
Mark L. Greenberg
David D. Redell

Center for Research in Management Scienee

University of California

Berkeley, California

Introduction

The Management and Behavioral Sciences Laboratory of the Center for

Research in Management Science (CRMS) + is funded %f to further computer-

aided research in the social sciences. The major emphasis has been

computer controlled, multi-subject simulation experiments. In 1970, it

was decided to replace the Laboratory's aging computer facilities in

order to allow experiments to be programmed in the APL language. An

important requirement was rapid respons e to computationally demanding

experiments involving up to 32 terminals. The possibility of developing

an APL interpreter implemented in microcode was investigated [1].

%26 Barrows Hall, University of California, Berkeley, California 9h720.

%%NSF Grant NSF-GS-32138.

173

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800269.810809&domain=pdf&date_stamp=1974-01-01

With the objective of providing flexible computer facilities which

could meet the ever-changing needs of a research laboratory, work was

begun in the spring of 1972 on a general-purpose time-sharing system

which would include an APL-language subsystem employing a microcoded

interpreter. The configuration of the CRMS Computer System is shown in

Figure 1.

The function of the central processor is to implement a general-

purpose time-shared operating system performing the functions of input/

output management, memory management, scheduling of user programs,

and provision of system library services. The current system includes

6hk 32-bit words of core memory, two 12-million-word disk units, one

tape drive, and provisions for the connection of up to 64 terminals.

The APL processor is connected by "start" and "stop" signals to the

central processor and has access to the core memory.

The central processor and the APL processor were both implemented

as microprograms for four reasons:

(1) To provide flexibility in deciding which features of the

system'should be optimized.

(2) To allow efficient inclusion into the architecture of the

system of such features as protection by capabilities,

a large virtual address space, and process (software

task) synchronization [2].

(3) To allow for microcode implementation of most of the (normally

hardware-implemented) functions of peripheral device control

units in order to reduce system complexity, cost, and main-

tenance expense. In particular, the terminal multiplexor,

Central Processor

(controls APL processor

& rims oDerating sys%em)

1
Core Memory

64k x 32 bits

(1 usec)

i APL Processor 1
,iinterprets APL programs)J

J

~ ~ . ~ Terminals

Secondary (Disk) Memory

24M x 32 bits

- - ~ Tape Memory

Figure i.

CRMS Computer System Configuration

174

disk channel~ printer channel~ and tape channel are implemented

as subroutines of the central-processor microprogram.

(4) To eliminate the interface problems which might have arisen had

two dissimilar hardware processors been used.

The central processor and the KPL processor are microprogrammed on

separate Digital Scientific Corporation META4 computers. The micro-

instruction time is 90 nanoseconds.

CRMS APL

The CRMS APL language is essentially the same as APL\360 [h], but

does differ from it in four fundamental ways:

(1) Function parameters: CRMS APL provides for the passing of up

to 15 arguments to a niladic, monadic, or dyadic function.

For example:

A ~ B F[X;Y;Z] C

says, "Call dyadic function F with three extra arguments,

X, Y, and Z." Extra arguments may be classified as optional

extra arguments in the function header. The calling function

need not supply the parameters corresponding to optional

extra arguments.

A ÷ B F[;Y;] C

is one such call. In this case, the formal parameter

corresponding to the first and third extra arguments have the

"undefined" (value error) value. A primitive function is

provided which detects the presence of the "undefined" value

without causing an error.

(2) Parameter passim: The ability to pass parameters by reference

is included in CRMS kPL. Unlike normal arguments, an argument

passed by reference may he modified by the called function.

Specification that a parameter is to be passed by reference is

made in the ~mction's definition header.

(3) Sco~of names: Rather than "dynamic localization" of names

as used in APL\360, CRMS APL uses "static localization." Thus,

in CRMS APL a local variable of a function may be referenced

onl~withln the definition of that function and may not be

referenced from a subsequently called function, as in APL\360.

This change allows for more efficient interpretation of APL

programs, yet imposes very little limitation on the APL

programmer.

(h) Mixed arra~vs: The elements of a CRMS APL array may be any

mixture of numbers and characters. This feature, described

by Iverson [3], was omitted from APL\360.

