
Evolution of A Query Translation System

Jyh-Sheng Ke

Institute of Information Science
Academia Sinica, Taipei, Taiwan

R. O. C.

Shi-kuo Chang

Department of Information Engineering
University of Illinois at Chicago Circle

U. S. A . .

This paper presents the motivation, history, and idiosyncrasy of a query translation
system. Detail of the translation process has also been described.

key words: relational database; database skeleton; fuzzy query; conceptual graph; query
graph

Introduction

In 1975, we decided to implement a relational
database management system for the application of
medical information. It quickly became clear that
it's impossible to convince physicians of accommo-
dating themselves to using an interactive terminal
without providing an efficient user interface.
Firstly, She physicians don't know (and are reluc-
tant to know) anything about programming or access
path. Secondly, not every physician is good at
keyboard typing. So, our goal was set to work out
an easy-to -use user interface with the concept of
access path being transparent to the users.

One year later, we finished developing the
elementary query language (EQL). An example of
elementary query (EQ) is given below:

Q : Who is the mayor of Taipei? (user think-
ing)

EQ : Get MAYOR ; CITY equal 'Taipei'. (user
input query)

The user's elementary query is then transla-
ted into a sequence of relational algebra commands
which is equivalent to the user's original query.
Using the elementary query language to input re-
trieval request, the concept of files is transpa-
rent to the user. In other words, the user need
not know how data is stored in the database and how
the files are linked.

The expressive power of EQL was soon found to
be limited. A new version, say, extendedelementarv
query language, was then proposed. The basic idea
of extended elementary query is to use a variable
name to distinguish descriptors which have different
semantic meanings. For example, X.COLOR and Y.COLOR

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is~given that copying is b y
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM 0,89791-064-8/81/0500-0035 $00.75

have different semantic meanings though they have
the same underlying domain. An example of extended
elementary query (EEQ) is given as follows:

Q : Find the names of employees who have
salary more than their manager's salary.

EEQ : get EN~; EN~IE of E#; SALARY greater
than X.SALARY; X.SALARY of MGR; MGR si-
milar to E#.

In this example, "SALARY"is thesal~ry of employee,
and "X.SALARY" is the salary of manager. However,
SALARY and X.SALARY have the same underlying domain,
MGR and E# also have the same underlying domain.

The extended elementary query language is
translated into a sequence of operations which in-
volves the operators contained in the relational
operator set {restriction, join, projection, divi-
sion, difference}.

Using the extended elementary query to input
retrieval request, the user still has to know the
descriptor name of each data entity. In order to
facilitate casual users, we design a query language
which allows the user to enter his queries using a
natural-like language: We call this query language
Extensible Query Language (XQL). The XQL will be
first transformed into a form of EEQL and then
translated into a sequence of relational algebra
commands of the underlying database management~sys-
tem.

In the following, Section 1 describes the ge-
neral architecture of the query translator. Section
2 describes the syntactic parser. Section 3descri-
bes the defuzzifier. Section 4 describes the QG
translator. Section 5 describes the GR translator.

i. The Query Translation System

Translation of XQLisbased on a database ske-
leton. The database skeleton contains a conceptual
schema and a relational schema. The conceptual sche-

35

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1015579.810959&domain=pdf&date_stamp=1981-05-21

ma is a set of conceptual graphs which represents
the user's view of the problem domain in the real
world. The relational schema isalogical database
description of the relational model from the sys-
tems view. Detail of database skeleton can be found
in [CHANG78] and [CHANG79]. Asample database ske-
leton has been shown in Appendix I. All examples
throughout this paper are based on that database
skeleton.

