
AUTASIM: A SYSTEM FOR COMPUTERRED ASSEMBLY OF SIMULATION MODELS

Dr. Robe~ T. Burger

G e n e r a l Resea rch Corpo ra t i on

ABSTRACT

The ADTASIM System (Automated Aasembly of
Simulation Models) is described. The system is
designed to rapidly assemble discrete event,
stochastic simulation models of node network
systems. Systems of this type are distribution
systems, plant operations, systems for the pro-
vision of services, transportation systems, and
combinations of these. Models can be used for
comparative analysis of new concepts and proposed
systems with other systems.

The main AUTASIM components are a Module
Library of computer programs, a program called
the Model Assembler and a Model Description
Language. The Library contains functional and
simulation service modules which are the "building
blocks" for the simulation models created. The
Model Assembler program reads a coded model des-
cription, selects the required modules from the
Library, and creates the necessary linkage routines
for a complete model program.

The Model Description Language, AUTASCRIPT,
is defined. The operation of the FORTRAN coded
Model Assembler and linkage control programs is
described, as is the GASP based model simulation
control.

INTRODUCTION

Most operations research analysts have, at
one time or another, wanted to use a simulation
model for the analysis of a problem being studied.
Research of available models usually reveals that
the formulation needed hasn't been developed, or
an existing model doesn't match the problem.
Faced with this situation the analyst could modify
the problem to match the available model (usually
an unwise alternative), modify the available model,
or develop a model to match the problem. The
formulation and implementation of complex simu-
lation models until recently has required a lot of
talent, a lot of effort and a lot of time. Modi-
fying existing models can be as costly as develop-

The development of the AUTASIM system was accom-
plished as a component of the MAWLOGS system
(Model of the Army Worldwide Logistic System)
under contract to the Office of the Deputy Chief
of Staff for Logistics, Department of the Army.

ing new models. Many studies that could have bene-
fited from the application of simulation models by-
passed that route because of lack of time or
resources.

This paper will describe a system that has
recently been developed by the General Research
Corporation which provides the capability to auto-
mate the assembly of simulation models. The system
was developed under a contract with the US Army
which required a model of the Army logistic system.
The study was given the acronym "MAWLOGS" (Model of
the US Army Worldwide Logistic System) and had the
objective of developing a simulation model to be
used to "compare proposed systems with each other
and with the current system to determine the rela-
tive merits of each system."

The vast and complex nature of Army logistics
was appreciated by the analysts assigned to the
study. The initial research revealed that the
logistic problems that would need to be addressed
by a model ranged from studying a single function
within a small segment of the system, to those of
a worldwide nature, usually multifunctional in
scope, and multi-item in detail. Thus, flexibility
appeared to be an essential characteristic in the
choice of modeling approaches, because most of the
problems identified focused on less than the total
system, involved two or more interacting functions
(e.g., supply, maintenance and transportation),
and often varied with respect to level of detail.
In addition, there appeared to be the need to treat
one function, say supply, at one level of detail
while treating other interacting functions at
different levels. A single model of the Army
worldwide logistic system with these character-
istics appeared inefficient and indeed infeasible,
considering available computers. Consequently, a
modular modeling system seemed a reasonable
approach, and the task became one of designing a
system for the rapid assembly of simulation models
of particular scope and level of detail designed
to focus on the particular problem to be studied.
Stated another way, the objective was to rapidly
assemble custom-made simulation models of logistic
systems. Such a system has been developed and is
currently operational at GRC in McLean, Virginia.

W i n t e r S i m u l a t i o n C o n f e r e n c e 15

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800287.811163&domain=pdf&date_stamp=1974-01-01

AUTASIM: . . . Continued

GENERAL DESCRIPTION

AUTASIM stands for Automated Assembly of
Simulation Models. The purpose of the AUTASIM
system is to create discrete event simulation
models of systems which can be described as node
networks. The system consists of three elements:
a Module Library, a Model Description Language,
and a Model Assembler program. The Module Library
is a collection of modular computer routines, each
simulating a specific activity, and service rou-
tines that provide the conventional elements of a
simulation model. The Model Description Language
is a methodology for describing the node network
structure of a model and the activities which are
to be simulated at the nodes in the model. The
Model Assembler is a computer program which, given
the description of a system to be modeled, will
retrieve from the Module Library the required mod-
ules, link them together as prescribed in the des-
cription, and produce a computer program of the
system model.