Before execution is initiated on a CRMS APL program, it is translated

into the "object language," which is processed by the APL processor. The

translator is a program which runs on the central processor. This

translation process includes the conversion of decimal numeric constants

into internal form, the conversion of symbolic names into memory addresses,

and the parsing of each statement into postfix Polish form. The parsing

of statements before execution time is possible as a result of the "static

localization" rule for determining the interpretation of a name. Parsing

must be done at runtime with dynamic localization as used in APL\B60

175

because correct syntactic analysis of a statement sometimes depends upon

the exact sequence of function calls which led to the statement's execution

[5].

Once translated, an APL program may be submitted to a module of the

operating system called the APL Manager, which schedules the use of the

APL processor among all the "ready" APL programs. The APL Manager

communicates with the APL processor by using the "start" and "stop" signal

wires and memory cells designated for inter-processor messages.

The APL processor is a microprogram (approximately 2000 32-bit

microinstructions) which is divided into two parts: controller and

executer. The controller idles until it receives a start signal. Upon

receiving a start signal, the controller looks in the message cells for

the addresses describing the location in core memory of the code and

data "segments" of the program (q.v.). The current state of the program

(e.g., program counter, stack length) is then loaded, and execution is

begun. The controller is invoked again if a "stop" signal is received,

if an execution error occurs, or if the running program executes an

instruction requiring intervention by a central-processor program. At

this point, the controller saves the state of the program and sends a

signal and the appropriate message to the central processor.

The executer is designed such that no program error on the part of

either the user or the translator can cause any memory accesses to be

made outside the areas designated as the code and data segments. The

executer essentially executes three types of CRMS APL instructions:

function (call and return) instructions, stack instructions which push

and pop operands on the stack, and operator instructions which operate

on these operands. All oper~ds are described by a 32-bit descriptor,

where the descriptor is a normalized 32-bit floating-point number, a

24-bit integer, an 8-bit character, an indirect parameter word, the

so called "undefined" value, or a pointer to an array. An array pointer

locates the data for the array, as well as information which describes

its shape. The instructions cheek the shape of their argument(s) for

legality and then perform the indicated function on all elements of the

argument(s). Such a procedure may involve allocation ~nd/or de-

allocation of array storage. The executer includes a microcoded dynamic

storage allocator, which utilizes a designated area Of the data segment.

Reference counts are maintained on each block of array storage,

Since the large number of APL primitive functions could not all fit

into the control storage of the APL processor, it was necessary to select

a "base set" of primitive functions which would fit. Other primitive

functions are implemented by the translator as "open" or "closed"

subroutines (APL defined functions) which simulate the desired primitive

f~ictions. The most commonly called functions of typical programs are

included in the chosen base set. Some space has been reserved in the

control store of the APL processor for the implementation of other

primitive functions which later evaluation might indicate should be

included in the base set. The current base set is listed in Figure 2.

Figure 3 shows some timing figures for execution of primitive functions

both inside and outside the base set.

176

CRMS APL "Base

ASSIGN

ASSIGN INDEXED

ASSIGN NO RESULT

BRANCH

CATENATE

CEILING

CONVERT

DIFFERENCE

EQUAL

FLOOR

FUNCTION CALL

GET ORIGIN

IDENTITY

INDEX

MONADIC IOTA

LESS

LOGICAL PRODUCT

LOGICAL SUM

MAGNITUDE

NEGATIVE

NOT

PRODUCT

QUOTIENT

RAVEL

REFERENCE

RESHAPE

RETURN FROM FUNCTION

SET ORIGIN

SHAPE

SUPERVISOR CALL

TEST DEFINED

TEST NUMBER

Figure 2.

Set" of mleroeoded primitive functions

V TIk:INGATEST; COUNT; FP; INT; T

[i] COUNT ~ 0
[2] INT e ~ I00
[3] FF + INT + 0.I

[43 LL: n TEST STATE~VT

[5] COUNT ~ COUNT + i

/6] ÷ (COUNT < •0000) p LL
V

Statement [4] of Test Function

LL: A NULL LINE

LL: T÷ INT
LL: T ~ p INT

LL: T ~ FP , INT
LL: T ÷ INT + INT

LL: T + FP + FP
LL: T ÷ INT x INT

LL: T ÷ FP ÷ FP
LL: T ~ FP x FP
LL: T ÷ INT + . x INT

LL: T + INTo . × INT
LL: T ~ 0 INT

LL: T ÷ + INT

Compute Time
for

Statement [4]

0.02 MSEC
0.07 MSEC
0.69 6igEC
0.7O MSEC
0.97 MSEC
2.1 MSEC
2 . 7 MSEC

2.7 MSEC
8.1 ~gEC
8.4 ~19E6'

2 6 . HSEC
2 9 . MSEC

Figure 3.

