
IS THERE A "BEST" PROGRAMMING LANGUAGE FOR DESIGN

AUTOMATION?

Moderator: M. W eindling Pane l i s t s : R. Mandell
J.G. McKinney
P.H. Dorn
D.T. Ross
P. Semple

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800270.810879&domain=pdf&date_stamp=1967-01-01

DOUGROSS, MIT - Electronic Systems Lab

When I saw the title of this panel discussion, "Is There a]Best Programming
Language for Design Automation?", I thought that this would be the shortest
remark I ever had to make - one word, AED, and then I got to thinking about
it and noticed that wasn't really keeping to the subject of the panel~ so I had
to double the length of the paper and say, "Yes, AED."

I really don't feel terribly controversial yet this afternoon~ so lwould like
to be very brief and merely try to put a slight twist~ or maybe an elaboration
on the title of the panel, because I think it is ambiguous as it' s stated and we
should spend some time trying to remove this ambiguity.

Mainly, are we talking about a programming language for making a design
system or a programming language for a designer to use in doing design.
It seems to me that the key point is that it must be that we are to be talking
about the design system building language because I've been listening to
various of the talks given here and also ones given over the past several
years other places and I think that the contention that we have had from the
beginning of our interest is computer-aid design, which goes back quite a
ways, is borne out-mainly, that what is needed as far as the users of design
systems are concerned is not a single best language, but a very large number
of specialized languages, so that each kind of user can use his own "shop talk
jargon," needknownothing about programming preferably, etc. , etc. So, I
think that we must be talking not about languages for the designer to use, but,
rather~ languages for building design systems.

Then, too, if we now are going to be talking about languages for building
design systems, Ithinkthat there, too, is another layer of ambiguity--
potential ambiguity--or a layer of things that need to be clarified. Mainly,
are we talking about just a language, or are we talking about more than just
the language and here again, my contention is that it must be that we talk
about more than just the language, mainly a language embedded in a system or
systematic way of using the language. In other words, what you write on
paper itself is not the important thing, it is how you go a_bout using the language
to create a design system.

A couple of years ago--I guess it is almost two years ago now--somebody
used a term and I wish I could remember it because I would like very much to
acknowledge it. They used a term in connection with programming languages
which struck me as being very important and, in fact, is the place where I
thought this afternoon' s panel discussion really should focus, and that was
with respect to a programming language there is a culture that goes along with
the use of that language and I think that this is the real key point--is the
culture the whole method of using the language of creating systems, and so
forth. This is the central point if we are to make much headway in making
design systems without everybody going broke in the process and, also,
incidentally, hopefully meeting some software timing schedules.

I' d like to just sort of stop at this point by saying that this view has been
behind all of our activities in the computer-aid design project at MIT since we
started in 1959. We said in those days, the way we put it was we couldn't
possibly learn as much about design as all of the various people in industry,

2 4 - 1

Now, t h e l a n g u a g e w h i c h I w o u l d l i k e to p r o p o s e m e e t s a t l e a s t a g o o d p a r t of
t h e s e n u m e r o u s t h i n g s is P L l , a u g m e n t e d w i t h a l a n g u a g e w h i c h w e a r e u s i n g
at U C L A w h i c h w a s d e v e l o p e d a t SDC c a l l e d M e t a - 5 . P L 1 h a s t he a b i l i t y to
m a n i p u l a t e c h a r a c t e r s a n d b i t s t r i n g s ; i t ' s f a i r l y e a s y to d e - b u g b e c a u s e t h e r e
a r e s o m e d e - b u g g i n g s t a t e m e n t s in t h e l a n g u a g e ; i t a l l o w s a l a r g e n u m b e r of
w a y s of o b t a i n i n g a c c e s s to r a n d o m a c c e s s d e v i c e s a n d g e t t i n g t h e t h i n g s off
of t h e m t h a t y o u w a n t . T h e r e a r e a n u m b e r of w a y s of g e n e r a t i n g p r i n t e d o u t -
p u t s , s o m e v e r y e a s y t h a t c a n be u s e d in d e - b u g g i n g a n d o t h e r s a l i t t l e m o r e
c o m p l e x t h a t c a n be u s e d f o r o b t a i n i n g v e r y n i c e l o o k i n g o u t p u t , a n d it p r o v i d e s
t h e r e c u r s i v e p r o c e d u r e s w h i c h a r e v e r y u s e f u l in a n u m b e r of c o n t e x t s .

Finally, you do have control over storage. Now, the language does fall short
at the present time in the area of list processing, but one can make up for this
in the Meta 5 portion which I would propose and, also, I am quite confident
that eventually there will be a good list processing facility in PL i. Now I
should point out that these things I have said are also present in Doug' s
language and I wouldn"t like to take the position that I'm saying that I definitely
want to choose PL 1 as opposed to AED, but I have found PL i to be extremely
useful; the learning problem is not too severe because you can learn a sub-set
of language and piece in the things that you need. Again, it' s very easy to
express and the system de-bugging aids and messages are very good.

P A R L A N S E M P L E , I B M

Since my own specialty of generalized systems is probably the most removed
from the very specific field of design automation, I would like to limit my
remarks proportionately.

S u b j e c t to t h a t q u a l i f i c a t i o n , h o w e v e r , i t i s p r o b a b l y no t p o s s i b l e to h a v e a
b e s t l a n g u a g e f o r two v e r y i m p o r t a n t r e a s o n s . T h e a u d i e n c e g a t h e r e d h e r e
t o d a y , I a m s u r e , i f s u r v e y e d c o n c e r n i n g t h e i r p a s t e x p e r i e n c e a n d p r e s e n t
w o r k in t h e f i e l d w o u l d u n d o u b t e d l y r e v e a l a w i d e d i v e r s i t y in b o t h b a c k g r o u n d
and application areas.

Concerning the most important person first--theuserof any language--his choice
of an optimum vehicle for communicating with a computer will be dependent
probably primarily upon his own education and previous experience, particularly
in this industry where multi-million dollar computers are almost obsoleted by
the expanding technology as rapidly as the family car. Perhaps that' s a little
bit of exaggeration, but we' re almost there. We probably all tend to transfer
knowledge between similar concepts. To the degree that we can make this
transfer between similar concepts, the less new knowledge that we have to
learn in time which we never have. As a result, each individual user tends
to stay within the software family at least in concept. Now, regardless of
the language which an individual user might nominate as being best, and
probably this nomination will be dependent upon his previous experience~ his
favorite cannot possibly encompass the broad realm of applications.

I h a v e s e e n t h i s in e v e n t h e b r i e f r e v i e w r e q u i r e d f o r m y own p a p e r . W h e n the
design engineer reaches this impasse, he will have three choices. One, he will
try to find the language that does have the missing features. Two, he will

24-3

probably try to write a specialized subroutine himself and then branch to it.
Or, three, if at all possible, he w i l l employ his favorite programming
language in a way it was never visualized to be used. My own paper is an
example of that last category.

B u t w i t h r e s p e c t to g e n e r a l i z e d l a n g u a g e s , s u c h a s G I S , b e i n g b e s t , I s u s p e c t
t h a t t h e r e a r e s o m e a p p l i c a t i o n u s e r c o m b i n a t i o n s (a n d y o u n o t i c e I u s e t h e s e
two t e r m s t o g e t h e r) w h e r e t h i s w i l l o c c u r . L o o k i n g i n t o m y h a n d y c o m p u t e r -
i z e d c r y s t a l b a l l , t h e p r o b a b l e a p p l i c a t i o n s a r e a f o r s y s t e m s l i k e G I S - - n o t i c e
I s a y l i k e GIS , s i n c e t h e r e a r e m a n y i n v o l v e d - - w i l l b e s i t u a t i o n s w h e r e t h e
p r o b l e m s a r e f a i r l y d y n a m i c a n d t h e i r s o l u t i o n s e q u a l l y t r a n s i e n t . H e n c e ,
f o r t h o s e o p e r a t i o n a l p r o b l e m s d e m a n d i n g f l e x i b i l i t y , g e n e r a l i z e d s y s t e m s ,
e v e n w i t h a p r o b a b l e i n e f f i c i e n c y , s h o u l d be t h e m o s t e c o n o m i c a l s o l u t i o n in
t h e l o n g r u n .

W i t h r e s p e c t to t h e o t h e r a n d m o s t i m p o r t a n t h a l f of t h a t a p p l i c a t i o n u s e r
c o m b i n a t i o n , I s u s p e c t t h a t GIS u s e r s w i l l b e t h o s e d e s i g n e n g i n e e r s o f
t o d a y - - t h e p e o p l e w h o a r e m o s t f a m i l i a r w i t h t h e d e c i s i o n t a b l e s o r d a t a
b a s i s w h i c h t h e y a r e i n v o l v e d w i t h r i g h t n o w .