The AUTASIM system provides the user with a
powerful model building capability. A modular
"building block" concept enables models to be
assembled for a very wide range of systems. The
systems which can be modeled are those that can be
described as one or more activitvy centers or nodes
connected by links over which materiel or infor-
mation flows. The modules on the library are de-
signed to represent the activities or subactivities
which are present in the system. Within each
system node an activity network of nodes and links
can be defined. Each activity node can likewise
be defined as a node network of subactivity modules.
Figure i shows how a system can be represented as
different levels of module networks. This modu-
larity facilitates the inclusion in a model of
those features, and only those, which are required
to accomplish the purpose of the model with no

extraneous logic and waste of core storage.

Many systems can be described as node networks
in this manner. Notable among them are distribution
systems, shop or plant operations, systems for the
provision of services, transportation systems,
communication systems, and various combinations
thereof. The system can be small--two nodes and
one link--or large. The limit on the size and
scope of the system modeled is controlled by the
core storage capacity of the computer on which the
model program is to be run.

The AUTASIM system is fully automated. Given
the description of a model to be assembled, the
Model Assembler program can assemble a model in a
very brief period of time--five to ten minutes.
This rapid model assembly capability also facili-
tates rapid changes to the activity content or
system structure of a model, a characteristic often
needed when comparing alternative concepts.

The computer programs in the AUTASIM system,
the Model Assembler and the modules on the library,
are written to the maximum extent feasible in USA
Standard FORTRAN code. The model programs generated
by the Model Assembler are also written in FORTRAN.
This language was used so that the system could be
easily transferred to other computers. All pro-
grams are currently operational on the CDC 6400
computer system at General Research Corporation
in McLean, Virginia.

SYSTEM PRODUCTS

The AUTASIM system is not a simulation model
or even a group of models built for a particular
user, but the product of the system is a model
which is custom tailored to the user's needs. Any
model assembled by the AUTASIM system can be des-
cribed as a discrete event, dynamic simulation

5

SYSTEM: NODE: ACTIVITY:

Node Activity Subactivity
Network Network Network

Fig. l - -Overvlew of AUTASIM Modular Approach

~ x depth

16 January 14-16, 1974

model. Most AUTASIM models are also stochastic;
however, all elements of uncertainty in a model
could be omitted by the model designer, which
would yield a deterministic model.

Each model developed by the AUTASIM system
can have the following set of features which are
generally desired in a simulation model. Some of
the features are included at the user's option but
are strongly recommended. Every model has a com-
plete statistics collection capability amtomati-
cally included. Whether statistics are collected
and in what form is specified in the input data
deck at model execution time. A generalized out-
put capability is included in each model. The
user is free to specify at model assembly time
what reports he desires from the model. Statistics
may also be collected in detail on a tape file for
postprocessing. A warmup capability is also in-
cluded, allowing a model to be run from a "cold
start" position to properly initialize model con-
ditions before statistics collection is begun. A
model restart capability is optionally included.
This will allow the user to save the status of a
model at any point in simulation time for future
model restart from that point. A complete trace
capability is also included which enables the user
to follow the operation of the model.

The size of the system or node network which
can be modeled using AUTASIM has a very broad
range. Networks with two nodes and a single link
up to multi-node, multi-echelon networks can be
handled. Since the Model Assembler program de-
velops a model program one node at a time, there
is no practical limitation on the number of nodes
which can be described in the model description
and therefore represented in the model. However,
the maximum number of nodes which can be simulated
in a given AUTASIM model depends upon a number of
factors including the size of the computer avail-
able, the functions to be represented, the level
of simulation detail at each node, and the level
of activity to be simulated. The size of the com-
puter on which the model program is to be executed
is the overriding limitation. The Model Assembler
program, which can be run on a relatively small
computer, can create a model program which could
not be loaded into the core storage of some of the
largest computers.

The functions and activities which can be
represented in a model are determined by the con-
tents of the Module Library. The library is con-
sidered to be the dynamic component of the AUTASIM
system. As new areas of application or new acti-
vities within the current functional scope are
desired, new modules will be developed and added
to the library. This development process is rela-
tively simple since the modules are programmed
independently and the procedure for writing new
modules is well defined. A large portion of the
Module Library is independent of the activities
which can be simulated. Included in this portion
are programs to control the simulation, perform
the necessary simulation bookkeeping, provide the
statistics collection capability, and access the
various data structures in a model.