CRMS APL Timing Experiment

Compute Time
for

Entire Function

1.3 SEC
1,5 SEC

2.0 SEC
8.2 SEC

9.0 SEC
Ii.0 SEC
22.5 SEC
28.0 SEC
28.0 SEC
82.5 SEC
85.0 SEC

260. SEC

290. SEC

177

APL Runtime Supervisor

The APL Runtime Supervisor (ARS) is a central-processor program which

provides an interface between APL programs, which run on the APL processor,

and the outside world. It provides a command language by which a user

can create, run, and debug APL programs. In addition, it provides

mechanisms for

(1) creation of multiple processes (parallel tasks) under control

of a single user,

(2) co~nunication and synchronization among these processes,

(3) input/output to terminals,

(~) input/output to sequential files stored on disk memory.

A collection of one or more cooperating processes, all created by

a user and executing on behalf of that user, is referred to as an

experiment. Each process consists of a "code se~nent," which contains

the object language of the program, and a "data segment," which contains

all variable information associated with the process. In particular,

the data segment includes:

(1) storage for global variable values,

(2) array storage,

(3) a Storage stack for local variable values, function call

information, and temporary results,

(h) storage for the current state of the process.

All processes within an experiment share the same code segment, but each

process has a separate data segment; thus each process can be thought of

as a separate parallel execution of the same program. An experiment is

first initiated with a single process. Any process within an experiment

may c r e a t e a new process and start it executing by making a call on the

ARS.

Processes may send or receive messages to or from other processes,

terminals, or sequential files through objects implemented by the ARS

called "mailboxes." The processes in an experiment may create any

number of mailboxes. Any process in the experiment may access any mail-

box by calling the ARS. A mailbox contains a first-in-first-out queue

of messages. Each message is a single APL value, i.e., a scalar or an

array of any rank. A process may put (send) a specified value into a

specified mailbox or take (receive) the next message out of a specified

mailbox. If a mailbo± is empty when a receive is done, the receiving

process will wait until a message is sent to the mailbox before it

continues execution. A sending process may specify whether it should

wait until the message it sends is received before continuing execution.

These rules provide a general interprocess-synchronizati0n mechanism.

A process may also attach a terminal or a sequential file to a mailbox

by callihg an ARS function. A value sent to such a mailbox is auto-

matically removed from the mailbox and output to the terminal or file.

If a receive is performed on such a mailbox, the next value in the file

or the next value typed at the terminal is received by the process.

This uniform interface provides great flexibility. For example,

an experimenter can substitute a process ("robot" subject) for a terminal

(real subject) without modifying his programs at all.

The operating environment provided with CRMS APL includes special

facilities for orderly debugging of such systems of parallel processes.

178

179

Status

As of January 1973, the hardware for the system was operational.

Now, January 1974, the APL subsystem is operational and has been used to

develop a prototype experiment. The simulated APL primitive functions,

including mathematicalroutines, are mostly completed. The current

version of the operating system supports only one experiment at a time.

Preliminary versions of the editing and debugging facilities are available.

Work in progress includes integration and polishing of an easy-to-use

interactive APL subsystem, and design and implementation of a multi-user

time-shared operating system. Completion of the development is scheduled

for summer of 1974.

[i]

[2]

[3]

[5]

References

Zgks, R., D. Steingart, and J. Moore, "A firmware APL time-sharing
system," AFiPS Conference Proceeding, vol. 38 (1971 S.JCQ), pp. 179-
]9o.

Denning, Peter J., "Third Generation Computer Systems," Computi~
Survey_s, vol. 3, no. 4 (Dee. 1971), pp. 175-216.

Iverson, K. E., A Prog~__~ing Langua~, Wiley, New York, 1962.

Pekin, Sandra, APL\360 Reference Manual, 2d ed., Science Research
Associates, Chicago, 1972.

Hassit, A., J. W. Lageschulte, and L. E. Lyon, "Implementation of
a High Level Language Machine," Communications of the ACM, vol. 16,
no. 4 (Apr. 1973), pp. 199-212.

Acknowledgment s

This project is administered by Professor F. E. Balderston, Chairman

of the Center for Research in Management Science, and the Laboratory

Advisory Committee, of which Professor A. C. Hoggatt is Chairman. Many

persons have contributed to the technical development, including Paul Gee,

Wiley Greiner, James Harp, Ross Harrower, David Koch, Paul MeJones, and

George Morrow.