The XQL translator includes a parser, a de-
fuzzifier, a QG translator and a GR translator.
The parser recognizes word strings and transforms
them into standard internal forms. The defuzzifier
is a semantic analyzer which constructs query graph
at concept level (Qc)- The task of semantic de-
fuzzification is often interspersed throughout the
syntactic analysis. Since the user may ask a ques-
tion with incomplete information, the defuzzifier
is used to resolve the ambiguity of user's query.
There could be multiple paths for generating the
results for answering a user's query, and the trans-
lation process might stumble upon a path that
answersaquestion to be different from the one the
user asked. The problem of disambiguation will be
solved using heuristics. The QG translator trans-
lates the query graph at conceptual level (Qc) into
a query graph at file level (Qf) which is a spanning
tree of files and descriptors that are relevant to
the request. The GR translator translates Qf into
relational algebra commands of the underlying re-
lational database management systems--RAIN[CHANG75].

2. The Parser

TheXQLparser is very simple, since the input
language of XQL was chosen in order to guarantee
the simplicity of the parser and to provide the user
an easy-to-use interface. The parser is driven
by the conceptual schema in the database skeleton.
It not only recognizes the word strings but also
does syntactic defuzzification.

2.1 Syntax Structure of XQL

In XQL, a query is a sequence of short state-
ments separated by semicolons and terminated by a
period. In the way of translation process, varia-
tion of case grammar [Bruce75] and genus-specializer
pair [SZOLO77] has been used to represent the in-
termediate form of concepts.

2.2 Syntactic Defuzzification of XQL

The major task of syntactic defuzzification is
to recognize word strings in the user's query Q,and
to transform them into the internal representation.
The following rules will be applied repeatedly
until all word strings in Q have been transformed
into some internal form.

Rule 1 : A have B; ÷ B(ch A);

Rule 2 : B of A; ~ B(ch A);

Rule 3 : A verb B [from C] [to D] [with E] ;
.... -~ A(agnt verb); B(ptnt verb);

[C(sou verb);] [D(des verb);]
[E(inst verb)]

/*B is a concept*/
Rule 4 : A op B; ~ A(ch A) op B(ch B);

/*B is a species of A*/
A(ch A) op B(s A);

/*B is an instance of A*/
A(ch A) op B(i A);

Rule 5 : A verb all B; * A(agnt verb);
B(ptnt verb) contain B;

Rule 6 : all A verb B; ÷ A~gnt verb) containA;
B(ptnt verb);

The task of syntactic defuzzification is al-
ways interspersed with the task of semantic de-
fuzzification. Particularly, whena fuzzy concept
is met, the semantic defuzzificationwillbecalled
to resolve its semantic ambiguity.

3. Semantic Defuzzification of XQL

The task of the semantic defuzzification is
to resolve the ambiguity of fuzzy concepts in Q,
and to relate all data entities in Q. Since the
conceptual schema (CS) in the database skeleton
represents theinterrelationshiDs amon~ data enti-
ties. our problem is to formulate a query ~raDh
basin~on the set of basic conceptual graphs (BCGs)
and the generic hierarchy in the conceptual schema.
In other words, we want to formulate a complicated
single-level conceptual schema. The final query
graph will cover all data entities metioned in Q.
The following rules are applied repeatedly until
the semantic meaning of each fuzzy concept has been
resolved.

Rule 1 : if B(ch A) is in Q but not in CS, and if
A > C and B(ch C) is in CS, thenB(chA) is replaced
by B(ch C).

Rule 2 : if B(ch A) is in Q but not in CS, and if
B > C and C(ch A) is in CS, then B(chA) is replaced
by C(ch A).

Rule 3 : if B(ch A) is in Q but not in CS, and if
A < C and B(chC) is in CS, thenB(ch A) is replaced
by B(chC) and some constraint on C. The constraint
on C in B(ch C) can have three cases :

(3.1) if A appears in some BCG, then B(ch C) isre-
placed by X.B(ch C), , and "X.C similar to A" is
added into Q, where X is a unique variable name.

(3.2) A isa fuzzy concept of C and is described by
a D-type conceptual graph [CHANG79] which repre-
sents some constraint on C.

(3.3) A is an instance of C. Add "C == 'A';" in-
to Q.

