
SIMULATION OF A MINICOMPUTER IN A COMMUNICATIONS SYSTEM

F r e d e r i c k V. C r o w l e y

Bell C a n a d a

ABSTRACT

An analysis of the performance of a
minicomputer, which is used in a computer
communications environment, is presented.
The purpose of the paper is to show how
some of the minicomputer's capabilities
may be defined, and to establish a basis
for a more detailed analysis. The
principal aspect being considered is
message throughput. Two models,
oriented about the software, were
developed: one using conventional
mathematical queuing techniques and the
other using a discrete simulation
language (GPSS). The GPSS model was used
to provide an approximate verification of
the assumptions and of the results
obtained mathematically.

These are some questions that a system
designer may have when trying to use a
minicomputer in a proposed communication
system.

An obvious approach is to model the
system, and then run a variety of
simulations. The problem that arises
however, is: how should the system be
modelled.

This paper shows how a design problem
was solved using relatively simple
modelling techniques, with a view to
minimizing the cost of obtaining reasonably
accurate performance predictions.

1.0 INTRODUCTION

One of the problems of using a mini-
computer in a communications environment
is trying to determine the performance
capabilities of the machine. The
manufacturer has general performance
figures for his equipment, but from the
point of view of the customer, these
figures may not be useful. The user is
interested in the minicomputer's
performance with respect to his application
and not in generalities. For example,
some typical questions might be:

What message throughput and delay
will be encountered?

What percentage utilization of the
various facilities will occur in the
application?

Will there be sufficient time
available for other secondary tasks
such as gathering statistics?

Should priorities be established for
various operations within the system,
and what should these priorities be?

How much buffer space will be required?

2.0 THE PROBLEM

The problem was to predict the
performance of a minicomputer, from a
throughput versus delay point of view,
when it was used in a communications system.
Briefly, the computer had to process
messages from an asynchronous mode and
convert them into synchronous information
and vice versa. A number of asynchronous
and synchronous lines were to be employed.

The minicomputer itself makes use Of
a Communications Executive Software
package supplied by the manufacturer.
This basic package provides the customer
with the capability of interleaving the
execution of a number of user written
programs, based on their established
priorities. These system programs or
tasks are used to control the flow of
messages and to condition the messages
from the asynchronous to synchronous
environment. The system software is thus
divided into two principal categories:

1 The executive software overhead.

2 Customer written programs or tasks.

These software tasks are considered
to be non-suspendable operations. The

Winter Simulation Conference 69

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800287.811169&domain=pdf&date_stamp=1974-01-01

S I M U L A T I O N O F A M I N I C O M P U T E R . . . C o n t i n u e d

term non-suspendable is used in reference
to operations that may only be preempted
(on a priority-preempt-resume basis) by
I/O interrupts. Operations may not be
preempted by other operations. Each
operation is assigned a priority. When a
system event occurs, rescheduling takes
place on a priority basis. A system event
results when one of these three events
occurs:

1 Completion of an I/O transfer.
w

2 Internal interrupt.

3 Completion or cancellation of a
task.

The various software operations are
shown in the block diagram of illustration
I. Referring to this illustration it can
be seen that there are three principal
tasks which perform two operations each.
These tasks are: the asynchronous task,
the conditioner task, and the synchronous
task. They are used to convert
asynchronous information into synchronous
information, and to convert synchronous
information into asynchronous information.

MOD£L OF SOF•AR£ OpE•TIONS

$YNC.
TASK

system. In essence, a limiting action
occurs which will restrict the message
throughput if sufficient buffer space is
not available.

Also, in addition to the customer
written tasks, there is thesoftware over-
head. The manufacturer's supplied figures
are useful in considering this aspect.

Table 1 shows how this system may be
typified by counting the number of
instructions and averaging the execution
time and thus determining the average
latency time of a single message.