A l t h o u g h s o m e of t h i s l o g i c a p p e a r e d to b e a l i t t l e i n v o l v e d f o r t h o s e o f y o u w h o
s a w m y p a p e r , m o s t o f t h e p e o p l e i n t h i s r o o m c o u l d a c h i e v e a w o r k i n g u n d e r -
s t a n d i n g of t h e GIS l a n g u a g e , a s a n e x a m p l e , p r o b a b l y w i t h i n l e s s t h a n a w e e k .

To summarize, then, nevertheless my vote will second those on the panel
who believe that there cannot possibly be a best language because of the very
diverse backgrounds and applications of the personnel and their work in the
field of design automation.

PHIL DORN, UNION CARBIDE

My own feelings, regrettably, from the viewpoint of controversy at least for
this discussion, very much agree with Doug Ross' s and some of the feelings
expressed by Dick. I have been inclined to believe that in any design auto-
mation in operation, we have approximately four levels of programming going
on and I think I have a fairly good answer to what is the best, with quotes
around it, language for at least the very top level. The top level, of course,
is the user who is probably not a programmer, 99 percent of the time at least.
The best language for that user is the language with which he is most familiar
and most comfortable. If he is an engineer, it is probably the things he
learned in engineering school; and he could be an accountant, or a bookkeeper,
or almost anything else. The language must he geared to the user. It cannot
be a programming language as we in this room know it. I'm fairly sure
there is a best up there, but I haven"t the foggiest idea what it is.

We want to drop down one more level and reach some of the programmers--
the people who are actually doing the really hard work; at least that' s what we
think. We can select any one of a number of procedure-oriented languages.
PL i would be one candidate. I have some doubts about FORTRAN--I don' t
think it' s rich enough to do the types of jobs that we want to do.

24-4

We want to drop down a third level and reach the poor, downtrodden systems
programmers. There are really two particular kinds of programming going
on at the third level, as I see it, one of which is essentially old fashioned
systems programming--bit picking, handling the I/O, handling the relation-
ships between a design automation system and the larger operating systems of
that machine. He may wish to use assembly language; he would probably be
better off if he could use something along the lines of PL i. Here again, I
don't think FORTRAN gets close enough to the operating system to allow the
skilled programmer to really do the job without slipping into assembly
language. Also down at this third level--in a design-automation environment,
at least--somebody has got to be worrying about two additional subjects:
communication with consoles and data bank access. It is clearly a pre-
posterous notion to have every other programmer in the place worrying about
console communication codes in an interactive environment. One or two
people at best should be able to write all the packages. What language to do
this in I have no idea. Up to now we have been doing it pretty much in
assembly languages.

Another very major subject which has to get handled somewhere is who is
going to control the access to the data bank. It' s probably down at this level.
It should not have to be done in an assembly language. The one design auto-
mation system with which I am very familiar was done in an old, tired
procedure language--MAD. We' re pretty sure that this type of thing--skipping
through a data base--can be done in a compiler language. So we've really got
many levels--many languages--all connected into one system. There is one
thing I am fairly sure of in this whole maze of languages. Anybody who will
seek to give the user and the applications programmer at the next level down--
the second level programmer--a system in which he has to use assembly
language is barking up the wrong tree. I' rn ninety-nine and forty-four one
hundredths percent sure that there is no room for assembly language at the
top level. I barely will tolerate it at the lower levels. The other major
problem which I really see in front of us is this data handling problem. I'm
sure Doug Ross will have more to say about that. It' s the key problem to
all of these systems and in the course of this week--Monday and Tuesday so
far, at least, --we have slipped by the data problem. Yet it is terribly,
terribly crucial.

I have a few more noncontroversial remarks, but I think I'll save them up
for later. I'd be interested in hearing the views of the rest of the panel,
particularly on how does one handle a large data base cleanly, efficiently
and essentially concealed from the applications programmer who doesn't
really care how you get to it--just get it.

ALAN STONE, HUGHES AIRCRAFT

I don't have any prepared remarks because I' m sort of a last minute fill-in
here, but let me just throw out some disconnected thoughts. It is my impres-
sion that there are many design automation activities in many companies that
have been sorely burned by the conversion problems of their original assembly
language first and second generation systems. Many of these shops are now
artificially restricting themselves to either FORTRAN or COBOL that would be
the only thing available to them. Neither of these languages is really entirely
suitable and this seems to be a transient period, with many companies

Z4-5

watching and waiting and working only at partial efficiency because of these
language restrictions. I feel that because of the implementation difficulties
in PL 1 it will be some years yet before it becomes as standard as FORTRAN
has become for widespread applications. In the meantime, I think we will
see that vacuum filled by further language designs. I'm talking now about
not problem oriented design languages, but languages for developing design
automation systems. I see in other areas for special form applications,
real time programming, there is work under way developing standard
special purpose programming languages that look somewhat like PL i; that
have list processing and real time extensions to them. In many cases these
are very rich, complex languages and will certainly run into the same
implementation problems that PL 1 has. But because of the lack of com-
plete acceptance and availability of PL i, people are sitting down designing
new languages. I believe there is an effort going on sponsored by the
Air Force--an another one sponsored by NASA, completely independent--on
real time special purpose programming language design.

Languages that already exist, such as the AED system, my personal feeling
is that these will not be--their acceptance will be limited because many
industrial concerns will be reluctant to commit themselves to a programming
system that' s sponsored and supported by universities.

DOUG ROSS

I must respond to Alan--that' s the first time I ever head of the universities
being placed in that light. Also we would like to think that all we are doing
is serving as a nucleus, andwewould like very much to get out of the spon-
sorship racket if we could only get our industrial friends to pull together long
enough to shoulder more of the load.

DOUG ROSS

I think the original points that I raised have been well taken by the remainder
of the panel in that it does seem that we are in agreement about the languages
for the user being not one of a kind but one of many kinds to suit the user.
But I would like to come back to this matter of the "best" language as being
really not just the language but the whole system and the whole way of operat-
ing. I have a paper that will be in the ACM national meeting in Washington.
The proceedings there, in which I go into some depth about the whole approach
of our AF.D effort which is a great deal more than just the AED-0 language.
This is one problem we have in communicating with people. The AEO-0
language was never properly designed. The reason it has a zero on it was
because we intended to use it only within the project and not let it be used
outside. So it was sort of thrown together based on things that we knew we
needed, taking Algol 60 as a base, but it has never gone through a true,
proper design stage. I think there is some question about whether the
design stages that the other major language which has been mentioned here has
gone through--whether those were properly designed, too. But that is not
the point. The point is that the language--as a language AED-0 has not been
effected even in minor ways since 1964. But this doesn't mean that we've

Z4-6

s t o o d s t i l l w i t h r e s p e c t to t h e s u b j e c t m a t t e r of t h i s p a n e l . I n s t e a d , w h a t
w e ' ve b e e n d o i n g is c o n c e n t r a t i n g on the v e r y b u i l d i n g b l o c k s t h a t m u s t go
in to c r e a t i n g a n y s o r t of a d e s i g n s y s t e m ; d o i n g t h e s e t h i n g s o v e r a n d o v e r
a g a i n .

Many of our packages of routines for handling these various topics which
have been mentioned have been reworked over a dozen times in order to get
better efficiency, better modularity, more machine independence and so
forth, and the way we like to look upon these packages of routines that
are the building blocks out of which you build other systems--we like to think
of them as the semantics of a high level "best" language which is not yet
around, but we are working on the semantics of that language without having
the syntax--without yet having it in the form where you can write nice
programmer-user oriented phrases for these things. But we do put into
the hands of the user the power and expressability and flexibility of these
very advanced linguistic techniques. An I think that this is where the other
systems are behind the need with respect to making computerated design
systems, in that it' s not sufficient just to have a compiler; it' s not sufficient
just to have a language for the programmer to write.

What w e n e e d to be d o i n g a s a g r o u p - - n o t j u s t u s bu t t h e w h o l e i n d u s t r y - - i s
c o n c e n t r a t i n g on w h e r e t h e e s s e n t i a l t o u g h p a r t s of b u i l d i n g c o m p u t e r a t e d
d e s i g n s y s t e m s , h o w c a n w e d e e p e n o u r u n d e r s t a n d i n g of t h o s e t o u g h p a r t s
a n d r e d u c e t h o s e to t h e f o r m of w o r k i n g p r o g r a m s w h i c h h a v e s u f f i c i e n t
m o d u l a r i t y so t h e y c a n be pu t t o g e t h e r in m a n y w a y s to m o v e t h e m a n y
d i f f e r e n t s y s t e m s t h a t we n e e d . A n d t h i s i s w h e r e I ~hink t h e e f f o r t w e h a v e
in o u r w o r k is in s o m e w a y s - - I ' m s t u m b l i n g a r o u n d b e c a u s e I don ' t w a n t to
s a y t h a t i t ' s m o r e u n i q u e o r a d v a n c e d o r w h a t - - i t ' s j u s t w e ' ve b e e n a t i t
l o n g e r a n d I t h i n k i t ' s a n a r e a t h a t t o o m a n y o t h e r g r o u p s a r e no t f o c u s i n g on
w e l l e n o u g h - - t h e y ' r e t oo i n t e r e s t e d i n t h e p a r t i c u l a r j ob t h a t t h e y ' r e t r y i n g
to do r i g h t t h e n . And I t h i n k t h e p r o b l e m s of m a k i n g d e s i g n s y s t e m s a r e t o o
b ig to be s o l v e d j u s t by Y a n k e e i n g e n u i t y o r by j u s t m a k i n g a b e t t e r m o u s e -
t r a p . We h a v e to d e e p e n o u r s c i e n t i f i c u n d e r s t a n d i n g .