Rule 4 : if B(ch A) is in Q but not in CS, and if
B < C and C(chA) isinCS, then B(ch A) is replaced
by C(chA) and some constraints onC. The constraint
on C in C(ch A) can have three cases :

(4.1) if B appears in some BCG, then C(ch A) is
replaced by X.C(ch A), and "X.C similar to B" is
added into Q, where X is a unique variable name.

36

(4.2) B is a fuzzy concept of C and is described by
a D-type conceptual graph which represents some con-

straint on C.

(4.3) B is an instance of C. Add "B == 'C';" into
Q.

For Rule 5 and Rule 6 , '*' means any case
element in agnt, ptnt, sou, des, inst .

Rule 5 : if A(* verb) is in Q but not in CS, and if
C < A and C(* verb) is in CS, then A(* verb) is re-
placed by C(* verb).

Rule 6 : if A(* verb) is in Q but not in CS, and if
A < C and C(*verb) is in CS, then A(*verb) is re-
placed by C(* verb) and some constraint on C. The
constraint on C in C(* verb) can have three cases :

(6.1) if A appears in some BCG, then C(* verb) is
replaced by X.C(* verb), and "X.C similar to A" is
added into Q, where X is a unique variable name.

(6.2) A is a fuzzy concept of C and is described by
a D-type conceptual graph which represents some
constraint on C.

(6.3) A is an instance of C. Add "C == 'A';" into
Q.

Rule 7 : if "A op B;" is in Q , and A is a fuzzy
concept which is defined as a genus concept followed
bya condition, then replace "A op B;" with "GEN(A)
op B; <conditional statement>;". Similarly, if B
is a fuzzy concept, replace "A op B;" with "A op
GEN(B); <conditional statement>;". The <conditional
statement> is the condition associated with the
fuzzy concept. Here GEN(A) means"genus concept of
A" [SZOLO77].

Rule 8 : if "X.A similar to B" and "Y.Asimilar toB"
are in Q, then XandY canbeunified together, i.e.
change Y to X.

Rule I-8 identifya subset of basic conceptual
graphs which covers the user's query. These BCGs
must be projected and joined together to forma con-
nected query graph by using query formation rules
[CHANG79]. AI researchers have developed some
heuristic search strategies [NILSS71] which can be
applied to connect the set of BCGs to form a query
graph at concept level. To apply conceptual join
operation, the following conditions must be satis-
fied :

(i) ifAis joined with B, then A andBmust be
comparable.

(2) no two non-kernel concepts can be joined
together.

(3) if A is a concept of G1 and B is a concept
of G2, and if "A contain B' is in Q, then
no BCG can be joined with both G1 and G2
directly or indirectly.

Rule 9 : if the conceptual join operation is applied
to join conceptAand concept B, then add a "A simi-
lar to B" statement to Q.

If there are more than one choice in any re-
placement rule, then select one which is already
in Q. For example, if A(ch B) and A(ch C) can be

used to replace A(ch A), and A(ch B) is already in
Q, then selectA(chB) to replace A(chA). It should
be noted that the process of applying replacement
rules is not always deterministic in the sense that
more than one pass of defuzzificationmaybe required

to resolve semantic ambiguities.

4. QG Translator

In Section 3, the user's original query has
been transformed intoa query graph at concept level
(Qc). The query graph Qc is the connection of a
set of basic conceptual graphs (or their projec-
tions). Each concept in a basic conceptual graph
can be mapped into one or more attribute descrip-
tors. Our next step of query translation is to map
each concept into one and only one descriptor, and
to find a spanning subgraph of relational files in
RS. Each BCG in Qc is mapped into its associated

access graph (AG) (An access graph I = (R,E) is a
nondirected graph, where R is the set of nodes,
E ~ R × R is the set of edges. Each node inR cor-
responds a relational file in Rs, and accordingly,
a basic conceptual graph in CS.) [KE80]. The set
of AGsis then joined together to form a query graph

at file level (Qf). In other words, the QG trans-
lator enumerates access paths based on access graphs
in RS. It should be noted that if R(X,Y,Z) =
RI(X,Z) * R2(X,Y), then the projection of R(X,Y,Z)
over X and Z is the same as RI(X,Z). Therefore,
if Y contains no essential descriptors, then R2 is
redundant to the query. In the access graph, there
may be more than one relation containing the same

descriptor. Our purpose is to find an access path
which has no redundant connection. We will employ
some strategies in graph theory to enumerate the
access path as a minimum spanning tree of relational

files.