Since the first application of the AUTASIM
system was to develop Army logistic system models
under the MAWLOGS contract, the functional modules

currently on the library represent logistics acti-
vities. A short overview of the modules is given
to show the reader how a particular application
area is represented. These modules are cataloged
by "family". Each family represents a separate
logistic function-- supply, maintenance, transpor-
tation, and communications, and each module there-
in a related activity. The supply and maintenance
families simulate the activities associated with
the support of fleets of equipment to include the
generation of supply and maintenance demands, the
repair and rebuild of end items and repairable com-
ponents, and the supply of end items, components,
and repair parts. The transportation family of
modules permits the simulation of multimode, multi-
carrier operations, movement control, and terminal
operations. Communications modules are available
for simulating message dispatch, routing, and
delivery. These modules operate at various levels
of detail, thereby providing the user the flexi-
bility needed to produce a variety of models.

MODEL DESCRIPTION LANGUAGE

The model description language, called
AUTASCRIPT, is a special purpose code which is
accepted by the Model Assembler program. AUTA-
SCRIPT is used to define the content and structure
desired in a simulation model. The code consists
of a "vocabulary" of module names, a set of nine
delimiters, and a set of rules for fitting module
names and delimiters together to precisely describe
a model structure. This code facilitates the des-
cription of very complex node networks, a capa-
bility which is a powerful tool by itself. Multi-
functional networks so complex as to be almost
impossible to draw in the form of node-network
diagrams can be described in the model description
language.

A demonstration of the use of AUTASCRIPT will
be given after certain terms which have special
meaning in the context of the AUTASIM system are
defined. The definitions follow:

System - a network of nodes connected by links

Node - a special block of programming logic
which can be referenced in a model.
An activity center

Verb - any block of programming logic which
can be included in a model by stating
its name in the model description

Simple verb - a block of FORTRAN code. The
logic for simulating an activity

Nonsimple verb - a structured assemblage of
simple verbs into a larger
block of logic

Module - any block of logic which is contained
in the Module Library; the set of
modules includes verbs, service
routines, and common data structure
decks.

Parameter slot - a point in the logic of a
verb at which control may be
transferred to logic outside
the verb

W i n t e r S i m u l a t i o n C o r ~ e r e n c e 1 7

AUTASIM: ... Continued

The verbs on the Module Library are the vocabulary
of the AUTASCRIPT language. The content of a
model is the set of simple verbs or blocks of pro-
gramming logic which are specified in the model
description and therefore included in the model
program. The structure of a model is the manner
in which the set of content blocks is intercon-
nected. The network of content blocks and the
path of control flow through the content blocks
is conveyed to the Model Assembler program in the
model description.

The names of verbs through which control is
to flow in the model are listed in a sequence and
separated by commas in a model description. For
example, given content blocks named "VERBi",
"VERB2", and "VERB3", the sequence "VERBi, VERB2,
VERB3" defines one flow path while "VERB1, VERB2,
VERB1, VERB3, VERBi" defines another in which the
same content blocks are referred to in a different
order and more than once. In the first example,
the content of "VERBl" would be given control of
the execution, then the content of "VERB2", then
of "VERB3". In the second example, control would
flow through VERB1 three times during execution.

However, such sequences of content block
references are inadequate by themselves since they
have no beginning or ending deli~miters and repre-
sent only one single sequence of execution. There-
fore, provision is made for giving a name to a
sequence of verb names by which the sequence can
be referenced. This name is called a node name
and a sequence preceded by a node name and a period
and followed by a dollar sign forms a complete
entity called a node. Examples of nodes formed
from the above named content blocks are:

"NODEi. VERBI, VERB2 $",
"NODE2. VERB3, VERB2 $", and
"AAA. VERB3, VERBi, VERB2 $".

Thus, the capability exists to define inde-
pendent, identifiable logical flows in a model
description. To indicate a transfer of control
between nodes, a node may be referenced from with-
in another node by including the node name preceded
by an asterisk in the sequence of verb names. The
above mentioned node "AAA" could be written as

"AAB. VERB3, *NODEi $"

and create the same logical flow. That is, the
flow of control would be through "VERB3" and then
to the verbs referenced as "NODEi", i.e., "VERBi"
and then "VERB2".

The conventions for node names and for refer-
encing node names allows the specification of more
complicated structures but they do not permit
specifying possible logical branches or "forks" in
the flow of control. This capability is provided
by parameter slots associated with a verb as
described below.

