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ABSTRACT 

In this paper we describe the simulation 
approach for a general centralized computer 
communication system with emphasis on effi- 
ciency and versatility. The simulation program 
consists of three modules representing differ- 
ent levels in a hierarchy. The lowest level 
models the polled multidrop line connecting 
remote terminals to the concentrator. The 
second level models the trunk lines and the 
concentrator which interfaces the multidrop 
lines of lower speed to one or more higher 
speed trunk lines connected to a central com- 
puter. The highest level models the central 
computer which communicates with remote ter- 
minals via the trunks. 

A~hybrid simulation approach is used to 
~ease program development and to shorten com- 
puter running time. When feasible, empirical 
distributions, analytical formulae or analyti- 
cal models are used to eliminate simulation 
steps and simplify simulation procedures. The 
techniques developed are illustrated by appli- 
cation to the NASDAQ System. 

1. INTRODUCTION 

Determining the performance of a large cen- 

tralized computer communication system is an 
extraordinarily difficult task. Events occur 
over a wide range of time intervals. Computer 
operations take place in microseconds, modem 
and channel operations take place in mi11~econds, 
human interactions are on the order of seconds 
or minutes, and mean times between failures of 
equipment are usually weeks, months, or even 
years. Consequently, brute force simulations 
of such systems usually lead to large, unwieldy 
and unverifiable computer programs. 

A centralized computer communication system 
is an interconnection of computers, communication 
devices, and terminals designed for the collec- 
tion and distribution of data over a broad geo- 
graphical area. Low, medium and high speed 
communication lines usually tie these devices 
to the Central Processing System. Terminals 
typically either contain or are connected to 
control units located in subscriber offices. 
The control units are connected on multidropped 
regional lines to regional data concentrators 
located in areas selected to minimize overall 
communication costs. The concentrators in turn 
are connected to the Central Processing System 
by trunk lines. A simple diagram of such an 

arrangement is shown in Figure 1. A complete 

message transaction from arrival at a terminal 
to receipt of the response at the terminal 
follows the sequence of events given in Tak~el. 

TABLE 1 MESSAGE FLOW IN SYSTEM 

i) Message transmission from terminal to con- 
trol unit. 

2) Inbound transmission from control unit to 
concentrator on regional line. 

3) Storage in input buffer of concentrator. 
4) Concentrator processing. 
5) Inbound transmission on trunk line from 

concentrator to central processor. 
6) Storage in the central processor buffer 

staging area waiting to be processed. 
7) Activation of CP processing to completion 

of processing. 
8) Storage in buffer area waiting for out- 

bound transmission to originating 
concentrator. 

9) Outbound transmission on trunk line from 
central processor to concentrator. 
Storage in reply buffer at concentrator. 
Concentrator processing. 
Outbound transmission on regional line 
from concentrator to control unit. 
Message transmission from control unit to 
terminal. 

In this paper we describe the simulation 
of a general centralized computer communica- 
tion system with emphasis on efficiency and 
versatility. The simulation program consists 
of three modules. Each module represents a 
different level in a hierarchy. The lowest 
level models the polled multidrop line con- 
necting remote terminals to the concentrator. 
The second level models the trunk lines and 
the concentrator which interfaces the multi- 
drop lines of lower speed to one or more 
higher speed trunk lines connected to a cen- 
tral computer and the highest level models 
the central computer which communicates with 
remote terminals via the trunks. 

A hybrid simulation approach is used to 
ease program development and to shorten com- 
puter running time. When feasible, empirical 
distributions, analytical formulae or analyti- 
cal models are used to eliminate simulation 
steps and simplify simulation procedures. The 
approach is illustrated by application to the 
NASDAQ System 1,2 . 

The objective of the simulation system is 
to determine the capacity of the system under 
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differing input conditions. Within the maxi- 
mum absolute limitations on the number of 
transactions the system can handle, usable 
system capacity is a function of response 
time. Response time is in turn a function of 
various system parameters such as regional 
line speed, trunk line speed, trunk line uti- 
lization, message processing time at the cen- 
tral processor, central processor occupancy, 
the number of control units on a regional 
line, the number of terminals on the regional 
line, and so on. 

