
SIMULATION OF CENTRALIZED COMPUTER COMMUNICATIONS SYSTEMS

w. Chou, H. Frank and R. Van Slyke
Network Analysis Corporation
Beechwood, Old Tappan Road
Glen Cove, New York 11542

ABSTRACT

In this paper we describe the simulation
approach for a general centralized computer
communication system with emphasis on effi-
ciency and versatility. The simulation program
consists of three modules representing differ-
ent levels in a hierarchy. The lowest level
models the polled multidrop line connecting
remote terminals to the concentrator. The
second level models the trunk lines and the
concentrator which interfaces the multidrop
lines of lower speed to one or more higher
speed trunk lines connected to a central com-
puter. The highest level models the central
computer which communicates with remote ter-
minals via the trunks.

A~hybrid simulation approach is used to
~ease program development and to shorten com-
puter running time. When feasible, empirical
distributions, analytical formulae or analyti-
cal models are used to eliminate simulation
steps and simplify simulation procedures. The
techniques developed are illustrated by appli-
cation to the NASDAQ System.

1. INTRODUCTION

Determining the performance of a large cen-

tralized computer communication system is an
extraordinarily difficult task. Events occur
over a wide range of time intervals. Computer
operations take place in microseconds, modem
and channel operations take place in mi11~econds,
human interactions are on the order of seconds
or minutes, and mean times between failures of
equipment are usually weeks, months, or even
years. Consequently, brute force simulations
of such systems usually lead to large, unwieldy
and unverifiable computer programs.

A centralized computer communication system
is an interconnection of computers, communication
devices, and terminals designed for the collec-
tion and distribution of data over a broad geo-
graphical area. Low, medium and high speed
communication lines usually tie these devices
to the Central Processing System. Terminals
typically either contain or are connected to
control units located in subscriber offices.
The control units are connected on multidropped
regional lines to regional data concentrators
located in areas selected to minimize overall
communication costs. The concentrators in turn
are connected to the Central Processing System
by trunk lines. A simple diagram of such an

arrangement is shown in Figure 1. A complete

message transaction from arrival at a terminal
to receipt of the response at the terminal
follows the sequence of events given in Tak~el.

TABLE 1 MESSAGE FLOW IN SYSTEM

i) Message transmission from terminal to con-
trol unit.

2) Inbound transmission from control unit to
concentrator on regional line.

3) Storage in input buffer of concentrator.
4) Concentrator processing.
5) Inbound transmission on trunk line from

concentrator to central processor.
6) Storage in the central processor buffer

staging area waiting to be processed.
7) Activation of CP processing to completion

of processing.
8) Storage in buffer area waiting for out-

bound transmission to originating
concentrator.

9) Outbound transmission on trunk line from
central processor to concentrator.
Storage in reply buffer at concentrator.
Concentrator processing.
Outbound transmission on regional line
from concentrator to control unit.
Message transmission from control unit to
terminal.

In this paper we describe the simulation
of a general centralized computer communica-
tion system with emphasis on efficiency and
versatility. The simulation program consists
of three modules. Each module represents a
different level in a hierarchy. The lowest
level models the polled multidrop line con-
necting remote terminals to the concentrator.
The second level models the trunk lines and
the concentrator which interfaces the multi-
drop lines of lower speed to one or more
higher speed trunk lines connected to a cen-
tral computer and the highest level models
the central computer which communicates with
remote terminals via the trunks.

A hybrid simulation approach is used to
ease program development and to shorten com-
puter running time. When feasible, empirical
distributions, analytical formulae or analyti-
cal models are used to eliminate simulation
steps and simplify simulation procedures. The
approach is illustrated by application to the
NASDAQ System 1,2 .

The objective of the simulation system is
to determine the capacity of the system under

~)
ll)

D)

121

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800280.811039&domain=pdf&date_stamp=1973-01-01

differing input conditions. Within the maxi-
mum absolute limitations on the number of
transactions the system can handle, usable
system capacity is a function of response
time. Response time is in turn a function of
various system parameters such as regional
line speed, trunk line speed, trunk line uti-
lization, message processing time at the cen-
tral processor, central processor occupancy,
the number of control units on a regional
line, the number of terminals on the regional
line, and so on.