For each access graph, we can constructadis-
tance matrix [DEO73] to represent the minimum dis-

tances between relational files.

Algorithm i : Find a minimum spanning subgraph for
a subset X of nodes in an access graph G = (R,E).

Let X ~ R be a subset of nodes in G, and P be
the distance matrix of G, Pij the minimum distance

between R i and Rj, N = 9, M ~ 9.
Step 1 : Select Ri and Rj from X, i # j, such
that Pij is minimum. Let N = {R i , Rj} and

M = {(Ri, Rj)}.
Step 2 : Select Rm and Rn, Rm E X - N, RuE N,
such that Pmn is minimum. N = N U {Rm} and

M = M U {(Rm, Rn)}.
Step 3 : If X-N is empty, then stop. Else go

to Step 2.
Step 4 : Enumerate the path of length Pmn for
every (R m, R n) in M, using Flament's algorithm

[SCHAE73].

E
The total path length isL(X)= (Rm,Rn)E M Pan

Theorem i : The spanning subgraph found by Algorithm
i is a tree, and L(X) is globally minimum.

Proof : Since the minimum length path between any
two nodes is unique [KE80] the proof of
this theorem triviously follows Prim's
theorem [PRIM57].

Q.E.D.

37

Let S i bea subset of nodes in an access graph.
Denote L(Si) as the total spanning path length of
Si.

Theorem 2 : Let S 1 and S 2 be two subsets of nodes
in an access graph _G, and they cover the same set
of descriptors. If S 1 c $2, then L(S I) <= L(S2)-.

Proof : Let S 1 = {R I, R2, R3,... , Rk} , S 2 = {R 1 ,
R2, R3.. , R k, Rk+l}. If G is a tree,
then L<S[i < L(S2), the proof is immediate.
In the following we assume that G is not a
tree. Since S I and S 2 cover the same Set
of descriptors, Rk+imuSt have at least one
descriptor identical to either of R 1 , R2,
..., R k. Let's assumethatRkandRk+ 1 have
one identical descriptor. This implies that

Rk+ I is adjacent to Rk, i.e. R k and Rk+ I
have an edge connect them. If there does
not exist any other path between R k and
Rk+l, then either Rk+ I is contained in the
spanning subgraphof S 1 or Rk+ I is redundant.
On the other hand, if there exists one or
more paths other than the edge R k - Rk+ I
connect R k and Rk+l, then all of the nodes
in these paths constitute a complete sub-
graph, and all these nodes have distance i
between each other.
Thus Rk+ I is either redundant or contained
in the spanning subgraph of Si.These imply
that L(S I) <= L(S2).

Q.E.D.

Definition 1 : A concept C is Called an essential
concept, if it satisfies any of the following con-
ditions :

(i) C appears in 'get' statement.
(2) C appears in a conditional statement.
(3) C appears in a 'similar to' statement.
(4) C is the kernel of a BCG which has been identi-

fied in Q.

The following algorithm is used to enumerate
the access paths for a user's query. The result of
applying this algorithm is a query graph at file
level.

Algorithm 2 : Find the minimum spanning subgraph of
relational files for a query Qc"

Let W = {CG i} be the set of BCG s (or their
projections) in Qc" For each CG i in W, there is an
access graph AG i associated with it.

The following rules are applied for each CGi
in W :

Step 1 : Identify the set of essential concepts.