Let me take just one example of this to illustrate what I' m talking about,
and that is this matter of use of storage in the system, not only on a mass
data basis but also at the fine level right into the innards of problem
modeling. Now it has been mentioned that PL-1 is weak in the list pro-
cessing area. Well, I don' t think this is going to be satisfied by adding to
PL l a list processing capability. There is in the most recent issue of
the ACM Communications a description of the currently available things in
this direction.

I think there' s a more basic problem in that the real key in storage
management--whether on a fine scale down at the word and bit level all the
way up to the mass storage level--is that no matter what is stated in the
system, no matter what part of the system you' re talking about, some
part of its behavior is going to be based upon the use of storage.

I feel very strongly that the question of use of storage is paramount and should
come before everything else. Now this means that you cannot take a language,
design into the interpretation that the users will give of that language all sorts

24-7

of very exotic storage controls, and expect that that is going to do all of the
proper things for all possible users. Instead, you should have the use of
storage implemented in terms that can be both built into the system auto-
matically and be available to the user.

Now this means that the storage handling system cannot be buried in terms--
I'm having difficulty expressing this because I can't remember the terms
that are used elsewhere--but they can' t be buried behind single words in a
high level language in which the user is not really sure of what' s going to
happen. Instead you should have the free storage system first and then use
that system as you implement both the compiler and the compiled programs
and the systems which are represented by the programs that are compiled.

Now I think that until this is recognized we have a lot of confusion about
what is the difference in impl:ementability of these languages, efficiency on
different machines, etc. I think we must take these major building blocks
out Of these languages, efficiency on different machines, etc. I think we
must take these major building blocks out of the innards of high level
languages, look at them as basic steps that are needed in using the compu-
ter, and then go back to our business of designing systems.

H e r e a g a i n t h e r e is o u r v i e w on t h e f r e e s t o r a g e q u e s t i o n . I j u s t pu t in t h e
m a i l t h i s m o r n i n g t h e p r o o f c o p y of a n a r t i c l e f o r t h e A u g u s t C o m m u n i c a t i o n s
w h i c h w i l l be t h e d e s c r i p t i o n of t h e f r e e s t o r a g e p a c k a g e t h a t w e h a v e .
W e ' d l i k e to h a v e t h i s s e r v e a s a k i c k - o f f p o i n t f o r m o r e i n - d e p t h d i s c u s s i o n
of t h i s i m p o r t a n t a r e a . T h a t ' s j u s t o n e o f t h e t h i n g s t h a t I t h i n k i s t h e
t r o u b l e w i t h m a k i n g s y s t e m s - - i t ' s go t to be m o r e t h a n t h e l a n g u a g e , i t ' s
got to be w h a t a r e y o u r e a l l y d o i n g .

DICK MANDELL

I t h i n k I' d l i k e to a n s w e r AI' s c o m m e n t a b o u t t h e i m p l e m e n t a t i o n d i f f i c u l t i e s
of P L 1. I t h i n k t h e y s t e m f r o m t w o t h i n g s : (1) w h e n t h e f i r s t r e l e a s e of
P L 1 c a m e ou t i t h a d a l o t of b u g s in i t , a n d w e s i m p l y h a d to p r o g r a m
a r o u n d t h e m . A lo t of p e o p l e h e a r d a b o u t t h i s a n d a l o t of p e o p l e got v e r y
u p s e t a b o u t P L 1. I t h i n k t h a t w e h a v e to a d m i t t h a t P L 1 i s no t t h e f a s t e s t
t h i n g in t h e w o r l d a n d it d o e s n ' t u s e s t o r a g e t h e b e s t w a y i t c o u l d . B u t
on t h e o t h e r h a n d , I c a n p r o g r a m a b o u t two o r t h r e e t i m e s a s f a s t b e c a u s e
I don ' t m a k e as m a n y e r r o r s a s w i t h t h e o l d e r l a n g u a g e s . I f i nd t h a t t h e
d i a g n o s t i c s a r e v e r y g o o d a n d t h a t t h e a b i l i t y to s a y t h i n g s w h i c h I w a n t to
s a y i s t h e r e .

T h e o t h e r p r o b l e m i s t h a t one h a s to g a i n e x p e r i e n c e in a l a n g u a g e l i k e
I°L 1. Y o u ' r e v e r y f a r r e m o v e d f r o m the m a c h i n e a n d v e r y f r e q u e n t l y w h a t
is e a s y f o r y o u to s a y is n o t t h e e a s i e s t t h i n g f o r t he m a c h i n e to d o , a n d
y o u j u s t h a v e to p e r f o r m s o m e t i m i n g e x p e r i m e n t s a n d foo l a r o u n d w i t h i t
u n t i l y o u f i n d ou t t h e r e a l l y r i g h t w a y to u s e i t .

T h e o t h e r p r o b l e m is t h a t y o u s e e a l o t of h e s i t a n c y on t h e p a r t of o t h e r
m a n u f a c t u r e r s t h a n I B M to i m p l e m e n t t h e l a n g u a g e . T h e y s a y it i s n ' t f u l l y
s e t t l e d d o w n y e t , bu t I t h i n k t h e f a c t t h a t t h e r e i s a l i v i n g i m p l e m e n t a t i o n
of t h e l a n g u a g e s o m e w h a t r e f u t e s t h a t . T h a t c o m p i l e r a l m o s t a c t s a s a
s t a n d a r d . T h e o n l y w a y t h a t m a n u f a c t u r e r s a r e g o i n g to be c o n v i n c e d to

24 -8

make PL 1 available is for people to demand it. And the only way for
people to demand it is to find it, try it and see that it is a good language.

PARLAN SEMPLE

Although Phil and I didn' t exchange notes ahead of time his following me
worked out very nicely. I really liked his classification of users, for this
introduces my comment to the gentleman on my left here--for whom are
these programs and systems being developed?

If we are considering the top person who is not a programmer, he could care
less where his program is residing in storage. The fact that it' s on this
device or that--leave that to the operating system. There's a similar
comment about efficiency. Remarks were made--and again I don't mean to
a particular application here--only to the extent it iliustrates a concept.
Here we have references to reiterative improvements, increasing
efficiency, but frequent changes.

So again, in terms of total cost--in terms of getting the job done for that
number one user--what benefit has it been to squeeze out the last micro-
second, because within two weeks or some other relatively short time the
program is going to be changed anyway.

PHIL DORN

I' m very glad to hear Dick do the dirty work I usually have to do. I can' t
help but agree with Doug in a general summary of the problems of the
field, although I personally think the data handling problem is infinitely
more severe than the storage management problem. This may be a personal
view. Ithink they are both very, very nasty problems, which were, at
least in the data handling area, in spite of some of the work that has gone
on in your part of the country, (Larry Robertson's work, and yours). I don't
think we are anywhere near a solution yet. I' d love to say within the next
three or four years, but I suspect it' s really further away than that. Maybe
you've got the free storage problem licked, or maybe we just need bigger
machines. As my favorite friendly IBM salesman always says, "buy more
core." It' s a standard answer.

I again want to get back to the question of the so-called "best" language for
the user of the system. I can't argue too much with Doug' s approach as to
building the system, but I'm much more concerned personally with the user.
I've been in an environment where the user is really a guy who has never
seen a computer, and we have had in fact cases of people working at a con-
sole graphics system that have gone on for three or four months without
ever going around behind the wall and looking. Gee whiz, there' s a com-
puter back there. They couldn't care less. The language which they deal
with sort of looks like a programming language, only it' s a language in
their terms.

In the particular case with which I'm very familiar was a language for auto-
motive body designers who talked in terms of lines and points and sines and
cosines (which incidentally they do use). They don' t talk about wheels and
trunks. The trick of the whole thing was giving them the language with
which they were most comfortable. In fact, what we did was let them
design it in a very peculiar sort of a way. We sat down and lived with the

Z4-9

user for three or four months. How does he talk? How does he think? Does
he understand what we in programming have known as an iterative procedure
for I0 years? It turns out we allowed them to invent a loop. They thought
they had invented the wheel. This was great. It was many years afterward
before we told them we had been doing it in FORTRAN and the machine
languages for 15 years. We allowed them to work their way through the
problem.