2. REGIONAL LINE POLLING.
SELECTION AND FLOW CONTROL

An integral part of the performance
analysis model is a regional line simulation
system to test a multidropped line connecting
terminals to a concentrator. The program is
flexible and versatile within the limit of
available information. The main body of the
program includes four major tasks on a multi-
dropped line: terminal pollin~terminalselec-
tion, inbound message request and update
transmission, and outbound message reply
transmission. Terminal polling, terminal
selection and message transmission are all
simulated on an event-by-event basis accord-
ing to procedures described below.

Polling Procedures

When no outbound message (reply message
from the concentrator to a terminal) is ready
for delivery, the concentrator sends polling
sequences to terminals to ask if they have any
messages to send. Two polling procedures are
widely used from concentrator to terminals on
regional lines. In both cases, only one char-
acter is used for poll identification.

Strinq Pollinq

The string polling control sequence has
the following format:

ikil I:I :lil N . . e e e e

Q D 1 D n

ENQ is an ASCII character indicating the be-
ginning of the polling sequence; EOT is an
ASCII character indicating the end of the poll-
ing sequence; PID. is the poll identification
for the i th i terminal of the multidrop line.
String polling requires response only if the
terminal has data to transmit. Upon recogni-
tion of its polling code, the terminal will
respond by raising carrier and generating a
continuous binary one on the inbound trans-
mission line (from the terminal to the con-
centrator) followed by the data. The concen-
trator will respond to the continuous binary
one condition by clamping the outbound trans-
mission line to a binary zero condition before
the eighth bit of poll identification character
immediately following the poll identification

character of the terminal that responded.
Consequently, the terminal polled will not
recognize the character. Since all this must
be done before the eighth bit, the total time
required for: (i) propagating the last bit of
the poll identification character of the re-
sponding terminal, (2) the terminal to recog-
nize the character and raise the carrier, (3)
the binary one signal to be propagated to the
concentrator, and (4) for the concentrator to
detect the carrier and clamp the outbound
transmission line to zero condition, should be
less than the transmission time of 7 bits.

Discrete (burst) Pollinq

A discrete polling control sequence con-
sists of two characters and has the following
format:

If the terminal has no data to send, it
raises the carrier and transmits an EOT char-
acter on the inbound transmission line. If it
has data to send, it raises the carrier and
transmits the data.

The advantage of the string polling is
that the terminal waiting time can be signifi-
cantly reduced. However, it has the disadvan-
tage that the concentrator or CPU cannot know
whether the terminal is still in operation if
it does not respond. For this reason both
string palling and discrete polling are often
alternated within the same system. Discrete
polling is periodically used to see if any
terminal is not functioning. String polling
is the predominant polling scheme because of
its low overhead.

Selection Procedures

When an outbound message is ready for
delivery, the concentrator sends a selection
sequence to the proper terminal before it de-
livers the message. Both "fast" select and
"acknowledged" select are considered in the
program. They both meet ANSI standards.

Acknowledqed Select

The selection sequence consists of three
characters: SOH, PID and ENQ. When the con-
centrator receives from the terminal an affir-
mative reply (ACK) to its selection call, a
message is sent from the concentrator to the
terminal. When the concentrator receives a
negative reply (NAK) or no reply, the concen-
trator will either retransmit the selection
sequence or stop the call.

Fast Select

A fast select sequence consists of two
characters: SOH and PID. It is attached to
the outbound message as part of the prefix.
Immediately after having transmitted the
select sequence, the concentrator sends out

the outbound message. In the acknowledged

122

selection procedure, a selection sequence
requests consent from the terminal. In the
fast selection procedure, a selection sequence
notifies the terminal that a message is to be
delivered immediately following the selection
sequence and no reply to the selection call is
expected.