Let E i = {Cij} be the set of essential con-
cepts in CG i.

Step 2 : Map each essential concept into its asso-
ciated descriptor, and find the relations which
contain that descriptor.
Let Uij, i <= j <= m, be the set of relations which
contain the descriptor associate with the concept
Cij in E i.

Step 3 : Find a set of relations which covers all

of the essential descriptor.

Let Yi = Uil × Ui2 x ... x Uim = {(Uil, ui 2
Uim) }.
where Uil E Uil, ui2 6 Ui2 ,..., Uim E Uim •
Each element in Yi is a collection of relations
which covers all of the essential concepts in CG i.

Let Yil and Yi2 be two elements in Yi, if YilCYi2,
then deleteYi2 from Yi"

Step 4 : Calculate the total path length for each
candidate set of relations, and select the one with
minimum length.
For each Yij 6 Yi, apply Step 1-3 of Algorithm I.
Select Yin, the element with minimum total path
length, from Yi"

Step 5 : Enumerate access path.
Apply Step 4 of Algorithm 1 to Yin"

Step 6 : From the result of Step 5, if R 1 and R 2 are
two adjacent relations, generate a "RI.K i similar to
R2.Ki" statement, where K i is the descriptor exists
in both R 1 and R 2.

After the access paths for all CG{s in W have
been found, the join of these access paths is the
query graph at file level Qf , which is called the
fully query.

5. GR Translator

The GR translator translates from the query
graph at file level into a sequence of RAIN state-
ments. The sequence of RAIN statements is equiva-
lent to the user's original query.

Definition 2 : A ~descriptor K is called an essen-
tial descriptor, if it is associated with an essen-
tial concept.

Definition 3 : A descriptor K is called a key des-
criptor, if (1)it is an essential descriptor, and
(2)it appears in a "similar to" statement of "con-
tain" statement.

Let M be the set of relations in the full
query Qf.

Ste~ 0 : if Ri.A 1 , Ri.A 2 ,..., Ri.An~are the des-
criptors associated wi~h some virtual en-
tities, then generate a RAIN extend state-
ment

ENTEND R i TO D BY (AI,FUNI), (A2,FUN2),
.... (An,FUNn)
where FUNi's are defined by D-type concep-
tual graphs.
In M, change R i to D.

Step i : For each conditional statement inQf, which
contains only descriptors covered by the
same file R i E M, do :
Generate a RAIN restriction statement

C i = R i *conditions*

Delete this conditional statement from Q~
In M, change R i to C i.
end;
If no more conditions in Qf and, M con-
tains only one file name, go to Step 4.
Else, goto Step 2.

38

Step 2 : Example : Find the names of suppliers who supply all
parts.

If (Ri.K n , similar to, Rj.Km) is in Qf ,
then do :
Generate a RAIN join statement

Ji = Ri (essential desc.)(*key desc.)
Rj (essential desc.)

Delete this "similar to"statement from Qf.
In M, change R i, Rj to Ji" Go to Step i.
end;
Else goto Step 3.

Step 3 : If either of the following two rules have
been applied, then go to Step I. Other-
wise, go to Step 3.

Rule 1 : If (Ri. Kj, verb, Ri.Ki) and (Ri,
Ki, contain, Rn.Km) in Qf, R i ,
RnE M,and there is neither link-
ing nor conditional statement for
R n, generate a RAIN division state-
ment followed byaRAINjoin state-
ment

D i = Ri(Kj,Ki) (/Ki;Km)Rn(Km)
Dj = Ri(essential desc.)(*Kj)Dj

(Kj)

Delete this "contain" statement
from Qf.
In M, change R i to Dj. Go to
Step i.