~ e r a t i o n NOT o f I n | t r u c t i o n |

1) I n i t i a t e a s y n c t amk " 1 0 0

2) S e t up ssync inpu t (read)] 5 0

3) Q i n condi t ione~ task 120

4) x f l l ~ L . t s con4Lt~oner tas]¢ 200

s) c o n d i ~ o ~ r t a s k o p e = s t ~ a 250

6) In i tLa te sync t a s k 1o0

7) S e t ~ t ime fo r .ync too

8) X n l ~ s t e s y n c task log

9) O In condlt£o~ 1 2 0

10) I n i t i a t e c o n d i t i o ~ r 120

11) Conn. op 250

12) 0 in .sync 120

13) ln i tLa te asyhc 100

14) Get up 8Slq'tC (p r i n t) 2 0 0

~ L U , 2 7 3 0

Assumes average i n s t r u c t i o n - 2 u s

the te~or , la tm*c¥ t ime m 2 7 5 0 X 2 • 10 - 6 Se¢

" S . 6 • 10 - ~ sec

An asynchronous line is initialized,
characters are read into a common buffer
area by the asynchronous task, and then
queued for conditioning into synchronous
information. A conditioner task is then
initialized, the message processed, and
placed back into a common buffer area.
The synchronous task is then initialized,
and the message transmitted on a
synchronous line. The reverse procedure
is followed by messages proceeding from
the synchronous to asynchronous
environment. Thus, these tasks assign
buffers, perform the appropriate message
formatting, and communicate with the
synchronous and asynchronous lines.
Another characteristic of the system
software is that if no buffers are
available, no messages are input to the

Therefore, given this application, the
problem is to predict system performance
for various design configurations.

Two approaches were considered
feasible in this case:

1 A mathematical queuing analysis.

2 Computer simulation using GPSS
(General Purpose Simulation
System).

The principal reasons for being
restricted to these two methods were cost,
accuracy and computer availability.

3.0 DISCUSSION OF ASSUMPTIONS

The five basic areas where assumptions
have to be made for modelling this system
are:

70 January 14-16, 1974

1 Task service time.

2 Task initiation rate (implies a
message arrival rate).

3. Message and character arrival rate
on the synchronous and
asynchronous lines.

4 Buffer space available.

5 Queuing discipline and scheduling
- algorithm.

The first assumption of task service
time is relatively easy to consider by
modelling the software. By counting the
number of instructions and multiplying by
an average instruction execution time, it
is possible to say that the service time
of each task is nearly constant (ie: the
standard deviation of the service time is
zero).

The second assumption to be made,
concerning the task initiation rate, is
the most difficult. Since only one
operation can be executed at a time, and
since one task must be completed before
another can start, the simplest
consideration is that of processing only
one message. This processing of a single
message causes a highly ordered procedure
to take place. That is, the overall
processing time for this one message is
essentially constant. As the message rate
increases, thus increasing the number of
messages "in transit" in the system, the
various operations start to be preempted
for I/O interrupt servicing, and
rescheduling occurs more frequently.
Therefore, the initiation of some of the
tasks become more disordered, with the
degree of disorder being dependant upon
the priority of the task. A completely
disordered process for the task initiation
rate may be characterized by a Poisson
distribution(3). A digression here might
be useful. The messages for the mini-
computer originate on the asynchronous
and synchronous lines, which are virtually
independant of each other. Because of
this independance, the message arrival
rates to the system are approximately
random and thus may be described by the
Poisson distribution. This Poisson
arrival pattern to the system coupled with
the partially disordered rescheduling of
tasks allows some faith to be placed in
the assumption of describing the task
initiation distribution of being
exponential. Thus, by assuming a Poisson
distribution, we will be considering a
"worst case" situation. Obviously, this
assumption will have to be examined more
closely.

The assumption of available space is
simplified by assuming that infinite
buffer storage is available. If the
system is designed such that the

probability of there being insufficient
buffers available is very small, this
assumption is not unreasonable.

The queuing discipline that is used
throughout this analysis is on a first-
come, first-served basis (FIFO) with
respect to any given task.

The scheduling algorithm is on a
priority basis with non-preemptive priority
for operations and preempt - resume
priority for I/O interrupts.

For simplicity, no abnormal situations,
such as console interrupts, machine
malfunctions, etc. are considered.