The advantage of the fast select is its
lower overhead in sending a message. By using
it, overall response time can be improved.
However, if a positive acknowledgment to the
outbound message is not received by the con-
centrator, the concentrator does not know
whether it is caused by the line error or
terminal malfunction. To avoid this disadvan-
tage, acknowledged select is used when a posi-
tive acknowledgment is not received by the
concentrator by using fast select.

Concentrator Flow Control Procedures

The concentrator is a message oriented
device, typically minicomputer based and core
limited. The scheme with which input and
reply buffers are accessed imposes limitations
on the rate at which messages may flow. In
typical systems, buffers are either dedicated
to each regional line or are dynamically allo-
cated from pools to regional lines according
to terminal activity. If fixed buffers are
assigned to regional lines, a regional line
flow control scheme is necessary. With dynam-
ically allocated buffers, a flow control scheme
based on the total number of outstanding mes-
sages is more desirable.

An extreme case of reqional flow control
is the following: when a message is trans-
mitted from a control unit to its concentrator,
polling on the control unit's regional line is
suspended until the message is processed by
the concentrator and transmitted to the cen-
tral processor over a trunk line. Polling on
that line is then resumed until another mes-
sage is found. The waiting message is then
transmitted to the concentrator input buffer
where it must wait until the response to the
first message is received back at the concen-
trator or a time-out interval at the concen-
trator is completed. Thus, control units may
have at most one outstanding message and
regional line may have a_~ most one outstandinq
message. This latter restriction is necessi-
tated by the static query buffer allocation at
the concentrator. The restriction is imposed
to prevent a message from returning from the
central processor to the concentrator before a
buffer is available. Thus, the central pro-
cessor may assume that a buffer is available
at the concentrator for every message and a
positive acknowledgment scheme from concen-
trator to central processor is not essential.

If a dynamic buffer pool is available,
then polling on all regional lines is sus-
pended when all buffers are in use. Another
extreme occurs when no positive flow control
is used. In this case, messages which arrive

when the buffer pool is full are not transmit-
ted to the central processor and eventually a
"time out" at the terminal must alert the user.
Within the current model, we use a flow control
procedure which does not allow more messages
into the system than can be handled by a dyna-
mically allocated return (i.e., outbound from
central processor) buffer pool. Hence, mes-
sages are prevented from entering the system
when potential overload conditions occur.

3. ANALYTIC MODELS FOR CONCENTRATOR

~TRUNK. LINE CONFIGURATION

Since it takes time to process or trans-
mit a message, other messages may be waiting
for their turn to be processed in the CPU or
to be transmitted on a communication line.
Queues are thereby formed and buffers are
occupied. Many factors dictate the buffer
occupancy distribution and the waiting time
distribution of message traffic. Both simu-
lation and analysis are possible to predict
performance of the concentrator/trunk line
segment. However, the simulation approach is
costly and analytic approaches can give accep-
table results if the problem is properly
modeled.

3
Sinqle Server Analysis

A "single server" can only process or

transmitone message at one time and the next
message cannot be processed or transmitted
until this one has finished processing or
transmission. The formulae for waiting time
and for the number of messages in waiting de-
pend on message traffic distribution, service
time distribution and the dispatching disci-
pline. Service time is the time to process or
transmit a message. The dispatching discipline
is the rule to determine which message should
be served first. For example, in the NASDAQ
System, all quote request messages have equal
priority and since the volume of updates and
other messages are a very small percentage of
the quote requests, the dispatching discipline
is essentially a first-come-first-serve policy.

It is almost impossible to predict future
traffic distributions in communication systems.
However, in most systems messages arrive ran-
domly and independently, and traffic patterns
are chosen to be "Poisson distributed" to ob-
tain tractable distributions. Furthermore, it
has been shown in many queueing analyses that
if there are several inputs to the server,then
the arrival distribution to the server (which
is the sum of the individual inputs) can be
approximated as a Poisson distribution regard-
less of the distribution types of the indivi-
dual inputs.