Rule 2 : If (Ri.Kj, verb, Ri.K i) and (Ri.Ki,
not contain, Rn.K m) is in Qf, Ri,
R n E M, and there is neither link-
ing for conditional statement for
Rn, generate a RAIN division state-
ment followed by a RAIN difference
statement and a RAIN join state-
ment

D i = Ri(Kj,Ki)(/Ki;Km)Rn(K m)
Dj R i(Kj) , D i(K=)
D k Ri(essential ~ese.)(*Kj)Dj

(Kj)

Delete this "not contain" state-
ment from Qf.
In M, change R i to D k. Go to
Step I.

Step 4 : Generate a RAIN projection statement to
project all descriptors in get statement

R i = Ri(descriptors in get statement)

Step 5 : Generate a RAIN print statement to print
out the final response relation

print R i

Step 6 : If there is a "into filename" statement in
Qf, generate a RAIN rename statement

rename R i to filename

Step 7 : Erase all temporary files created in query
translation

erase RI, R2,...

XQL : get name of supplier; supplier supply all part.

(I) get name(ch supplier) ; supplier(agnt supply)
supply part(ptnt supply) , part(ptnt supply)
contain part.

(2) get name(ch supplier); supplier similar to sup-
plier(agnt supply); supplier(agnt supply) supply
part(ptnt supply) ; part(ptnt supply) contain
part.

Qc

r- . .i

I Supply i

I I
I '

I

I supplier(sgnt supply) part(ptnt supply)

i 1 * /

r t r

i I I i
I supplier part
I I I I
I l I I
I name(ch supplier) | I I

I l
L__ ~ L

Qf

i
I SPD.S#,SPD.P#,SPD.D#

|
~ SPD.S# SPD.P#

I
i

S. SNAME i
I

I-- --I

(3) get S. SNAME ; S.S# similar to SPD.S# ; SPD.S#
supply SPD.P#; SPD.P# contain P.P#.

(4) R 1 = S(S#,SNAME)(*S#)SPD(S#,P#)
R 2 = RI(S#,P#)(/P#)P(P#)
R 3 = RI(S#,SNAME)(*S#)R2(S#)
R 4 R3(SNAME)
print R 4
erase RI, R2, R 3, R 4

Conclusions

In this paper we have described the evolution
of a query translation system. The three genera-
tions, EQL, EEQL, XQL, of this query translation
system reflect not only the evolution of machine
intelligence but also the improvement of human en-
gineering. Translation of XQL has been described
in detail. Relational algebra has been selected as

39

the target data manipulation language in query
translation. The expressive power of XQL is at
least relational complete, however, we are extend-
ing it by incorporating the capacity of partial
matching. This extension is very useful to library
application. The underlying database management
system is relational model. However, with little
modification, it's not difficult to couple XQL to
other data models (e.g. hierarchical model, network
model).

Re ferences

BRUCE75

CHANG76

CHANG78

CHANG79

KE80

PRIM57

SZOLO77

Bruce, Bertram, "Case System for Natural
Language," Artificial Intelligence, Vol.6,
No.4, Winter 1975.
Chang, S. K., "Design Considerations of a
Database System in a Clinical Network En-
vironment," Proc.of NCC,N.Y., June 1976.
Chang, S. K. and Ke, J. S., "Database Ske-
leton and its Application to Fuzzy Query
Translation," IEEE Trans. Software Eng.
VoI.SE-4, Jan. 1978.
Chang, S. K. and Ke, J. S., "Translation
of Fuzzy Queries for Relational Database
System," IEEE Trans. Pat. Ana. and Mac.
Int. VoI.PANI-I, No.3, July 1979.
Ke, J. S., "On Modeling Relational Data-
bases, Proc. of ICS, Taipei, Dec. 1980.
Prim R. C., "Shortest Connection Networks
and Their Some Generalizations," Bell
System Tech. J., 36(1957), p1389-1401.
Sxolorits, P., etal., "An Overview of
OWL, A Language for Knowledge Represen-
tation," Laboratory for Computer Science,
MIT, June 1977.