2. REGIONAL LINE POLLING. 
SELECTION AND FLOW CONTROL 

An integral part of the performance 
analysis model is a regional line simulation 
system to test a multidropped line connecting 
terminals to a concentrator. The program is 
flexible and versatile within the limit of 
available information. The main body of the 
program includes four major tasks on a multi- 
dropped line: terminal pollin~terminalselec- 
tion, inbound message request and update 
transmission, and outbound message reply 
transmission. Terminal polling, terminal 
selection and message transmission are all 
simulated on an event-by-event basis accord- 
ing to procedures described below. 

Polling Procedures 

When no outbound message (reply message 
from the concentrator to a terminal) is ready 
for delivery, the concentrator sends polling 
sequences to terminals to ask if they have any 
messages to send. Two polling procedures are 
widely used from concentrator to terminals on 
regional lines. In both cases, only one char- 
acter is used for poll identification. 

Strinq Pollinq 

The string polling control sequence has 
the following format: 

ikil I:I :lil N . . e  e e e  

Q D 1 D n 

ENQ is an ASCII character indicating the be- 
ginning of the polling sequence; EOT is an 
ASCII character indicating the end of the poll- 
ing sequence; PID. is the poll identification 
for the i th i terminal of the multidrop line. 
String polling requires response only if the 
terminal has data to transmit. Upon recogni- 
tion of its polling code, the terminal will 
respond by raising carrier and generating a 
continuous binary one on the inbound trans- 
mission line (from the terminal to the con- 
centrator) followed by the data. The concen- 
trator will respond to the continuous binary 
one condition by clamping the outbound trans- 
mission line to a binary zero condition before 
the eighth bit of poll identification character 
immediately following the poll identification 

character of the terminal that responded. 
Consequently, the terminal polled will not 
recognize the character. Since all this must 
be done before the eighth bit, the total time 
required for: (i) propagating the last bit of 
the poll identification character of the re- 
sponding terminal, (2) the terminal to recog- 
nize the character and raise the carrier, (3) 
the binary one signal to be propagated to the 
concentrator, and (4) for the concentrator to 
detect the carrier and clamp the outbound 
transmission line to zero condition, should be 
less than the transmission time of 7 bits. 

Discrete (burst) Pollinq 

A discrete polling control sequence con- 
sists of two characters and has the following 
format: 

If the terminal has no data to send, it 
raises the carrier and transmits an EOT char- 
acter on the inbound transmission line. If it 
has data to send, it raises the carrier and 
transmits the data. 

The advantage of the string polling is 
that the terminal waiting time can be signifi- 
cantly reduced. However, it has the disadvan- 
tage that the concentrator or CPU cannot know 
whether the terminal is still in operation if 
it does not respond. For this reason both 
string palling and discrete polling are often 
alternated within the same system. Discrete 
polling is periodically used to see if any 
terminal is not functioning. String polling 
is the predominant polling scheme because of 
its low overhead. 

Selection Procedures 

When an outbound message is ready for 
delivery, the concentrator sends a selection 
sequence to the proper terminal before it de- 
livers the message. Both "fast" select and 
"acknowledged" select are considered in the 
program. They both meet ANSI standards. 

Acknowledqed Select 

The selection sequence consists of three 
characters: SOH, PID and ENQ. When the con- 
centrator receives from the terminal an affir- 
mative reply (ACK) to its selection call, a 
message is sent from the concentrator to the 
terminal. When the concentrator receives a 
negative reply (NAK) or no reply, the concen- 
trator will either retransmit the selection 
sequence or stop the call. 

Fast Select 

A fast select sequence consists of two 
characters: SOH and PID. It is attached to 
the outbound message as part of the prefix. 
Immediately after having transmitted the 
select sequence, the concentrator sends out 

the outbound message. In the acknowledged 
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selection procedure, a selection sequence 
requests consent from the terminal. In the 
fast selection procedure, a selection sequence 
notifies the terminal that a message is to be 
delivered immediately following the selection 
sequence and no reply to the selection call is 
expected. 

The advantage of the fast select is its 
lower overhead in sending a message. By using 
it, overall response time can be improved. 
However, if a positive acknowledgment to the 
outbound message is not received by the con- 
centrator, the concentrator does not know 
whether it is caused by the line error or 
terminal malfunction. To avoid this disadvan- 
tage, acknowledged select is used when a posi- 
tive acknowledgment is not received by the 
concentrator by using fast select. 