With traffic arrivals in a Poisson pattern
and arbitrary service time distribution, the

average waiting time for the server (processor
or trunk) and the average number of messages

in the queue are given below.

123

Average waiting time of a single server

AVWTS = P - AVS o (i+A 2) (3.1)
2 (l-P)

Average number of messages in waiting for
a single server

AVNS = P-~--- ° (i+A 2) (3.2)
2 (l-P)

where

p= facility utilization factor (for the
processor, it is the percentage of
the time that the processor is pro-
cessing; for the trunk, it is the
percentage of the time the trunk is
transmitting).

AVS = average service time for one message
(for the processor, it is the average
time to process one message; for the
trunk, it is the average time to
transmit one message).

A = coefficient of variation for the ser-
vice time distribution

= standard deviation/mean.

In the above equations "A" equals unity
if the service time is exponentially distrib-
uted and equals zero if the service time is
constant. For other practical situations the
coefficient of variation is between one and
zero. (Equation (3.1) is known as the
Pollaczek-Khintchine equation.)

There are no manageable equations for the
probabilitydistribution functions for the
waiting time and the number of messages in
waiting, except if the service time is expon-
entially distributed. However, the waiting
time from an exponentially distributed service
time is usually greater than the one from a
non-exponentially distributed service time, if
the average service time is the same. There-
fore, using equations based on exponentially
distributed service time gives more conserva-
tive results. Experience and simulations in-
dicate that these results, though conservative,
are close to true answers in the communication
environment.

With message arrival in a Poisson pattern
and service time exponentially distributed,
the probability functions of waiting time and
number of messages in waiting are as follows:

Prob(waiting time,t)= Pe-(i-P)t/AVS (3.3)

Prob(exactly Nmessages in~iting)=(i-P)P N (3.4)

Prob (more than N messages in waiting)=p N+I (3.5)

Multiserver Analysis

In a multiserver environment two or more
servers may serve a same function simultan-
eously if there is more than one message de-
manding service. For example, if there are
redundant lines between concentrator and CPU,
there are two servers for transmitting messages

from the concentrator to the central processor.
Thus, when a message is ready to be transmitte~

124

it can go to either of the two trunks not
transmitting another message. The following
are the formulae for the average waiting time
and the average number of messages in waiting.

Average waiting time for multiserver

AVWTM = (B/M)AVWTS (3.6)

Average number of messages in waiting for
multiserver

AVNM = B • AVNS (3.7)

where AVWTS is average waiting time for a
single server; AVNS is the average number of
messages in waiting for single server; M is
the number of servers; and

B= (MP)M/(P (M:)(N=~MP)N/N:)-P~((MP)~)))

Furthermore, it is assumed in equations (3.6)
and (3.7) that all M servers have equal capa-
city and are equally loaded.

One important similarity between the be-
havior of single server and multiserver queues
is not demonstrated by the above equations.
The averages given in equations (3.6) and(3.7)
are obtained by averaging both those messages
which have actually waited and those messages
which have been instantly served without wait-
ing at all. If the average waiting time is
obtained only from those messages which have
actually waited, the average waiting times
will be AVS/(i-P) and AVS/M(i-P) for single
server and multiserver, respectively. Simil-
arly, the average number of messages in wait-
ing will be P2/(i-P) for both cases. The
above discussion indicates that, so far as the
waiting time and number of messages in waiting
for those messages actually waiting are con-
cerned, the multiserver may be viewed as a
single server with a capacity M times as much
as each of the original servers. The average
waiting time and the number of messages in
waiting will then be (AVS/M)/(i-P) and p2/
(l-P), the same as in the multiserver case.
In this way, the average waiting time is equi-
valent to AVS/M.

To be conservative, we consider only
those messages which must wait for service.
Therefore, the multiserver can be treated as
a single server under the conditions stated
above. It should be emphasized that all the
discussions have been focused on messages in
waiting, not on messages in service. Thus,
the actual average service time for messages
in service is AVS, rather than AVS/M, and the
maximum number of buffers required for mes-
sages in service is M, rather than one.