So what do we need to produce this kind of language rapidly? That seems
to me to be one of the key questions. Maybe the AED system will do it.
I think Meta 5 will allow the writing of a compiler for a user language
rather rapidly. But, even if you get the user language defined--and this
can be as little as Z months, I suspect, in a situation which is not really
too complicated, at least from our viewpoint, such as the bookkeepers,
the credit people with on-line systems, we could probably design a
language very rapidly. Where is all the rest of that system underneath it
coming from? That better be there when you design your top level

language.

ALAN STONE

We haven' t had much audience interaction yet, but my own interest and
edification--most of the audience is either directly involved in implementing
design automation systems or close enough to it to know the details of
what' s going on. I' d be interested in hearing by a show of hands what--how
many people are using FORTRAN for this purpose. I'm talking about
implementing systems, not as a user language. What shallwe start with?

FORTRAN 85 percent

Machine Language About 50 percent

Cobol About 5 percent

PL i About i0 percent

DICK MANDELL

Meta 5 is a language that SDC developed some time ago as a research
language for writing compilers. We picked it up and programmed the
compiler in PL i and in Meta 5. It has the PL 1 part and the Meta 5
part which allows you to bootstrap and make continual changes. We
should be submitting that to SHARE within a month or two. We currently
don' t have a manual out, but a manual can be obtained from SDC.
Unfortunately I couldn't bring a number along with me today, but I' ii
have them tomorrow if anybody is interested.

(Discussion opened to the floor for comments and questions)

24-10

DON PARKER, CONTROL DATA

Without fear of acting as the straight man for Doug Ross, I wonder about
the concern of computer installation managers and the fear that this panel
may be throwing into their hearts with the agreement--general agreement on
a mass proliferation of programming languages. These managers who are
already worried about the four or five hundred or more programs that are in
obsolete versions of languages that already exist. I wonder if the panel
might have some words of solace at least for these people.

DOUG ROSS

The audience is full of shills. If it is possible to follow the kind of scheme
that we are trying to promote--and again this ACMpaper for this Washington
conference goes into considerable detail on it--then the multitude of systems
that we see as being necessary will all be processed by a single language
processor working under a single operating system and as you go from
language to language all you do is change the tables which control the
behavior of these generalized language processors, so that--in fact, this
is the only sensible way that I can see to solve it, because we must have
different languages for these many different kinds of users and yet these
people who run the computer installations also just can' t face having
500 completely different master system tapes and all sorts of things to worry
about. And so this is precisely what we have been trying to do is to find a
middle ground where you have a single processor, there is a single way of
making problem solving systems but it can be molded to be many different
systems and in this way would be a very sensible solution to it.

MORT

Sounds like a user-dependent language.

DICK MANDELL

I think that Doug' s answer is the right one to the question. I think there is
one other aspect of it and that is that generally these compilers that are
written to handle these special purpose languages are written themselves in
a very, very concise language--or should be--and this language becomes
in a way a documentation for the special purpose language so that you have
a common language to talk about even though you' re talking about all sorts
of other things.

P A R L A N SEMPLE

This subject of proliferation of languages is the number one concern I can
assure you of both user organizations SHARE and GIS with which I' ve been
working. They insisted that there be a solution, so we are definitely aware
of the problem.

WEINDLING

I understand IBM has 168 languages?

24-11

PARLAN S E M P L E

I h a t e to k e e p t a l k i n g a b o u t t h e s u b j e c t I k n o w b e s t , bu t GIS, f o r e x a m p l e ,
c o n s i d e r s i t a n d I ' m s u r e t h e o t h e r s e r i e s of l a n g u a g e s a s b e i n g t h e f o r e -
r u n n e r of a n e w g e n e r a t i o n i t s e l f o f s o f t w a r e l a n g u a g e s , so w e h a v e no t
o n l y n e w l a n g u a g e s b u t a n e w g e n e r a t i o n c o m i n g to o r t o w a r d u s .

PHIL DORN

That' s GIS' s theory. SHARE' s theory is that it ought to go away. I
think that would be a fair summary at least of the impression I got at the
last SHARE meeting.

H o w do y o u r e a d i t , D i c k ?

D I C K M A N D E L L

Well, I don't know if it' s all "go away"--I think it' s more we' re going to
go ahead and build. I'm not sure that there was any as things are that
are not going to listen. Maybe we' re not going to do anything, but they' ii
listen.

PHIL DORN

As f a r a s Don P a r k e r ' s o r i g i n a l q u e s t i o n on t he l a n g u a g e p r o l i f e r a t i o n - -
i t ' s q u i t e c l e a r t h a t t h e w a y to g e t i n to t r o u b l e i s t o w r i t e y o u r s y s t e m in
a s s e m b l y l a n g u a g e - - y o u ' r e l o o k i n g f o r t r o u b l e . Y e t the m o s t c o m m o n
l a n g u a g e w e h a v e - - t h e l a n g u a g e w h i c h I f e e l h a s t h e m o s t c o m m o n a l i t y
b e t w e e n i m p l e m e n t a t i o n - - a n d r e a l l y d i v e r s e i m p l e m e n t a t i o n - - h a p p e n s to b e
C O B O L .

I find FORTRAN standards are very deceptive. They look very similar on
the surface, but the darn programs don' t run. We have had more luck with
commonality between Cobol, surprisingly enough. Language standardiza-
tion may, if it every becomes rigidly enforced, solve some of the problem.
I think the best thing you can do is in your own installation limit the number
of languages--and perhaps Doug Ross has the solution to that, at least for
this area of computing throw away all the assembly language manuals or
keep them under lock and key. It' s a tough problem, Don. It' s the
installation manager' s headache and I wish I knew the answer.

DOUG ROSS

We don ' t h a v e a s o l u t i o n , b u t I t h i n k w e ' r e s t a g g e r i n g in the r i g h t d i r e c t i o n .
H o w ' s t h a t ?

D I C K M A N D E L L

I t h i n k t h e a n s w e r to t h e q u e s t i o n t u r n s o u t to be a c a d e m i c b e c a u s e a l t h o u g h
in t he n e x t y e a r o r t w o w e w i l l s e e a l o t o f f a l s e s t a r t s on t he u s e of
l a n g u a g e s f o r d e s i g n a u t o m a t i o n s y s t e m s , I f e e l t h a t P L 1 p r o b a b l y w i l l

Z4 -1Z

become accepted by the other manufacturers, and will become the standard
language. We see in this room that more than 60 percent of the people
are using FORTRAN, which is not a suitable language, certainly not the
best language but the best available under the circumstances. PL l is
clearly better for this type of application and as soon as the conditions of
acceptance and availability are met there will be a complete swing to
PL 1 just as there was to FORTRAN.

MARVIN LING, GENERAL ELECTRIC COMPUTER (Phoenix)

I think I have comments on the need for languages for design automation
which handles the mass data and also to describe information--in
particular the relationship between the things you are describing and the
property of things. Now in the lack of general acceptance of PLI and the
eight languages for computers other than IBM (such as General Electric
computers) . We are using FORTRAN and for this point I do not quite
agree with your opinion as to using FORTRAN for design automation
languages. We are up at Phoenix developing a project which write numbers
of routines in machine languages and imbedded those routines into FORTRAN
and consequently use FORTRAN to write the design automation problems. I
think a typical example of this kind of system is They are
written by Joe and through our experience it worked rather
satisfactorily under the circumstances that general design automation
languages such as PL 1 or AED are available and assuming they are good.

PHIL DORN

Are you suggesting you use SLIP for this purpose or you' ve extended it to
FORTRAN?

MARVIN LING

Yes, we have extended it in our FORTRAN by function primitives.

I suggest many of the people that are using FORTRAN for this application
have done similarly--it' s the only way it will work.

PHIL DORN

And therefore you don' t have FORTRAN any more and when you go to the
next machine you' re back in the soup all over again. That' s the trap.

N I C K G A R A F F A , R C A

I have a question to ask you--whether the dog wags the tail or the tail wags
the dog. And I think the industry and users are looking to create a simile--
they feel that the computer manufacturer is the dog at this particular time.
Now a lot of the hands raised for FORTRAN IV were probably raised
because we' re going to lose our new found standards of 70-90' s--these
particular computers--and we were going to the new third generation
computer. So a lot of directorates came out and said you have to get all
your effort now in a machine independent language and FORTRAN IV was

Z4-13

the only one. For a lot of people--the design effort had to go on, so you

used FORTRAN IV. But that doesn't necessarily mean that this was the
particular language that you wanted to use, or whether this was a good
language, or whether PZ 1 is a good language.