Concentrator Flow Control Procedures 

The concentrator is a message oriented 
device, typically minicomputer based and core 
limited. The scheme with which input and 
reply buffers are accessed imposes limitations 
on the rate at which messages may flow. In 
typical systems, buffers are either dedicated 
to each regional line or are dynamically allo- 
cated from pools to regional lines according 
to terminal activity. If fixed buffers are 
assigned to regional lines, a regional line 
flow control scheme is necessary. With dynam- 
ically allocated buffers, a flow control scheme 
based on the total number of outstanding mes- 
sages is more desirable. 

An extreme case of reqional flow control 
is the following: when a message is trans- 
mitted from a control unit to its concentrator, 
polling on the control unit's regional line is 
suspended until the message is processed by 
the concentrator and transmitted to the cen- 
tral processor over a trunk line. Polling on 
that line is then resumed until another mes- 
sage is found. The waiting message is then 
transmitted to the concentrator input buffer 
where it must wait until the response to the 
first message is received back at the concen- 
trator or a time-out interval at the concen- 
trator is completed. Thus, control units may 
have at most one outstanding message and 
regional line may have a_~ most one outstandinq 
message. This latter restriction is necessi- 
tated by the static query buffer allocation at 
the concentrator. The restriction is imposed 
to prevent a message from returning from the 
central processor to the concentrator before a 
buffer is available. Thus, the central pro- 
cessor may assume that a buffer is available 
at the concentrator for every message and a 
positive acknowledgment scheme from concen- 
trator to central processor is not essential. 

If a dynamic buffer pool is available, 
then polling on all regional lines is sus- 
pended when all buffers are in use. Another 
extreme occurs when no positive flow control 
is used. In this case, messages which arrive 

when the buffer pool is full are not transmit- 
ted to the central processor and eventually a 
"time out" at the terminal must alert the user. 
Within the current model, we use a flow control 
procedure which does not allow more messages 
into the system than can be handled by a dyna- 
mically allocated return (i.e., outbound from 
central processor) buffer pool. Hence, mes- 
sages are prevented from entering the system 
when potential overload conditions occur. 

3. ANALYTIC MODELS FOR CONCENTRATOR 

~TRUNK. LINE CONFIGURATION 

Since it takes time to process or trans- 
mit a message, other messages may be waiting 
for their turn to be processed in the CPU or 
to be transmitted on a communication line. 
Queues are thereby formed and buffers are 
occupied. Many factors dictate the buffer 
occupancy distribution and the waiting time 
distribution of message traffic. Both simu- 
lation and analysis are possible to predict 
performance of the concentrator/trunk line 
segment. However, the simulation approach is 
costly and analytic approaches can give accep- 
table results if the problem is properly 
modeled. 

3 
Sinqle Server Analysis 

A "single server" can only process or 

transmitone message at one time and the next 
message cannot be processed or transmitted 
until this one has finished processing or 
transmission. The formulae for waiting time 
and for the number of messages in waiting de- 
pend on message traffic distribution, service 
time distribution and the dispatching disci- 
pline. Service time is the time to process or 
transmit a message. The dispatching discipline 
is the rule to determine which message should 
be served first. For example, in the NASDAQ 
System, all quote request messages have equal 
priority and since the volume of updates and 
other messages are a very small percentage of 
the quote requests, the dispatching discipline 
is essentially a first-come-first-serve policy. 

It is almost impossible to predict future 
traffic distributions in communication systems. 
However, in most systems messages arrive ran- 
domly and independently, and traffic patterns 
are chosen to be "Poisson distributed" to ob- 
tain tractable distributions. Furthermore, it 
has been shown in many queueing analyses that 
if there are several inputs to the server,then 
the arrival distribution to the server (which 
is the sum of the individual inputs) can be 
approximated as a Poisson distribution regard- 
less of the distribution types of the indivi- 
dual inputs. 

With traffic arrivals in a Poisson pattern 
and arbitrary service time distribution, the 

average waiting time for the server (processor 
or trunk) and the average number of messages 

in the queue are given below. 
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Average waiting time of a single server 

AVWTS = P - AVS o (i+A 2) (3.1) 
2 (l-P) 

Average number of messages in waiting for 
a single server 

AVNS = P-~--- ° (i+A 2) (3.2) 
2 (l-P) 

where 

p= facility utilization factor (for the 
processor, it is the percentage of 
the time that the processor is pro- 
cessing; for the trunk, it is the 
percentage of the time the trunk is 
transmitting). 

AVS = average service time for one message 
(for the processor, it is the average 
time to process one message; for the 
trunk, it is the average time to 
transmit one message). 