Verbs are programmed to be highly modular so
that they interface in a flexible manner with other
members of the set. The logic of most computer
programs consists of steps or parts, with some of

18 January 1 4 - 1 6 , 1974

the parts contained in subprograms that are called
from within the program. In the case of a verb,
all of the parts need not be included in the pro-
gram or even referenced by name since a general
external reference can be made. Parameter slots
provide the capability of external references that
need not be prespecified. A parameter slot can be
inserted in the verb program at a point where logic
outside the main verb logic may be applied to com-
plete the function of the verb. The transfer of
control is structured by the Model Assembler so
that the particular logic to which control is given
during execution of the verb is that specified in
the model description. A verb that deals with re-
ordering stock, for example, could determine the
reorder quantity by any of several policies. When
the reorder verb program is written, the specific
reorder policy need not be known and a parameter
slot can be inserted at the place in the program
where such a policy would be implemented. The
person describing the model can, therefore, specify
in the model description the policy he wants imple-
mented by filling the parameter slot with a refer-
ence to a verb that simulates the desired policy.
This modular form of programming provides great
flexibility and minimizes the size of verb programs.

To demonstrate how AUTASCRIPT is used to des-
cribe a model, the simple multinode system shown
in Figure 2 will be used. The diagram shows a
five node system. Each node is given a name or

NODE 4 NODE 5

Fig. 2--Illustrative Node Network System

number of from one to five d~aracters. Recall
that each node in a model is an activity center
where one or more activities are simulated. The
module in NODEi labeled A represents the main
activity to be simulated there. Similarly, the
modules labeled A, D, and E represent the activi-
ties to be simulated at NODE2 and so on. It is
assumed for this example that the logic to simu-
late activity A is contained in the verb named
VERBA, the logic for B is contained in VERBB, etc.
The precise activities to be simulated at NODEi
and their connections with NODE2 and NODE 3 are
described in the model description language as
shown below. Subactivities at NODE1 are repre-
sented by the logic in VERBB and VERBC.

NODEi. VERBA (i = VERBB $

2 : VERBC (l : VEP~B) $

3 = DELAY (P = 3), *NODE3),

DELAY (P = 5), *NODE2 $

This description of NODEi states that it con-
tains the activity represented by VERBA; that at
the point in the execution of VERBA where Para-
meter Slot i is encountered, control is trans-
ferred to VERBB; that after the execution of
VERBB, control is returned to VERBA; that at the
point in the execution of VERBA where Parameter
Slot 2 is encountered, control is transferred to
VERBC; that at the point in VERBC where Parameter
Slot I is encountered, control is transferred to
VERBB; that after the execution of VERBB, control
is returned to VERBC; that after the remainder of
the logic in VERBC is executed, control is re-
turned to VERBA; that at the point in VERBA where
Parameter Slot 3 is encountered, control is trans-
ferred to verb DELAY; that after verb DELAY is
executed, control is transferred to NODE2; and
that after the execution of the final logic of
VERBA, control is transferred to verb DELAY and
NODE3 in turn. Schematically, this description
would appear as shown in Fig. 3. This schematic
shows that VERBA contains an internal transfer in
its logic which can branch around Parameter Slot
3. Thus, under certain conditions, control is
transferred to NODE3 when the execution of VERBA
is completed. Once control is transferred to
another node, it does not return to the current
node. Different delay times for these two trans-
fers are specified through the parameters (i.e.,
P = 3, P = 5) of the verb DELAY which refer to
two different probability distributions.

The significance of this illustration is
that it demonstrates how one can describe a model
including interrelations among blocks of logic
with time interdependencies in relatively simple
form. It also demonstrates the flexibility in
varying logical procedures available to the per-
son describing a system to be modeled. Admittedly,
he must be very familiar with the system to be
modeled, which is essential for any analyst de-
signing a model, and quite intimate with the con-
tents of the module library.

To simplify model descriptions, commonly used
combinations of simple verbs can be formed into
nonsimple verbs and stored on the Module Library.
A nonsimple verb is a free form string of symbols

NODE1. VERBA

PSi

PS2

-•-..,•---- Verb Logic

VERBB >t

VERBC ~t

[_ l "
VERBA I I
Internal I PS3
Transfer I I

L _ . _ _]

PS1 VERBB

DELAY

DELAY

i
,

]
v

"l

• NODE2

• NODE 3

Fig. 3--Schematic Representation of Flow Control

and verb names which fixes a particular substruc-
of other verbs. The earlier example of verb VERBA
can be constructed as a nonsimple verb NSVAi and
can be defined as shown below. The double aster-
isk defines a parameter slot location in a non-
simple verb.