The question is that when you come up with a design automation problem
you then pick an available language, and PL i looks like it would have
everything that you might need--character manipulation, bit manipulation--
but it doesn't necessarily say that this is the right one, two, or even for
that matter, eight.

So I think the problem is going to be solved because when we finally decide
what language is going to be the best one, io and behold we' re going to
create another computer, probably in 73 or 74, and we'll be right back
in the rat race again. So I don' t really know if we' re really attacking the
problem. I think that none of these languages are directly applicable for
the problem at hand. I think you have to make an analysis as to what you
want to do and then you have to fit it into whatever language--be it AED or
PL i. You have to work around it.

DOUG ROSS

I think I sort of agree with the main tenor of the comment. It seems to
me that the key thing on this business of people using systems because
they' re available and having to do with what' s around, there is no way for
the vast majority of people in the industry to escape from the fact that
they are being paid for doing a job now. We are in the fortunate--or per-
haps unfortunate-,position of being paid for doing jobs in case they will be
useful in the future, and I sort of like to think that these needs go hand in
hand in that this is why we like to work very closely with industry and
have feedback from people who try to use the techniques. But I also think
the question of stability over various machine generations and even future
machine designs hinges on this depth of understanding of what we' re
doing. It' s all too easy to hide what it is you' re really doing in the trap-
pings of the language you' re using at the moment. An I think that taking
the easy way out, making these augmentations of languages by adding
packages of procedures, basic functions and so forth, it' s all too easy to
put in a bunch of ad hoc things which really are just your present view of
how you' re quickly going to get to the solution and that you' re going to
trip up in the future as machines change and so forth if this is maintained.

O n t h e o t h e r h a n d , i f t h e t h i n g s w e a l l do c a n b e g o t t e n d o w n c l o s e r to t h e
p r o b l e m ' s b a s i c n a t u r e , t h e n I t h i n k t h a t y o u c a n ' t a s k f o r a b e t t e r g r o u n d
f o r f u t u r e s t a b i l i t y . A n y t h i n g e l s e s e e m s t o b e i n c o n c e i v a b l e t h a t y o u
c o u l d g u e s s a h e a d o f t i m e a t w h a t t h e f u t u r e c o m p u t e r i s g o i n g t o b e o r w h a t
t h e f u t u r e l a n g u a g e s a r e g o i n g t o b e - - t h i s w e c a n ' t do . B u t w h a t w e c a n d o
i s w e c a n s a y w e h a v e t o d a y a c e r t a i n c o l l e c t i o n o f j o b s t h a t w e ' r e t r y i n g to
d o . T h e r e a r e t w o w a y s w e c a n do t h e m . O n e i s w i t h b a l i n g w i r e a n d s c o t c h
t a p e , e t c . (a n d t h a t ' s t h e w a y t o o m a n y o f t h e m a r e d o n e) , a n d o f c o u r s e
t h a t f a l l s a p a r t . So i f y o u c a n s t r e t c h a l i t t l e b i t t o w a r d g e t t i n g m o r e s o u n d
f u n d a m e n t a l s o r t o f s c i e n t i f i c u n d e r p i n n i n g to w h a t w e a l l d o , t h e n t h a t ' s t h e
w a y t o s t a r t g e t t i n g a s t e p u p on t h i s s t a b i l i t y o v e r t h e f u t u r e g e n e r a t i o n s .

Z 4 - 1 4

PHIL DORN

Nick, I' d like to bring to your attention the history of the Bell Labs work on
Snobal, which originally started out at Bell Labs--three fellows did it. It
was written--if I remember right the first implementation was 70 90 only,
then they expanded it to run on the 90, 94, 40, 44 or a direct couple. The
last time I counted there were thirteen implementations under way on all
sorts of machines, some conversational Snobol being done for the SDS 940,
and just about every type of implementation you could conceive. The
language has a very definite purpose and fits very nicely in the general
scheme of things, and it' s going to be done and also it' s a computer.

If y o u do t h e j ob p r o p e r l y - - w h e t h e r A E D - 0 is t he a n s w e r o r no t is w h a t
w e ' r e p r o b a b l y d e b a t i n g h e r e - - b u t i f A E D is t h e a n s w e r a n d is d o n e
p r o p e r l y a n d y o u c a n d e s c r i b e t h e p r o b l e m a p p r o p r i a t e l y on m a c h i n e X
w h e n m a c h i n e Y c o m e s a l o n g w e w h o a r e u s e r s w i l l b e c r a w l i n g o v e r y o u
who a r e v e n d o r s i n s i s t i n g t h a t i t ' s p a r t of y o u r r e s p o n s i b i l i t y . We ' ve
p a s s e d t h e d a y w h e r e y o u c a n s e l l u s a n e w c o m p u t e r w i t h j u s t F O R T R A N ,
Cobo l a n d d i r e c t i o n s on h o w to w a l k a r o u n d t h e c a r d r e a d e r to d r o p in
m o r e c a r d s . We ' r e g o i n g to be a s k i n g f o r m o r e t h i n g s . C o n s i d e r t h a t a
threat for the future.

Dick, AED is right--we'll ask for it.

DICK MANDELL

I think it' s even more than that. You bring up Snobol, and I think Meta 5
is another example of languages that were simple enough for three or
four people to program in a reasonable time. When we get to the point
where we have very, very complex languages it takes a large number of
people--a lot of man months or years to do it. And you' re not going to
have it done by the user. On the other hand, you' re not going to have it
done by the manufacturers with their current attitude.

I' v e j u s t b e e n on a b u y i n g t r i p a n d I k e e p s a y i n g w h y w o n ' t y o u g i v e m e
P L 1 a n d t h e y s a y i f y o u ' n s h o w m e t h r e e m a c h i n e s p e o p l e w o n ' t b u y
b e c a u s e i t d o e s n ' t h a v e P L 1, w e ' 11 do i t . Bu t w e ' r e no t g o i n g to do it
otherwise, and I think it' s this attitude in the industry that is going t@
inhibit this kind of growth.

DOUG ROSS

I' d l i k e t o a d d one t h i n g . T h i s h a s to do w i t h h o w do y o u s p e c i f y o r s e t up
one of t h e s e h i g h l e v e l l a n g u a g e s a n d s p e a k d i r e c t l y to t h e p r o b l e m of
t r a n s f e r r i n g f r o m o n e m a c h i n e to a n o t h e r . I t h i n k i f y o u m e r e l y w r i t e a
b ig s e t of s p e c i f i c a t i o n s f o r a l a n g u a g e a n d t h e n e x p e c t a l l t h e d i f f e r e n t
c o m p u t e r m a n u f a c t u r e r s to m a k e t h e i r o w n i n d e p e n d e n t i m p l e m e n t a t i o n s to
m e e t t h o s e s p e c s , t h e n y o u ' r e a s k i n g f o r a lo t of t r o u b l e .

I a g r e e t h i s i s t h e s i t u a t i o n w e ' r e in t o d a y . T h i s is w h y t h e c o m m e n t i s
p e r f e c t l y v a l i d t h a t t h e t r u e d e f i n i t i o n of t h e p r e s e n t P L 1 l a n g u a g e i s t h e
IBM P L 1 c o m p i l e r . T h i s w e c a n ' t e x c a p e f r o m . T h e c o m p i l e r s a r e t h e

24-15

d e f i n i t i o n of t h e l a n g u a g e . So i t s e e m s to m e t h e n t h e k e y t h i n g i s to
m a k e t h e c o m p i l e r as m a c h i n e i n d e p e n d e n t a s p o s s i b l e a n d i n s t e a d of t r y i n g
to t r a n s f e r f r o m m a c h i n e to m a c h i n e t h e s p e c i f i c a t i o n s of t h e l a n g u a g e ,
t r a n s f e r t h e p r o c e s s o r i t s e l f . T h i s a g a i n i s w h a t w e a r e t r y i n g to do w i t h
A E D . We a r e b o o t s t r a p p i n g i t r i g h t n o w u n d e r t h e 1108 a n d t h e 360 a n d
b a c k to t h e 94 in t h e n e w c o m p i l e r . B u t i t ' s t h e s a m e c o m p i l e r . We' r e
j u s t j u s t r e w r i t i n g n e w c o m p i l e r s f o r t h e s e m a c h i n e s to m e e t t h e s a m e
l a n g u a g e s p e c s , - w e d o n ' t h a v e t h e s p e c s f o r t h e l a n g u a g e .