A = coefficient of variation for the ser- 
vice time distribution 

= standard deviation/mean. 

In the above equations "A" equals unity 
if the service time is exponentially distrib- 
uted and equals zero if the service time is 
constant. For other practical situations the 
coefficient of variation is between one and 
zero. (Equation (3.1) is known as the 
Pollaczek-Khintchine equation.) 

There are no manageable equations for the 
probabilitydistribution functions for the 
waiting time and the number of messages in 
waiting, except if the service time is expon- 
entially distributed. However, the waiting 
time from an exponentially distributed service 
time is usually greater than the one from a 
non-exponentially distributed service time, if 
the average service time is the same. There- 
fore, using equations based on exponentially 
distributed service time gives more conserva- 
tive results. Experience and simulations in- 
dicate that these results, though conservative, 
are close to true answers in the communication 
environment. 

With message arrival in a Poisson pattern 
and service time exponentially distributed, 
the probability functions of waiting time and 
number of messages in waiting are as follows: 

Prob(waiting time,t)= Pe-(i-P)t/AVS (3.3) 

Prob(exactly Nmessages in~iting)=(i-P)P N (3.4) 

Prob (more than N messages in waiting)=p N+I (3.5) 

Multiserver Analysis 

In a multiserver environment two or more 
servers may serve a same function simultan- 
eously if there is more than one message de- 
manding service. For example, if there are 
redundant lines between concentrator and CPU, 
there are two servers for transmitting messages 

from the concentrator to the central processor. 
Thus, when a message is ready to be transmitte~ 
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it can go to either of the two trunks not 
transmitting another message. The following 
are the formulae for the average waiting time 
and the average number of messages in waiting. 

Average waiting time for multiserver 

AVWTM = (B/M)AVWTS (3.6) 

Average number of messages in waiting for 
multiserver 

AVNM = B • AVNS (3.7) 

where AVWTS is average waiting time for a 
single server; AVNS is the average number of 
messages in waiting for single server; M is 
the number of servers; and 

B= (MP)M/(P (M:)(N=~MP)N/N: )-P~((MP)~))) 

Furthermore, it is assumed in equations (3.6) 
and (3.7) that all M servers have equal capa- 
city and are equally loaded. 

One important similarity between the be- 
havior of single server and multiserver queues 
is not demonstrated by the above equations. 
The averages given in equations (3.6) and(3.7) 
are obtained by averaging both those messages 
which have actually waited and those messages 
which have been instantly served without wait- 
ing at all. If the average waiting time is 
obtained only from those messages which have 
actually waited, the average waiting times 
will be AVS/(i-P) and AVS/M(i-P) for single 
server and multiserver, respectively. Simil- 
arly, the average number of messages in wait- 
ing will be P2/(i-P) for both cases. The 
above discussion indicates that, so far as the 
waiting time and number of messages in waiting 
for those messages actually waiting are con- 
cerned, the multiserver may be viewed as a 
single server with a capacity M times as much 
as each of the original servers. The average 
waiting time and the number of messages in 
waiting will then be (AVS/M)/(i-P) and p2/ 
(l-P), the same as in the multiserver case. 
In this way, the average waiting time is equi- 
valent to AVS/M. 

To be conservative, we consider only 
those messages which must wait for service. 
Therefore, the multiserver can be treated as 
a single server under the conditions stated 
above. It should be emphasized that all the 
discussions have been focused on messages in 
waiting, not on messages in service. Thus, 
the actual average service time for messages 
in service is AVS, rather than AVS/M, and the 
maximum number of buffers required for mes- 
sages in service is M, rather than one. 

Trunk Line Queueinq Analysis 

For generality, we consider the case where 
there are two trunk lines connected between 
the central processors and each concentrator 
facility. For messages in waiting, the trunks 
are equivalent to a single line with twice the 
single line speed. For messages in service, 
the line speed is the same as the single line~ 



speed. The precise performance of the system 
is then dependent on line speeds, message 
length distributions, etc. To provide an il- 
lustrative case, we consider the NASDAQ system. 
Here, trunk lines are either 50,000 bps or 
7,200 bps. The distribution of message lengths 
for the NASDAQ system is known fairly precisely. 