Trunk Line Queueinq Analysis

For generality, we consider the case where
there are two trunk lines connected between
the central processors and each concentrator
facility. For messages in waiting, the trunks
are equivalent to a single line with twice the
single line speed. For messages in service,
the line speed is the same as the single line~

speed. The precise performance of the system
is then dependent on line speeds, message
length distributions, etc. To provide an il-
lustrative case, we consider the NASDAQ system.
Here, trunk lines are either 50,000 bps or
7,200 bps. The distribution of message lengths
for the NASDAQ system is known fairly precisely.

Approximately 95% of the reply messages
have a length of 120 characters and 5% have a
length of 36 characters. Thus,

The average reply length (mean) =
132 characters (1056 bits)

The coefficient of variation, A= 0.266

The average service time = .0645 sec.
on a 7.2 Kbps line (used in determining
waiting time) or = .01056 sec. on a
50 Kbps line

The average transmission time =
.129 sec. on a 7.2 Kbps line or =
.02112 sec. on a 50 Kbps line

Equation (3.1) is used for determining the
average waiting time of a reply. Similar ap-
proaches can determine the input message wait-
ing and transmission time. However, input
messages are generally short and queueing de-
lays arise primarily from return message
queueing. For the outbound trunk, P is 0.75;
for the inbound trunk, P is 0.13.

To calculate the number of messages in
waiting, Equation (3.5) is used. In the pro-
gram a random number between zero and one,
representing a probability, is generated. If
its value is greater than or equal to pN but
less than pN+l, N messages are in waiting.
The time a message must wait for its turn to
be transmitted is then equal to the average
service time multiplied by the number of mes-
sages in waiting.

4. CENTRAL PROCESSOR UNIT

Analysis of central processor performance
is among the most difficult of all analysis
problems. Analysis procedures are critically
dependent of the function of the system and
the processor configuration. However, a major
factor in the analysis approach utilized is
that while CPU operations take place in micro-
seconds and processor drum and disk operations
in milliseconds, message transmissions typi-
cally require hundreds of milliseconds and re-
quired response times are measured in seconds.
Consequently, detailed microsecond simulations
of the processing system are pointless. What
is needed is semiquantitative predictions of
throughput and saturation regions. Useful
predictions techniques are also system depen-
dent. Hence, we again use the NASDAQ system
as a representative example.

Central Processor Facility Descriptio n

The overall Central Processor System is
shown in Figure 2. Communications between cen-
tral processors and concentrators is contro]/ed

by the Communications Terminal Module Control-
ler (CTMC). There are two CTMCs. Either CTMC
can handle all necessary traffic but ordinarily
both are in operation.

One CTMC can be connected to up to 16
Communication Terminal Modules (CTM). 12
CTMs are connected to the modems which are
connected to the communication lines. The
CTMs, which must be matched to the communica-
tions lines, recognize end of text characters.
The CTMs cause interrupts one character after
such characters and generate monitor inter-
rupts if the buffer being read from is empty
or the buffer being read into is full. Ex-
ternal interrupts occur on receive, one char-
acter after end of text is detected. Both
vertical and horizontal parities are generated
and checked by the software.

There is no storage in CTM except for a
one or two character buffer. The CTM processes
each message on a character by character basis
and operates in a full duplex mode. SYNC char-
acters are originated by the software. Hori-
zontal parity and end of text characters are
generated by the software and placed in core
along with the outgoing message.

All messages are queued for processing or
for transmission in core. Each 7,200 bit/sec.
line has two dedicated buffers for input and
50,000 bit/sec, line has three dedlcdh~d buf-
fers. When the end of text character of a mes-
sage is recognized, the message is moved from
its input buffer to a buffer in a shared pool.
This pool, called a staging area,contains ap-
proximately 70 buffers, each long enough to
store the entire input messageandits response.
After a message arrives in the staging area,
all operations are performed without further
transfer.