A g a i n , t he c o m p i l e r is t h e d e f i n i t i o n of t h e l a n g u a g e . Bu t n o t i c e t h e o n u s
t h i s p u t s on the i m p l e m e n t a t i o n of t he c o m p u t e r i t s e l f - - t h a t i t m u s t be a s
m a c h i n e i n d e p e n d e n t a s y o u k n o w h o w to m a k e i t . A n d h e r e a g a i n i f y o u
l o o k a t m o s t of t h e c o m p i l e r s , i n c l u d i n g a l l of t h e F O R T R A N c o m p i l e r s ,
t h e i r m a i n f o r t e i s t h a t t h e y t a k e v e r y c a r e f u l a d v a n t a g e of t h e c h a r a c t e r i s .
t i c s of t h e m a c h i n e t h a t t h e y o p e r a t e on. W e l l , y o u h a v e to f i n d s o m e p o i n t
in b e t w e e n w h e r e y o u c a n s t i l l h a v e e f f i c i e n c y bu t h a v e m a c h i n e i n d e p e n d e n c e
a s w e l l .

B I L L A L L M A N , DuPONT

P e r h a p s t h e r e m i g h t be a n o t h e r a p p r o a c h to t h i s p r o b l e m . It m a y o r
m a y n o t be w h a t y o u g e n t l e m e n a r e s p e a k i n g to d a y , b u t f r o m m y p e r s o n a l
e x p e r i e n c e I f i n d t h a t t h e m o s t w o r k a b l e s y s t e m i s to d i v i d e t h e job up i n t o
t h r e e l e v e l s . At t h e top l e v e l i s t h e u s e r . To m y m i n d t h e u s e r is t h e
f e l l o w t h a t h a s a n e n g i n e e r i n g job to do. He h a s t oo m u c h to do a n d n o t
e n o u g h t i m e to do i t in . H i s i n t e r f a c e s h o u l d be w i t h a p r o d u c t i o n t e c h n i c i a n
w h o u n d e r s t a n d s h i s p r o b l e m , w h o c a n u n d e r s t a n d t h e l a n g u a g e a n d t h e
c o m m u n i c a t i o n m e a n s t h a t h e w o r k s w i t h . T h i s m a y e v e n i n v o l v e a f i e l d
t r i p .

On t h e t h i r d l e v e l i s t h e s y s t e m s e n g i n e e r w h o i s c o n c e r n e d w i t h - - i n o u r c a s e
w e w o r k w i t h F O R T R A N IV in a n E x e c n s y s t e m on t h e 1108 w h i c h is
very powerful. There are then two interfaces: dne between the user and a
production technician and the second between the production technician and
the systems engineer. This is a very dynamic process. The top level there
is no change whatsoever in what--in how he has the means of communication
he has been using for years. At the bottom level there is continuous change
as assemblers change, compilers change, problem definition changes, and
things like that.

PHIL DORN

ffust seems to me going around the problem the long way. You' re essentially
accepting classical techniques. The way to beat this kind of a game is get
the user the facilities to do the job himself. He knows what the problem is.
Describing it to anybody, particularly someone not at his professional level,
is an extremely complex task. If you give the user the facility--call it a
graphic console if you like--you' ve got the problem licked. I don' t under-
stand why you go to all these interface levels.

B I L L A L L M A N

I think the idea is to get maximum utilization of the computer doing the
most useful work for the functions of the organization. The users are very
busy people. One of your purposes is to make more of his day than he has had

Z4-16

previously--to make more of him as an engineer. We find it very
worthwhile to have a specialist--a production specialist--who becomes very
adept at formulating the problems in the program input form. He has
capability of changing his work as necessary as the program changes. But
his interface with the user is of a relatively constant nature.

By this way you have specialization and you avoid the problem of the
multiplicity of languages and you avoid major changes in the way in which
our engineers have to work--and you get to work on the box.

PHIL DORN

I personally don' t find it the proper approach--I say why not change the
way the engineers work. Maybe you have to sneak up on them a little bit at
a time as described in the paper this morning from Boeing in Wichita. He
sneaked up on them just a step at a time.

The thing that bothers me about your second statement was you were talking
about maximum utilization of the computer facility--I'm much more con-
cerned with the maximum utilization of the engineer' s brain. The computer
to me is the least of the problem. If you need more computer power you
can always buy it. But I need that engineer' s brain--he' s a much scarcer
commodity today than machine time.

D I C K M A N D E L L

I think one of the major problems is that of communication. At least when
you' re communicating with a machine, if it doesn't understand it usually
blows up, but when you try to communication with a technician or somebody
that' s doing the work for you, he' ii do what he thinks you' re doing and he' ii
do it the way he thinks you said, and maybe it' Ii be some time before he blows
up because he' s a little smarter than the machine. In this case I think it' s
unfortunate.

D O U G R O S S

I was sort of intrigued by the comments from the floor because exactly the
same breakdown is the one I see for making the large number of languages
possible. I think he was saying it made it so that engineers only had one
kind of language. Maybe that' s true within one company or within one
group in a company, but take the many companies and the many groups and
you' re back in the many languages area. We do see a need for essentially
the same three breakdowns coming down from the user, the end product
language; there is a system programmer type who knows how to set up the
tables that control these generalized processors so that you can then make
the many different languages be processed by the same processor.

Then there' s a third category which is the system programmer. These are
the ones who take over when you go from one machine to another. They are
the ones who bootstrap the general processor itself. So I do see the same
breakdown of users and intermediate system setup level and then the--right
down to the nuts and bolts the man who interfaces with the actual computer
and operating system as a legitimate breakdown, but I see it in the light of
making possible the many languages that are needed, in an orderly fashion.

2 4 - 1 7

PHIL D O R N

Doug, that' s the starting point of the game. After you' ve been through the
job and got the user set up you don't want to see him until his problem
changes or he needs something completely new. He functions on his own.
And that, I think, is not what the gentleman from DuPont is describing.

DOUG ROSS

No, that' s why I found it intriguing. I got exactly the opposite reading that
he was getting out of what he was saying.

KELLY BROWN, McDONNELL DOUGLAS

I' d like to address this to Phil Dorno Why do you have this favoritism toward
Cobol? You could expand that just a little bit.

PHIL DORN

Good heavens] I' m the PL 1 Project Manager at SHARE, not the Cobol
Project Manager. I have no particular favoritism toward Cobol, but if you
give me a choice on any machine of Cobol versus FORTRAN I can do a beck
of a lot more things with Cobol. And I could for a long, long time. The
g e n e r a l i m p l e m e n t a t i o n s I h a v e s e e n - - C o b o l i s r i c h e r , i t i s a w k w a r d , y o u r
h a n d g e t s t i r e d , t h e l a n g u a g e d o e s n ' t u n d e r s t a n d s u b r o u t i n e s - - I c a n t e l l y o u
a l l t h e t h i n g s t h a t a r e w r o n g w i t h i t . B u t i t i s a m u c h r i c h e r l a n g u a g e t h a n
FORTRAN. Let's face it.

KELLY BROWN

W h a t y o u ' r e s a y i n g i s t h a t i f y o u h a d a c h o i c e b e t w e e n t h e t w o - - F O R T R A N
a n d C o b o l - - y o u ' d c h o o s e C o b o l .

PHIL DORN

If y o u g a v e m e o n e l a n g u a g e to u s e i n a g e n e r a l p u r p o s e c o m p u t i n g s h o p , I
will take Cobol. Because I can do things with Cobol that FORTRAN would
never dream of, but I don't find the reverse case. If you just restrict me
to those two. If you put me on a Burroughs 5500, then the game changes.
There I have Cobol and Algol and a very much extended Algol. Then it' s
a different deal. I' m definitely not prejudiced toward Cobol--I wish it
would just stop its development right there.

I' ii put on my PL I hat for a minute. In Union Carbide we have had very
l i t t l e d i f f i c u l t y c o n v i n c i n g c o m m e r c i a l p r o g r a m m e r s to u s e P L 1. T h e y
f i n d i t m u c h m o r e c o m f o r t a b l e . O u r p r o b l e m h a s b e e n w i t h t h e s c i e n t i f i c
p r o g r a m m e r s i n F O R T R A N .

CHARLES HOOTLINE, CAMBRIDGE UNIVERSITY

N o n e o f t h e p a n e l m e m b e r s h a v e m e n t i o n e d m i c r o g e n e r a t o r s , a n d a t
C a m b r i d g e o n e o f o u r g r a d u a t e s t u d e n t s , a c h a p c a l l e d P e t e r B r o w n , h a s
i m p l e m e n t e d a c o m p l e t e l y g e n e r a l p u r p o s e m i c r o g e n e r a t o r c a l l e d M L - 1 w h i c h

Z4-18

i s n ' t o r i e n t e d to any p a r t i c u l a r l a n g u a g e but is r a t h e r j u s t a s t r a i g h t p r o c e s s o r .
You d e s c r i b e y o u r m i c r o e n v i r o n m e n t it i t , t ake in one input s t r i n g and ou t -
pu ts a n o t h e r s t r i n g . We' ve had v e r y c o n s i d e r a b l e s u c c e s s w i th t h i s g e n e r a l
p u r p o s e m i c r o g e n e r a t o r in i m p l e m e n t i n g v e r y q u i c k l y and r e a d i l y s p e c i a l p u r -
p o s e l a n g u a g e s .