Approximately 95% of the reply messages 
have a length of 120 characters and 5% have a 
length of 36 characters. Thus, 

The average reply length (mean) = 
132 characters (1056 bits) 

The coefficient of variation, A= 0.266 

The average service time = .0645 sec. 
on a 7.2 Kbps line (used in determining 
waiting time) or = .01056 sec. on a 
50 Kbps line 

The average transmission time = 
.129 sec. on a 7.2 Kbps line or = 
.02112 sec. on a 50 Kbps line 

Equation (3.1) is used for determining the 
average waiting time of a reply. Similar ap- 
proaches can determine the input message wait- 
ing and transmission time. However, input 
messages are generally short and queueing de- 
lays arise primarily from return message 
queueing. For the outbound trunk, P is 0.75; 
for the inbound trunk, P is 0.13. 

To calculate the number of messages in 
waiting, Equation (3.5) is used. In the pro- 
gram a random number between zero and one, 
representing a probability, is generated. If 
its value is greater than or equal to pN but 
less than pN+l, N messages are in waiting. 
The time a message must wait for its turn to 
be transmitted is then equal to the average 
service time multiplied by the number of mes- 
sages in waiting. 

4. CENTRAL PROCESSOR UNIT 

Analysis of central processor performance 
is among the most difficult of all analysis 
problems. Analysis procedures are critically 
dependent of the function of the system and 
the processor configuration. However, a major 
factor in the analysis approach utilized is 
that while CPU operations take place in micro- 
seconds and processor drum and disk operations 
in milliseconds, message transmissions typi- 
cally require hundreds of milliseconds and re- 
quired response times are measured in seconds. 
Consequently, detailed microsecond simulations 
of the processing system are pointless. What 
is needed is semiquantitative predictions of 
throughput and saturation regions. Useful 
predictions techniques are also system depen- 
dent. Hence, we again use the NASDAQ system 
as a representative example. 

Central Processor Facility Descriptio n 

The overall Central Processor System is 
shown in Figure 2. Communications between cen- 
tral processors and concentrators is contro]/ed 

by the Communications Terminal Module Control- 
ler (CTMC). There are two CTMCs. Either CTMC 
can handle all necessary traffic but ordinarily 
both are in operation. 

One CTMC can be connected to up to 16 
Communication Terminal Modules (CTM). 12 
CTMs are connected to the modems which are 
connected to the communication lines. The 
CTMs, which must be matched to the communica- 
tions lines, recognize end of text characters. 
The CTMs cause interrupts one character after 
such characters and generate monitor inter- 
rupts if the buffer being read from is empty 
or the buffer being read into is full. Ex- 
ternal interrupts occur on receive, one char- 
acter after end of text is detected. Both 
vertical and horizontal parities are generated 
and checked by the software. 

There is no storage in CTM except for a 
one or two character buffer. The CTM processes 
each message on a character by character basis 
and operates in a full duplex mode. SYNC char- 
acters are originated by the software. Hori- 
zontal parity and end of text characters are 
generated by the software and placed in core 
along with the outgoing message. 

All messages are queued for processing or 
for transmission in core. Each 7,200 bit/sec. 
line has two dedicated buffers for input and 
50,000 bit/sec, line has three dedlcdh~d buf- 
fers. When the end of text character of a mes- 
sage is recognized, the message is moved from 
its input buffer to a buffer in a shared pool. 
This pool, called a staging area,contains ap- 
proximately 70 buffers, each long enough to 
store the entire input messageandits response. 
After a message arrives in the staging area, 
all operations are performed without further 
transfer. 

Output queues for each communication line 
are formed within the staging area. Output 
characters are transmitted to the CTMs by the 
CTMC such that the lowest number CTM (i.e., 
the ones connected to the 50 kilobit/second 
line) have the highest priority. If long 
queues for one or more concentrators grow, 
the concentrators may either individually or 
jointly be slowed down by stopping further 
transmission to the central processor for a 
short period of time. 

Each CTMC is connected to each central 
processor through a switch to its own I/O 
channel. Each I/O channel has a transmission 
rate of 2.65 microseconds per character for 
communications. 