Output queues for each communication line
are formed within the staging area. Output
characters are transmitted to the CTMs by the
CTMC such that the lowest number CTM (i.e.,
the ones connected to the 50 kilobit/second
line) have the highest priority. If long
queues for one or more concentrators grow,
the concentrators may either individually or
jointly be slowed down by stopping further
transmission to the central processor for a
short period of time.

Each CTMC is connected to each central
processor through a switch to its own I/O
channel. Each I/O channel has a transmission
rate of 2.65 microseconds per character for
communications.

The on-line system keeps track of inputs,
accepts subscriber requests, updates and ref-
erences the data pool, generates Level 1 out-
put and keeps an activity record. In handling
a quotation request or quotation update, the
following primary units are involved: CPU,
core, and drums. The number of references to

core and drum vary depending on whether the

125

message is a quotation request or update and
whether the security involved has been defined
by the system to be "active" or "inactive."
The designation of securities as "active" or
"inactive" is made daily. After closing,
securities are ranked according to the number
of requests for quotations made during that
day. The most active securities of the day
are then designated as the "active" files for
the following day's processing. Computation
times vary between active and inactive files.
For complete processing, one drum access is
needed for an active security quotation request
and two for an inactive one. For an active
quotation request, the single access is to a
high speed drum while for an inactive request
one access is to a high speed drum while the
other access is either to a high speed or a
low speed drum. For an active quotation update,
three accesses, all to high speed drums, are
required while for an inactive security, an
update requires one access to a high speed
drum and three to either a high speed or low
speed drums. Up to 7 messages can be processed
together. This number is chosen to maintain
effective drum utilization.

The drum rotation times are 8.5milliseconds
and 34.1 ~]]iseconds. Only two drums on the
same subsystem can be accessed at the same
time. Files are distributed in duplicate over
all drums. All drums are normally in operation.
On an update call the primary file is updated
and then copied to the backup file. The direc-
tory for active stocks are core stored and for
inactive stocks stored on the high speed drums.

Computation times also vary depending on
whether the message is anupdateor a quotation
request, and ifitis a quotation request, whether
the request is for the first frame or for a
substantial frame. The average computation
times for a quotation request is approximately
4 m~11~seconds for the ~t frame and8milliseconds
for each subsequent frame. An average update
request requires about 8 milliseconds of com-
putation time. Table 2 summarizes average ser-
vice times for various message classifications.

TABLE 2
MESSAGE SERVICE TIMES IN CENTRAL PROCESSOR

Type

Active Update 8 ms
Request

Active Quotation 4
Request (ist frame)

Active Quotation Re-
quest(2nd frame, etc.) 8

Inactive Update
Request 8

Inactive Quotation 4
Request (ist frame)

Inactive Quotation Re-
quest(2nd frame, etc.) 8

Total
Average Average Average
Processing Drum Service

Times Time Time

8.4 ms 16.4 ms

4.2 8.2

4.2 12.2

34.1 42.1

17.1 21.3

17.1 25.3

Buffer Utilization

The buffer pool in the central processor
is shared by several queues: the (four) con-
centrator facilities and the CPU. If each of
the queues is in a single server environment
with Poisson arrival and exponential service,
and if the facility utilization factor is the
same for each of the servers, then

Prob(mcre than mmessagesinwait/ng far service)

m+5 (m~5 (l_p)m+5-i pi (4.1) =~)
i=m +i

Equation (4.1) may be interpreted as the
probability of buffer overflow if there are m
buffers in the buffer pool. This formula can
be used to determine the number of buffers re-
quired so that the probability of overflow is

small.