In p a r t i c u l a r we have u s e d it to i m p l e m e n t a s y s t e m s w r i t i n g l a n g u a g e and
t h e n h a v i n g d e c i d e d w h a t f e a t u r e s we w a n t e d in o u r l a n g u a g e , u s i n g th i s
g e n e r a l p u r p o s e m i c r o g e n e r a t o r , w e a r e now p r o d u c i n g a c o m p i l e r f o r t h i s
l a n g u a g e , a c t u a l l y u s i n g the B r o o k e r - M o r r i s c o m p i l e r on o u r At l a s c o m p u t e r .

This microgenerator itself is implemented on our PDP-7 and on our Atlas
computer and it is in fact written in terms of micros which is a part of the
language itself, so when you transfer it from one machine to another one only
has to recode the few very basic micros, and this is in fact how it was trans-
ferred from the PDP where it was originally written onto the Atlas computer.
Now during the summer it is going to be put on the 1108 at the National
Engineering Laboratory in Scotland and also on some ICT range of machines.
I believe IBM did look into this in England but they decided, I believe, not to
use this now.

I' d be most interested to hear the panel' s comments on microgenerators
because I feel they really are an essential part of any general purpose
language system.

DICK MANDELL

I think the intent of Meta 5 and the intent of Doug' s AED is to do much the
same thing in the case of Meta 5, you describe the language you' re talking
about in terms of a microgenerator package and I believe in Doug' s case
you talk in terms of a table that you put into the machine. And the intent is
certainly just to be able to build languages in somewhat the same fashion you
described here except you' re not tied to an assembly language--it' s possible
you don't need an assembly language. And also in PL 1 there are the
compile time features which do something--not too good, but they do some
of this work.

DOUG ROSS

Well, as Terry well knows we do have a micro package in AED-0 and we
think of it as quite an important part of the language. Coming back to the
viewpoint which again is expressed in this ACM paper, there is a definite
place in the generalized language processor that we like to think is the way
to go about things for micro pre-processing. We think there are four
major phases--the lexical ~hase is the first one; that' s where you group
your characters into multi-character items or syllables of the language,
the parsing phase which is where you do the structuring of statements made
in the language, the modeling phase which is where you make a representa-
tion of the understanding of the problem, and the analysis stage which is
where you actually end up solving the problem. Now between the lexical
phase and the parsing phase, right at the very beginning, is the place
where we see micro preprocessing as being appropriate.

24-19

In other words, we don't like to think as a general scheme as being that you
take all of the last phases, the parsing, modeling and analysis stages, and
reduce them to just what an assembler will do. We' d much prefer to think
of the total scheme as having essentially five phases, then, with the micro
phase properly being an item-to-item rather than character-to-character
manipulation, and what a micro pre-processing phase does is it allows you
easily to augment a language without actually extending it, i.e. , to put in
different forms for the user to write without actually adding more things to
the semantics of the language. I think the use of micros in the way that
Charlie was outlining is possible only when you stay within the semantics of
the target character string--you' re going from one character string to
a n o t h e r c h a r a c t e r s t r i n g a n d t h e f i n a l c h a r a c t e r s t r i n g i s in s o m e l a n g u a g e .
So y o u ' r e r e s t r i c t e d to t h e s e m a n t i c s of t h a t l a n g u a g e . Of c o u r s e , if t h a t ' s
a m a c h i n e l a n g u a g e a s s e m b l y l a n g u a g e t h e n t h i s i s e s s e n t i a l l y n o r e s t r i c t i o n
b e c a u s e y o u ' r e g o i n g to a T u r i n g m a c h i n e s o r t of , b u t I t h i n k t h e p r o p e r r o l e
f o r m i c r o s i s n o t t o t r y t o t a k e o v e r t h e w h o l e j o b b u t t o p l a y t h i s v e r y
c r u c i a l i n - b e t w e e n j o b b e t w e e n w h a t t h e u s e r a c t u a l l y w r i t e s a n d w h a t t h e
l a n g u a g e p r o c e s s i n g t h e s e m a n t i c s a n d m o d e l i n g a n d a n a l y s i s p h a s e s a r e
a c t u a l l y g o i n g to d o .

GLOCKING, ENGLISH ELECTRIC COMPUTERS

I h a v e t w o c o m m e n t s a b o u t t h i s d i s c u s s i o n . O n e i s i t ' s m y o p i n i o n t h a t
l a n g u a g e s d o n ' t r e a l l y m a t t e r . I t ' s t h e s t o r a g e s y s t e m a n d y o u r d a t a
h a n d l i n g f a c i l i t i e s . T h e m u l t i t u d e o f y o u r p r o g r a m m i n g i n d e s i g n a u t o m a -
t i o n i s d e a l i n g w i t h m u l t i p l i c a t i o n of l e v e l c o n t r o l f o r p r o d u c t i o n p u r p o s e s .
If i n f a c t y o u c a n d e a l w i t h t h i s w i t h s o m e k i n d o f a g e n e r a l i n f o r m a t i o n
h a n d l i n g s y s t e m y o u ' v e b e a t e n a t l e a s t 90 p e r c e n t o f t h e p r o b l e m . I
t h i n k D o u g R o s s i s s a y i n g e x a c t l y t h i s : t h a t t h a t i s t h e i m p o r t a n t p a r t o f
t h e s y s t e m . T o t h i s e n d , a p a p e r t h i s m o r n i n g - - t h e N a v a l R e s e a r c h p a p e r - -
h a d a v e r y i n t e r e s t i n g w a y o f o r g a n i z i n g f i l e s .

T h e s e c o n d t h i n g i s t h a t t h i s n a m e M e t a 5 i s p e c u l i a r . T h e y ' r e t r y i n g to
s t a n d a r d i z e o n l a n g u a g e s by u s i n g s o m e k i n d of M e t a l a n g u a g e . B u t M e t a 5
i s p r e s u m a b l y t h e f i f t h v e r s i o n of t h i s M e t a l a n g u a g e . W h a t h a p p e n s w h e n
M e t a 6 c o m e s a l o n g ?

D I C K M A N D E L L

T h e r e a r e , a s I' m s u r e m a n y o f y o u k n o w , a n u m b e r o f s o m e t h i n g s w e c a l l
M e t a c o m p i l e r s r u n n i n g r o u n d t h e c o u n t r y . In L o s A n g e l e s t h e r e w a s a
d e v e l o p m e n t g r o u p s t a r t e d s o m e y e a r s a g o a n d V a l S h o u r y w r o t e a l a n g u a g e
c a l l e d M e t a 1 o n t h e 1401 w h i c h he p r o m p t l y u s e d t o g e n e r a t e M e t a 2 o n t h e
1 4 0 1 , a n d t h e s e t h i n g s g o t s p u n a r o u n d f o r a n u m b e r o f y e a r s . L a s t y e a r I
p u t a p a p e r in t h e p r o c e e d i n g s o f t h i s c o n f e r e n c e o n M e t a 3 w h i c h i s t h e
l a n g u a g e I w a s w o r k i n g o n ' t i l l t h e n a n d , u n b e k n o w n s t t o m e , t h e r e w a s a
M e t a 5 d e v e l o p i n g a t SDC w h i c h a p p a r e n t l y r e a l i z e d t h a t M e t a 3 w a s a r o u n d
s o t h e y p i c k e d a n o t h e r n u m b e r . M e t a 4 - - s o m e b o d y r e s e r v e d t h e n a m e
s i n c e h e f e l t h e l i k e d m e t a p h o r a n d t h a t s h o u l d b e a v e r y e x c e l l e n t n a m e f o r
a M e t a c o m p i l e r . So t h a t n e v e r go t w r i t t e n y e t .

24-20

At any rate, Meta 3 was going on toward Meta 5~ and Iwas really quite
pleased to see that I was going in the same direction that somebody else had
though of, but they got there a little ahead of me. That' s why Meta 5o
There's also anM. E. ToA. which is being developed at SDC which is a
language which operates on trees. Our intention is to also put this tree
climbing kind of thing on Meta 5 and we may well decide to call it Meta 6
just because it' s different.

TOM GRUBER, RELIANCE ELECTRIC CO.

I'm just looking for perhaps comments on languages or techniques for
capturing logic, and I'm thinking in terms of things such as decision table
compilers. I know at one time--and I believe there is still activity in this
area. I wonder if anyone from the panel would care to comment on this.

PARLAN SEMPLE

I hate to ask an embarrassing question, but were you at the session this
afternoon? (Response - no, Iwasn't.) I tried to illustrate there taking a
decision table and treating it as though it were a computer file. Although
I took a very simple example I did not get into the hierarchic structure
which is available with MTAbecause Itook a very simple, one record level
format and I believe I showed in the paper that I could manipulate this
compiler as required using the procedural logic inherent in GIS.