The on-line system keeps track of inputs, 
accepts subscriber requests, updates and ref- 
erences the data pool, generates Level 1 out- 
put and keeps an activity record. In handling 
a quotation request or quotation update, the 
following primary units are involved: CPU, 
core, and drums. The number of references to 

core and drum vary depending on whether the 
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message is a quotation request or update and 
whether the security involved has been defined 
by the system to be "active" or "inactive." 
The designation of securities as "active" or 
"inactive" is made daily. After closing, 
securities are ranked according to the number 
of requests for quotations made during that 
day. The most active securities of the day 
are then designated as the "active" files for 
the following day's processing. Computation 
times vary between active and inactive files. 
For complete processing, one drum access is 
needed for an active security quotation request 
and two for an inactive one. For an active 
quotation request, the single access is to a 
high speed drum while for an inactive request 
one access is to a high speed drum while the 
other access is either to a high speed or a 
low speed drum. For an active quotation update, 
three accesses, all to high speed drums, are 
required while for an inactive security, an 
update requires one access to a high speed 
drum and three to either a high speed or low 
speed drums. Up to 7 messages can be processed 
together. This number is chosen to maintain 
effective drum utilization. 

The drum rotation times are 8.5milliseconds 
and 34.1 ~]]iseconds. Only two drums on the 
same subsystem can be accessed at the same 
time. Files are distributed in duplicate over 
all drums. All drums are normally in operation. 
On an update call the primary file is updated 
and then copied to the backup file. The direc- 
tory for active stocks are core stored and for 
inactive stocks stored on the high speed drums. 

Computation times also vary depending on 
whether the message is anupdateor a quotation 
request, and ifitis a quotation request, whether 
the request is for the first frame or for a 
substantial frame. The average computation 
times for a quotation request is approximately 
4 m~11~seconds for the ~t frame and8milliseconds 
for each subsequent frame. An average update 
request requires about 8 milliseconds of com- 
putation time. Table 2 summarizes average ser- 
vice times for various message classifications. 

TABLE 2 
MESSAGE SERVICE TIMES IN CENTRAL PROCESSOR 

Type 

Active Update 8 ms 
Request 

Active Quotation 4 
Request (ist frame) 

Active Quotation Re- 
quest(2nd frame, etc.) 8 

Inactive Update 
Request 8 

Inactive Quotation 4 
Request (ist frame) 

Inactive Quotation Re- 
quest(2nd frame, etc.) 8 

Total 
Average Average Average 
Processing Drum Service 

Times Time Time 

8.4 ms 16.4 ms 

4.2 8.2 

4.2 12.2 

34.1 42.1 

17.1 21.3 

17.1 25.3 

Buffer Utilization 

The buffer pool in the central processor 
is shared by several queues: the (four) con- 
centrator facilities and the CPU. If each of 
the queues is in a single server environment 
with Poisson arrival and exponential service, 
and if the facility utilization factor is the 
same for each of the servers, then 

Prob(mcre than mmessagesinwait/ng far service) 

m+5 (m~5 (l_p)m+5-i pi (4.1) =~ ) 
i=m +i 

Equation (4.1) may be interpreted as the 
probability of buffer overflow if there are m 
buffers in the buffer pool. This formula can 
be used to determine the number of buffers re- 
quired so that the probability of overflow is 

small. 

The number "m" in Equation (4.1) includes 
both messages waiting for service and messages 
in the process of being served. This formula 
gives a conservative result for the messages 
in waiting, but not for the ones in service. 
As stated, Equation (4.1)is for single servers. 
Yet, each of the five queues has more than one 
server queue for the messages in service. For 
a multiserver queue, the buffers required for 
messages in service. For a multiserver queue, 
the buffers required for messages in service 
may be as many as the number of servers. There -~ 
fore, given a value of probability, the total 
number of messages in the system may be larger 
than the one obtained from ~quation (4.1), but 
with a difference of no more than the total 
number of servers minus the number of different 
queues. The buffer pool in the central pro- 
cessors is shared by five different queues 
and fifteen servers (eight trunks and seven 
active modes in the central processors). TO 
be conservative, Equation (4.1) should be in- 
terpreted as the overflow probability when 
there are m+10 buffers. Therefore, Equation 
(4.1) should be rewritten as 

Prob(not enough buffers when there 
are m+10 buffers in the pool) 

m+5 m+5 (i p)m+5-ipi (4.2) 

=i_m~l. ( i ) - 

If the number of queues is not five, (4.2) can 
be modified as 

Prob(not enough buffers when there 
are m+10 buffers in pool, and there 
are M different queues.) 

m+M 
m+M (I p)m+M-ipi (4.3) 

=~--" ~ ( i ) - 
i=m+ 1 

Processor Utilization and Queueinq 

System capacity is severely limited by the 
average processing time required for each tran~ 
action. Processing time includes both applica- 
tion time and executive overhead. This pro- 
cessing time varies with time of day, percentage 
of processor occupancy and type of messages. 
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It must be emphasized that unless an extensive 
and expensive analysis is performed, either by 
simulation or by measuring the processor occu- 
pancy with simulated messages of various rates, 
it is impossible to predict accurately the re- 
maining usable capacity of the processor. 
However, measurements of processor occupancy 
under the sustem's normal operating condition 
can substantially aid in analysis. With these 
data simplified mathematical models can be der- 
ived to approximately predict the processor's 
behavior. 