The number "m" in Equation (4.1) includes
both messages waiting for service and messages
in the process of being served. This formula
gives a conservative result for the messages
in waiting, but not for the ones in service.
As stated, Equation (4.1)is for single servers.
Yet, each of the five queues has more than one
server queue for the messages in service. For
a multiserver queue, the buffers required for
messages in service. For a multiserver queue,
the buffers required for messages in service
may be as many as the number of servers. There -~
fore, given a value of probability, the total
number of messages in the system may be larger
than the one obtained from ~quation (4.1), but
with a difference of no more than the total
number of servers minus the number of different
queues. The buffer pool in the central pro-
cessors is shared by five different queues
and fifteen servers (eight trunks and seven
active modes in the central processors). TO
be conservative, Equation (4.1) should be in-
terpreted as the overflow probability when
there are m+10 buffers. Therefore, Equation
(4.1) should be rewritten as

Prob(not enough buffers when there
are m+10 buffers in the pool)

m+5 m+5 (i p)m+5-ipi (4.2)

=i_m~l. (i) -

If the number of queues is not five, (4.2) can
be modified as

Prob(not enough buffers when there
are m+10 buffers in pool, and there
are M different queues.)

m+M
m+M (I p)m+M-ipi (4.3)

=~--" ~ (i) -
i=m+ 1

Processor Utilization and Queueinq

System capacity is severely limited by the
average processing time required for each tran~
action. Processing time includes both applica-
tion time and executive overhead. This pro-
cessing time varies with time of day, percentage
of processor occupancy and type of messages.

126

It must be emphasized that unless an extensive
and expensive analysis is performed, either by
simulation or by measuring the processor occu-
pancy with simulated messages of various rates,
it is impossible to predict accurately the re-
maining usable capacity of the processor.
However, measurements of processor occupancy
under the sustem's normal operating condition
can substantially aid in analysis. With these
data simplified mathematical models can be der-
ived to approximately predict the processor's
behavior.

Figure 3 shows the processor occupancy
behavior during the busiest time period. To
be conservative these data are used. The
straight line shown is the least square regres-
sion line fit for these data. From this line,
an equation can be obtained as

Transaction rate = 79 times processor
occupancy - 20

When both processors are 100% occupied, the
above equation gives the maximum transaction
rate of about 138 transactions per second.
The actual maximum may be somewhat higher or
lower than this number. In addition, ineffi-
ciencies in the two processor configurations
lead to no more than about 150% occupancy for
message processing. In other words, the aver-
age transaction rate should be no more than
approximately i00 transactions per second.

5. MODULE INTEGRATION AND AN
ILLUSTRATIVE EXAMPLE

The use of the model involves the integra-
tion of the three modules in the following way:

Polling, line selection and flow control
are simulated on an event-by-event, message-by
-message basis for a "test" regional line. The
behavior of the other regional lines connected
to the concentrator isapproximated and an analy-
tic queueing model to represent the trunk line
behavior is applied. When a message in an in-
put buffer of the test regional line is ready
for transmission to the central processor, the
waiting time for the access to the inbound
trunk line depends on the traffic load of other
regional lines connected to the same concentra-
tor. To determine message waiting time, the
number of regional lines having an unempty in-
put buffer must be determined. This number is
calculated as follows: Given that the average
transaction rate on the trunk(s) connecting the
concentrator to the CPU is known, the total
number of waiting inputs can be determined by
generating a random number. (The formula used
to obtain this number is detailed in Section 3.)
The time waiting for the access to the trunk
is then equal to the number so obtained multi-
plied by the time required to transmit one
average inbound message from the concentrator
to the CPU. Knowing the utilization on the out-
bound trunk, the waiting time for access to it
can also be determined by generating a random
number (the formula used ~ ~ Section 3)the average

delays for inbound and outbound messages on
the trunks are therefore computed. To complete
the calculation, the time a message spends in
the CPU must be estimated. This is done using
the queueing approach described in Section 3
in conjunction with the empirical processor
occupancy curves for the CPUs. With this
simple analysis, for a given number of mes-
sages requiring service at the CPU, processor
utilization is easily determined. Equation
3.1 is then used to estimate the average wait-
ing time. This estimate is incorporated in
the trunk/concantrator analysis to predict a
return time for an outbound message to reach
the concentrator. These analytic predictions
are then used in the regional line simulation
to estimate response times and system through~
put.