One further comment here, although GIS is not a microgenerator, I hope
most of you realize that it is, in addition to being a language which we are
addressing here today, it is backed up by tremendous programming systems
as a result of
hoped to be, but in any case it' s a programming system which generates
codes. We can go code as a result of the user' s statements. And if the
user's statements define decision tables, fine, we'll process that; if it
defines something else, we'll process that. The generalized system--we
care not what the English looks like.

DOUG ROSS

Just a point of information for you, although I can' t remember the number or
the status exactly, there is enough interest in decision tables and languages
for them for the U. S. A. S.I. Standards Institute to have just recently set
about setting up a standardization activity for decision tables. I could look
up the information if you like if you' Ii write me a letter about it.

PHIL DORN

At the same time, Doug, I think there' s a decision table processor for
360 available. Seems to me somebody at North American recoded
Detab X in PL 1 to run on the 360, I think. There' s still a smattering of
activity in it--not a great deal. A good deal of it is concentrated here in
Los Angeles and a couple of firms in the east are very active in decision
tables--McGraw Hill is one--just here and there in spots around the country.
But there is a decision table processor for 360. At least one, and maybe
two. Richfield Oil I think might be a good contact for you.

2 4 - 2 1

MARK MAIDEL, DOUGLAS

I have a comment to the man who asked the first question about what will the
computer managers do. I'd like to throw back this challenge to him by
saying that most computing that is done is essentially an analysis of special
cases, and that somebody has to decide what is to be done when each of these
special cases occurs. The output of this decision usually is a bunch of coding,
whether it's in assembly language or FORTRAN or any other language, that
very seldom is any documentation made of what special case he is tested for
and what action he intends to do it.

Now, in a production firm, typically they cannot afford to allow a skilled man
to sit down and spend time documenting what he has done, and also if this had
been done and released to competitors, the competitors would not have to
spend the Same time and money to generate the same information. However,
if the documentation was done, then the conversion from one machine to
another would, I think, be rather trivial because the hard part has already
been done.

Now the second comment that I' d like to throw is to the people in general
who design computer programs who are going to aid someone else, and that
is please stop taking things away from him when you try to give him something.
I cut my teeth on the 650 and this had a very beautiful little instruction that' s
called the Shift and count. The 90 and 94 came along and we lost that instruc-
tion, and all the problems that I have solved using this particular technique
are gone. I have to write my own macro. When I communicate a problem
and can solve it in FORTRAN, I try to do this because our company is now
saying "solve problems in FORTRAN. " Now many times I make use of
nonstandard features just because l'm under this restriction. But if I can
solve a problem in FORTRAN or in some assembly language, let me do it
because presumably the problem that I'm really trying to solve is the one
that you don' t know how to solve either. Or else I wouldn't be in the loop
interacting with the computer, but rather someone else could have filled
out the load sheet and the problem solved in the batch process and we
wouldn't need graphics or on-line... Please stop taking things away from us.

NOLAN DEHN, McDONNELL DOUGLAS

I was just wondering and I would like to put the thought to the panel as a matter
of record for this discussion as long as it is being taped, and perhaps as a
contribution to helping Doug Ross and his thought of coming up with a system
for generating what we need. Is it known among the people involved the
requirements--what is different about the design automation activity? What
are the requirements, then, for a "best" or good programming language?
Would this be beneficial at least to get on record?

DOUG ROSS

I would just again refer to the paper for this fall ACM meeting in which we
don' t try to say what' s needed but rather to provide a framework within
which to do the job. I don' t think you can crystal ball too much more.

2 4 - 2 2

ALANSTONE

C l e a r l y w e c o u l d w r i t e a s p e c i f i c a t i o n f o r d e s i g n a u t o m a t i o n p r o g r a m m i n g
l a n g u a g e , a n d I t h i n k w e a l l a g r e e h e r e t h a t w e d o n ' t w a n t t o a n d s h o u l d n ' t ,
s i n c e t h e r e a r e e x i s t i n g l a n g u a g e s t h a t c o m e c l o s e e n o u g h to do t h e j o b i t ' s
n o t r e q u i r e d to i n v e n t a n o t h e r l a n g u a g e . I t h i n k I s e n s e a g e n e r a l a g r e e -
m e n t among the panel and most of the audience that PL 1 is suitable but its
acceptance now is limited by its availability.

Another comment on some of the things we' ve talked about--the Meta
compilers, natural processors and even the source language micro capa-
bilities that are in PLI now or eventually will be in PL 1 and similar
languages all are useful tools to develop user problem oriented languages.
I don' t think many of us are willing to go out on a limb and use those tools
to design our own design automation development language and thereby
picking up responsibility ourselves for transferring that from machine to
machine.

T h e g a n t l e m a n mentioned t h a t t h e m i c r o p r o c e s s o r , b u t m y e x p e r i e n c e
w i t h t h e s e d e v i c e s i s t h a t t h e j o b o f r e w r i t i n g t h e p r i m i t i v e s w h i l e a f i n i t e
t a s k c e r t a i n l y m u c h s i m p l e r t h a n r e w r i t i n g a l l o f y o u r a p p l i c a t i o n s p r o g r a m s
is s t i l l a f o r m i d a b l e j o b . I t h i n k m a n y o f t h e p e o p l e d e v e l o p i n g d e s i g n a u t o -
m a t i o n s y s t e m s a r e n o t w i l l i n g to t a k e u p o n t h e i r o w n s h o u l d e r s t h a t o f
d e s i g n i n g a n d m a i n t a i n i n g a n d t r a n s f e r r i n g f r o m m a c h i n e to m a c h i n e t h e i r
o w n c o m p i l i n g s y s t e m .

PHIL DORN

T h i s j o b o f t r a n s f e r r i n g m i c r o s f r o m o n e m a c h i n e to a n o t h e r - - t h e c l a s s i c
M c l l r o y s t r i n g p a c k a g e i m p l e m e n t e d o r i g i n a l l y o n t h e 90 t o m y k n o w l e d g e
h a s n o t y e t b e e n i m p l e m e n t e d o n t h e 360 a n d I d o n ' t t h i n k t h e y ' r e g o i n g t o
do i t . T h e a s s e m b l e r j u s t w o n ' t s u p p o r t t h e t h i n g s t h a t M c I l r o y d o e s i n
t h e r e . So i t s n o t a l w a y s t h a t e a s y g o i n g f r o m o n e m a c h i n e t o t h e o t h e r a t t h e
m i c r o l e v e l . I d o n ' t a g r e e w i t h t h e o t h e r g e n e r a l i z e d a p p r o a c h e s 100 p e r -
c e n t - - i t w o u l d b e a g a i n s t p r i n c i p l e . B u t I t h i n k h e ' s g e t t i n g c l o s e r t o b e i n g
a b l e t o d e f i n e t h e p r o b l e m t h a n a n y o n e e l s e h a s y e t c o m e . M a y b e a f t e r
h i s n e x t p a p e r w e ' 11 c h a n g e o u r m i n d s a b o u t t h a t .

DICK MANDELL

I t h i n k I ' d l i k e t o r e i t e r a t e w h a t P h i l s a i d a b o u t I B M b e i n g v e r y i n t e r e s t e d
i n i d e a s a t t h e S H A R E F i e I d O n e P r o j e c t m e e t i n g . T h e y w e r e c r y i n g f o r
i d e a s o r t h i n g s i n P L 1 t h a t a r e n o t a l r e a d y in P L 1. T h e y w e r e n ' t
t e r r i b l y i n t e r e s t e d in c h a n g i n g t h i n g s t h a t a l r e a d y w e r e in P L 1, b u t t h e y
w e r e w i d e o p e n f o r s u g g e s t i o n s o n t h i n g s t h a t w e r e n ' t , a n d I t h i n k i t ' s a
p o w e r f u l o f f e r t h e y : v e m a d e t o a s k f o r t h e s e t h i n g s a n d t h a t t h e r e i s i n t e r e s t
i n d e v e l o p i n g t h e s e t h i n g s a n d i t c a n b e d o n e .

J O C K R A D E R , H U G H E S A I R C R A F T C O M P A N Y

I' m n o t s u r e I u n d e r s t a n d t h e p u r p o s e o f t h i s l a n g u a g e , b u t i t s e e m s t o m e
c e r t a i n p e o p l e a r e s u g g e s t i n g t h a t t h e u s e r h i m s e l f w o u l d b e w r i t i n g t h i s
g e n e r a l i z e d l a n g u a g e - - t h e e n g i n e e r h i m s e l f - - a n d i f t h i s i s t r u e , a n d i n m y
e x p e r i e n c e t h e d e s i g n a u t o m a t i o n p r o g r a m s I ' m f a m i l i a r w i t h r u n i n t o

2 4 - 2 3