NSVAi: V E R ~ (1 = V ~ B $
2 = VERBC (1 = VERBB)$
3 : ~i),

The key point is that NSVAi has been defined as a
particular pattern of simple verbs VERBA, VERBB,
and VERBC. Thedescription of NODE1 shown earlier
can now be written more easily as follows:

NODE1. NSVA1 (1 = DELAY (P = 3) , *NODE2 $
2 = DELAY (P = 5) , *NODE3)

The reference to nonsimple verb NSVAi causes the
Model Assembler to include its structure in the
model. One or more verbs used to define a non-
simple verb may themselves be nonsimple, to any
depth. But every nonsimple verb must ultimately
be expandable into only simple verbs, since among
verbs only simple verbs may contain program state-
ments that are executed.

MODEL ASSEMBLER PROGRAM

The Model Assembler is a computer program
that, given the description of a system in AUTA-
SCRIPT and access to the Module Library, will re-
trieve from the library the necessary modules,

W i n t e r S i m u l a t i o n C o n f e r e n c e 19

AUTASIM: . . . C o n t i n u e d

generate linkage routines which will link them
together according to the system description, and
output a complete computer program of the model of
the system. An additional input to the Model
Assembler is a set of dimension values which are
used to set the dimensions of the data storage
arrays in the model program. An additional output
of the Model Assembler is a list of modules and a
list of data requirements and input formats for
the model generated. The latter is very important,
because the inputs depend on the verbs included in
the model. For this reason each model may require
a unique set of inputs. Listing these inputs in
the required sequence and the required card for-
mats is a great help to the model user in prepar-
ing the inputs for model execution.

The model assembly process is shown in Fig. 4.
The Model Assembler scans the model description
one node at a time, building a list of the verbs
required. The nonsimple verbs referenced in the
node are then expanded. Modules which are refer-
enced within the verbs on the list are then added
to the list. Linkage routines that provide the
flow of control specified in thenode description
are then created. This process is repeated for
each node in the description. When the complete
model description has been scanned, all modules
required in the model are selected from the Module
Library file. A list of common data structure

decks required by these modules is built and the
necessary decks are retrieved from the library and
their dimension values are fixed. Finally, a
listing of the data requirements for the model is
output

The basic output of the model assembler is a
complete simulation model program that includes
(a) the functional modules referenced by name in
the model description, (b) the modules which are
called internally by the functional modules, (c)
a set of service modules which control the simu-
lation mechanics, and (d) a set of linkage routines
which connect the functional modules in the manner
designated in the model description. The modules
in groups (a), (b), and (c) are retrieved from the
Module Library as complete subprograms. The link-
age routines in group (d) are generated by the
Model Assembler in direct response to the coded
model description. These are FORTRAN programs
which transfer control between verb routines. In
a standard model program, a specific routine would
be called by name, but the AUTASIM linkage struc-
ture removes this rigidity. In the coding of a
verb, a parameter slot is activated by a call to a
general routine named LINK. For each reference to
a verb with parameter slots specified in the model
description, the Model Assembler creates a linkage
routine which calls the verbs named in the para-
meter slots.

MODEL]
DESCRIPTION

NODE
SCAN

BUI LD
VERB
LIST

EXPAND
NONSIMPLE

VERBS

ADD CROSS
REFERENCED

MODULES I
TO LIST

GENERATE
LINKAGE
ROUTINES

RETRIEVE
VERBS

AND OTHER
MODULES / , c°°i

/
I MODEL I

PROGRAM I
LISTING & I

INPUT DATA I

RETRIEVE & BUILD LIST
DIMENSION ~ OF COMMON

COMMON DECKS DECKS

COMBINE
MODULE

& LINKAGE
SOURCE CODE

Fig. 4--Model Assembly Process

20 ~anuary 14-16, 1974

Figure 5 shows the routines created for two occur-
rences of the verb VERBA in a model description.

SUBROUTINE VERBA

CALL LINK(I)

CALL LINK (2)

END

SUBROUTINE LINK(I)

! CALL P10001(I)

9 CALL P10009 (I)

END

SUBROUTINE P10009 (I)
GO TO (1,2), i

1 CALL VERBD

2 CALL VERBF

END

Verb References

1 VERBA (I = VERBB $
2 = VERBC (t = VERBB))

9 VERBA (1 = VERBD'$
2 = VERBF)

SUBROUTINE P10001 (I)
GO TO (1,2), I

1 CALL VERBB

2 CALL VERBC

END

Fig. 5 ~ L i n k a g e Routines

These are the first and ninth occurrences of a
~erb with parameter slots specified in the des-
cription, and the routines are accordingly named
PlO001 and PlO009. The logic for VERBA appears
only once in the model program. When it is
executed, it calls LINK which determines what
linkage (i.e., PlO000) routine is controlling the
parameter slot contents for this reference to
VERBA. The appropriate routine then transfers
control to the proper verbs. A similar linkage
routine is generated for each node in the model
and handles the transfer of control between main
verbs in the node.