To illustrate the possible uses of the
simulation system, we again use the NASDAQ
system. Figures 4 and 5 show respectively,
the effect on terminal response time when
traffic on a test regional line is varied
with all other traffic held constant and the
terminal response time when traffic on the
test line is held constant but traffic outside
the line is varied. Figures 6 and 7 show two
other parametric studies--regional line con-
figuration variation and increase in trunk
line speed.

To produce each such curve, approximately
30 seconds of CDC 6600 time was required(about
$i0). Note that if a complete simulation of
the entire system had been attempted, the gen-
eration of even a few of these curves would
have been prohibitively expensive. On the
other hand, a completely analytic approach to
the problem would have led to substantial in-
accuracies and inflexibilities. Consequently,
the hybrid approach is extremely well suited
for practical and economical studies of exist-
ing and proposed centralized computer communi-
cation systems.

References

I. H.Frank, I.T.Frisch, R.Van Slyke, "Testing
the NASDAQ System-Traffic and Response
Time," Proceedinqs of the Sym~osiiun o_n
Computer Communication Networks and Tele-
traffic, Polytechnic Press, N.Y. pp.577-
586, 1972.

2. H.Frank, I.T.Frisch, R.Van Slyke, "Testing
the NASDAQ Systems-Reliability and Availa-
bility," (in preparation).

3. L. Kleinrock, Queueing Systems: Theory
and Applications, Wiley, N.Y., 1973.

127

MODEMS

Fig. 2 A simplified block diagram of the NASDAQ system

Central Processing System.

 j enra /roce or

~ @ ~ --Concentrator

Fig. 1 A Simplified layout of a centralized Computer

Communication System (e.g. The NASDAQ System)

U
U
0

1.4
0

~J
0

0

163

154

145

136

127

118

109

I

27

r| ! ! ! I I I

30 33 36 39 42 45 48

Two processor occupancy rate during busy period

Figure 3

128

Effect on.._terminal response ,time of changes in regional line traffic rate

4J

~4

4J

o

®

4J

o ,,g
u
m

~4

~4
o

D~
m 4J

u
~4

%
i00,

80

60

4O

2O /
2'

1 2

/ / / i: 38<minute
/// ~: t0/minute

// ~u~/~e6/second
CPU rate: 100/second

Seconds

6' 8' lg ii i%

T-terminal response time

Figure 4

Effect on terminal response time of changes in traffic outside of test
regional line

0

",..I
4-J

m

0 .1 :~

ql

• I-I I11

D " N . ' ~

%

i00

80

6O

40

20 }
!
2

1

3 ~ 85 , 6 te CPU100/s83/sRate 3 ~ 85 , i6/s . l17/s
40 transactions/minute on regional line

Seconds
I I I I
6 8 io 12 i~

Figure 5

T-terminal response time

1 2 9

Effect of two different test regional line

resDonse time

C
%

i00

,-4

8O .,4
4u

o
6O

4J
.4

4O

o

m
~ 20
ro
M

O

D~

4~
C

configurations on terminal

i: One OCU has 12 terminals

One OCU has 4 terminals

Six OCUs have one terminal each

2: Seven OCUs have 3 terminals each

One OCU has one terminal

Regional line rate: 45/minute

Low speed trunk rate: 6/second
CPU rate: 100/second

OCU: terminal control unit

--2

T-terminal response time

Figure 6

Effect on terminal response time of 50 KBPS trunk line speed

E~

C

4u

m

e
-,4

c
O

~4

C
o
.,4
4~

C

~4
~u

o

D~

4u
c

i00.

80

6[

4(

2Q

/

1
i

Trunk rate: 40/second

CPU rate: 100/second

OCU: terminal control unit

4 6

Seconds
' i | i I
8 i0 12 14

T-terminal response time

Figure 7

1 3 0