Figure 3 shows the processor occupancy 
behavior during the busiest time period. To 
be conservative these data are used. The 
straight line shown is the least square regres- 
sion line fit for these data. From this line, 
an equation can be obtained as 

Transaction rate = 79 times processor 
occupancy - 20 

When both processors are 100% occupied, the 
above equation gives the maximum transaction 
rate of about 138 transactions per second. 
The actual maximum may be somewhat higher or 
lower than this number. In addition, ineffi- 
ciencies in the two processor configurations 
lead to no more than about 150% occupancy for 
message processing. In other words, the aver- 
age transaction rate should be no more than 
approximately i00 transactions per second. 

5. MODULE INTEGRATION AND AN 
ILLUSTRATIVE EXAMPLE 

The use of the model involves the integra- 
tion of the three modules in the following way: 

Polling, line selection and flow control 
are simulated on an event-by-event, message-by 
-message basis for a "test" regional line. The 
behavior of the other regional lines connected 
to the concentrator isapproximated and an analy- 
tic queueing model to represent the trunk line 
behavior is applied. When a message in an in- 
put buffer of the test regional line is ready 
for transmission to the central processor, the 
waiting time for the access to the inbound 
trunk line depends on the traffic load of other 
regional lines connected to the same concentra- 
tor. To determine message waiting time, the 
number of regional lines having an unempty in- 
put buffer must be determined. This number is 
calculated as follows: Given that the average 
transaction rate on the trunk(s) connecting the 
concentrator to the CPU is known, the total 
number of waiting inputs can be determined by 
generating a random number. (The formula used 
to obtain this number is detailed in Section 3.) 
The time waiting for the access to the trunk 
is then equal to the number so obtained multi- 
plied by the time required to transmit one 
average inbound message from the concentrator 
to the CPU. Knowing the utilization on the out- 
bound trunk, the waiting time for access to it 
can also be determined by generating a random 
number (the formula used ~ ~ Section 3)the average 

delays for inbound and outbound messages on 
the trunks are therefore computed. To complete 
the calculation, the time a message spends in 
the CPU must be estimated. This is done using 
the queueing approach described in Section 3 
in conjunction with the empirical processor 
occupancy curves for the CPUs. With this 
simple analysis, for a given number of mes- 
sages requiring service at the CPU, processor 
utilization is easily determined. Equation 
3.1 is then used to estimate the average wait- 
ing time. This estimate is incorporated in 
the trunk/concantrator analysis to predict a 
return time for an outbound message to reach 
the concentrator. These analytic predictions 
are then used in the regional line simulation 
to estimate response times and system through~ 
put. 

To illustrate the possible uses of the 
simulation system, we again use the NASDAQ 
system. Figures 4 and 5 show respectively, 
the effect on terminal response time when 
traffic on a test regional line is varied 
with all other traffic held constant and the 
terminal response time when traffic on the 
test line is held constant but traffic outside 
the line is varied. Figures 6 and 7 show two 
other parametric studies--regional line con- 
figuration variation and increase in trunk 
line speed. 

To produce each such curve, approximately 
30 seconds of CDC 6600 time was required(about 
$i0). Note that if a complete simulation of 
the entire system had been attempted, the gen- 
eration of even a few of these curves would 
have been prohibitively expensive. On the 
other hand, a completely analytic approach to 
the problem would have led to substantial in- 
accuracies and inflexibilities. Consequently, 
the hybrid approach is extremely well suited 
for practical and economical studies of exist- 
ing and proposed centralized computer communi- 
cation systems. 
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MODEMS 

Fig. 2 A simplified block diagram of the NASDAQ system 

Central Processing System. 
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Fig. 1 A Simplified layout of a centralized Computer 

Communication System (e.g. The NASDAQ System) 
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Effect on.._terminal response ,time of changes in regional line traffic rate 
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Effect of two different test regional line 

resDonse time 
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Effect on terminal response time of 50 KBPS trunk line speed 
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