MODEL PROGRAM OPERATION

The simulation mechanism of models built by
the AUTASIM system is based on the GASP II (General
Activity Simulation Program) structure. However,
to utilize the full flexibility offered by the
AUTASIM linkage system, there was a need to cir-
cumvent the fixed event code system and the FORTRAN
restriction that a subroutine cannot be cabled re-
cursively or be reenterable. This was achieved by
an unconventional use of the assigned GO TO state-
ment and a system of push down stacks. In AUTASIM
models, verb routines are made recursively callable
by setting the return address associated with a
particular call with an ASSIGN statement. This
address is then saved in a push down stack for use
by a special return sequence which contains an
assigned GO TO statement instead of the standard

FORTRAN RETURN statement. The event selection in
an AUTASIM model is controlled by saving data in
the push down stack which identifies the node and
parameter slot routines being used in the current
flow path.

The data structure in AUTASIM models is a
pseudo dynamic storage allocation system which
circumvents many of the problems created by the
fixed FORTRAN array structure. The functional
data areas are divided by node in the model.
Particular sets of data can then be associated
with each node so that the same data retrieval
operation will retrieve potentially different
information depending upon which node the data
retrieval was executed from. Thus the same module
can be referenced in two different nodes in the
model description and react differently. Even
though the logic for the module appears only once
in the model program, it will access different data
elements based on its use in the model description.

RANGE OF APPLICATION

As noted previously, the activities which can
be simulated in a model assembled by the AUTASIM
system are those for which verbs are available in
the library. However, in terms of the range of
application of the system and basic importance to
the system, the current verb families are the least
significant aspect of the AUTASIM system. Figure 6
shows the AUTASIM elements in perspective over the
,ossible range of application. The most basic part

SIMSCRIPT
BASED

MODELS

LO lST,C'?

SERVICE MODU LES

MODEL ASSEMBLER

I MODEL DESCRIPTION LANGUAGE I

f SHOP I
~MODELSI

. . . . /

I JOB 1
SHOP I

iVERBS
I I

,~ . RANGE OF APPLICATION

Fig. 6 - - A U T A S I M Elements in Perspect ive

of the system and the one with the broadest appli-
cation is the model description language. This
language is an efficient procedure for describing
large and extremely complex node/link structures.
As such it could be adapted to entirely different
types of models--such as PERT networks and certain
types of LP--as well as other forms of simulation
models. Similarly, the Model Assembler is more
powerful than is indicated by tlm use made of it
in the current AUTASIM system. For example, with
an appropriate group of modules and a few rela-
tively minor additions to the Assembler, it could
be used to assemble SIMSCRIPT based models as indi-
cated by the dotted box on the right side of the
figure. The existing GASP based service modules
provide an adequate foundation for adding new
functional module groups which would enable a user

Winter Simulation Conference 21

AUTASIM: . . . C o n t i n u e d

to build other varieties of simulation models,
for example, job shop models or general distri-
bution system models.

SUMMARY

The AUTASIM system is in operation and has
been used to build several multifunctional,
multiechelon models of Army logistic systems.
The capability to rapidly create simulation model
programs is attained from three components, the
Model Assembler program, the Model Description
Language, and the Module Library. The first two
components provide the flexibility necessary to
describe and assemble simulation models. The
contents of the Module Library determine the
range of systems which can be modeled.

ACKNOWLEDGMENTS

Two colleagues at GRC, Mr. Thomas B. Roelofs
and Mr. Howard A. MarMlam, have made valuable
contributions to this paper. I have been for-
tunate to work with them during the development
of the AUTASIM system over the past few years.
Special recognition is given to Mr. Thomas M.
Lisi, who invented the model description language
and programmed the initial formulation of the
model assembler.

22 J a n u a r y 1 4 - 1 6 , 1974

ROBERT T. BURGER is a Senior Analyst at General
Research Corporation, Operations Analysis Division,
in McLean, Virginia. He received a Ph.D. in
Computer Science and an M.S. in Mathematics from
the Pennsylvania State University where he held a
NASA Predoctoral Fellowship. His work experience
has been in the area of development and operation
of simulation models and related software products.

14 January 14-16, 1974