APPENDIX I : An Example Database Skeleton

/*Data Base Skeleton for an Example Company
//GENERIC-HIERARCHY

manager < employee < person;
secretary < employee;
department-manager=manager(ch department)
number(ch employee)=employee-number;

/*~='means ~equivalent' or ~identical'
supplier-name=name(ch part);
department < location;
city < location;
electrical-part < part;
mechanical-part < part;
engineer < employee;
salesman < employee;
clerk < employee;
supplier-city=city(ch supplier);
visit-city=city(ch salesman);

/*supplier has number, name, and city
/*No comment statement can be inserted within each
/*graph
//P-TYPE CG

supplier : = S

$number: S#(9(3));
name : SNAME(X(20));
city : SCITY(X(20));

/*part has number, color, and name
//P-TYPE CG

part : = P

$number : P#(9(3));
name : PNAME(X(20));
color : COLOR(X(10));

/*department has number and manager
//P-TYPE CG

department : = D

$number : P#(9(2));
manager : MGR(9(2));

/*employee has number, name, age(virtual entity),
/*birth, salary, and department
//P-tYPE CG

employee : = EMP

$number : E#(9(4));
name : ENAME(X(20));
*age : AGE(9(2));
birth : BIRTH(9(6));
salary : SALARY(9(5));
department : D#(9(2));

/*electrical-part has number, voltage and current
//P-TYPE CG

electrical-part : = ELEC

$number : EP#(9(3));
voltage : VOLT(9(2));
current : CURNT(9(3));

/*mechanical-part has number and load
//P-TYPE CG

mechanical-part : = MECH

$number : MP#(9(3));
load : LOAD(9(3));

/*engineer has number, license and specialization
//P-TYPE CG

engineer : = ENGR

$number : ER#(9(3));
specialization : SPEC(9(1));
license : LICE(9(6));

/*salesman has number, visiting-city, and languages
//P-TYPE CG

salesman : = SALES

$number : ES#(9(3));
city : CITY(X(20));
language : LANG(9(2));

/*clerk has number, typing speed, and writing speed
//P-TYPE CG

clerk : = CLERK

$number : EC#(9(3));
type-speed : TYPE(9(2));
write-speed : WRITE(9(2));

/*city has name, population, and mayor
//P-TYPE CT

city : = CITY

$name: CNAME(X(20));
population : POP(9(6));
mayor : MAYOR(X(20));

40

/*supDlier supply part to department with some quan-
/*tity
//R-TYPE CG

supply : = SPD

$supplier(agnt) : S#(9(3));
$part(ptnt) : P#(9(3));
$department(des) : D#(9(2));
quantity(inst) : QTY(9(3));

/*virtual entity age = diff(data, birth)
//DV-TYPE CG

diff

age(ch employee);
data;
birth(ch employee);

/*graphical representation of fuzzy concept
//DF-TYPE CG

dark-color

color;
color = brown(l~;
color = black(1);

After compilation, the following relation defini-
tion statements will be generated;

DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

EFILES(S#(9(3)),SNAME(X920)),SCITY(X(20))))
EFILEP(P#(9(B)),PNAME(X(20)),COLOR(X(IO))))
EFILE D(D#(9(2)),MGR(9(2)))
EFILE EMP(E#(9(4)),ENAME(X(20)),AGE(9(2)),
BIRTH(9(6)),SALARY(9(5)),D#(9(2)))
EFILEELEC(EP#(9(3)),VOLT(9(2)),CURNT(9(3)))
EFILE MECH(MP#(9(3)),LOAD(9(3)))
EFILEENGR(ER#(9(B)),SPEC(9(1)),LICE(9(6)))
EFILE SALES(ES#(9(3)),VCITY(X(20)),LANG(9(~))
EFILE CLERK(EC#(9(B)),TYPE(9(2)),WRITE(9(2)))
EFILE CITY(CNAME(X(20)),POP(9(6)),MAYOR(X(20)~
EFILE SPD(S#(9(B)),P#(9(B)),D#(9(2)),QTY(9(B)D

41