4.0 THE MATHEMATICAL MODEL

Based on the previous assumptions,
each of the software tasks may be
characterized as an M/D/i queuing(l)
problem.

The basic problem in creating a
mathematical model of this system is in
handling I/O interrupts, which have
preemption capabilities, and in handling
the operations which have non-preemptive
priority capabilities, all requiring use
of the processor facility.

One approach to solve this problem is
to initially consider each task in
isolation. Statistically, a finite queue
will develop for any given task, as long
as the arrival rate is less than the
service rate, and some non-constant
arrival distribution is assumed. Treating
each operation in isolation permits the
"extra delay" due to preemption to be
calculated for each operation. Adding the
"extra delay" to the service time of each
operation and then recalculating their
second moments, removes the problem of I/O
interrupts. The problem has now been
reduced to analyzing the queuing problems
of the various tasks on a non-preemptive
priority basis. This is now a relatively
easy problem to solve and permits such
factors as facility utilizations, queuing
delays, average queue lengths, and the
total message delay to be determined.

5.0 THE GPSS MODEL

To try and eliminate some of the doubts
that arise from the assumptions that were
made when deriving the mathematical model,
a GPSS model was created. The principal
assumption that we wish to eliminate is the
task initiation distribution. Referring
back to illustration i, the modularity of
the software facilitates implementation in
GPSS. Specifying a message arrival rate
according to a known distribution

W i n t e r S i m u l a t i o n C o n f e r e n c e 71

S I M U L A T I O N OF A M I N I C O M P U T E R . . . C o n t i n u e d

(eg: Poisson), and assigning a priority
to each message depending upon which task
it is entering, and by rescheduling tasks
by use of a "PRIORITY BUFFER" block, a
more accurate representation of the mini-
computer may be obtained. The principal
factor is that the nature of GPSS frees
us from the constraint of having to
specify a task initiation distribution.

The coding of GPSS is an encouraging
factor to those who must make decisions
on the system design, as it is reasonably
easy to understand and relate to when
compared to a mathematical analysis. The
main disadvantage of using a simulation
language in this application is that it is
expensive. The operations that are being
modelled have service times in the micro-
second region, while I/O interrupts occur
in the order of milliseconds. This
results in a simulation where it takes
approximately five seconds to simulate
one second of operation. However, GPSS
provides a good means of creating another
model to compare to the mathematical
analysis.

6.0 SIMULATION RESULTS

The principal characteristics of
interest result from plotting throughput
in messages/second, versus the overall
mini-computer service time including
delays and queuing. A family of curves
may be drawn depending upon what message
size is being considered. A typical
series of curves is shown in illustration
2.

~X

I[.L~ST"tA'rloB 2

rLUSACa/SV.r.OUO ' ,S. SIRWCq ~ K K

13 l aO

mSSAClt
12

n

'° / /
24/11

t . S ~ I S Y a C U l S

~ s x c z s / s ~ o n n

Two important restrictions are shown in
this diagram. The first obvious
restriction is governed by the
capabilities of the mini-computer (ie:
the computer becomes "cycle-bound"). This
is an absolute upper maximum beyond which

72 January 14-16, 1974

the mini-computer cannot operate and is
determined by the point at which the
processor is nearly 100% utilized. Of
course, if the programming of the various
tasks is made more efficient, then this
curve will be shifted upwards. The second
restriction is due to the physical
limitations of the asynchronous and
synchronous lines transmitting at fixed
baud rates. In this example the line rates
are quite slow (1200 to 2400 baud) and
operate in a half-duplex mode. Thus, for
the computer to become "cycle-bound," a
relatively large number of lines are
required. Therefore, the system throughput
will be limited by the line capabilities
before the mini-computer capabilities. An
obvious conclusion would be that increasing
the asynchronous and/or synchronous line
speeds (if possible) will tend to increase
the utilization of the machine.

Another interesting characteristic
that results from an analysis of this kind
is the character throughput versus the
percentage utilization of the processor
(illustration 3). Two curves are of
specific interest. One is the percentage

ZZ.LUSTR.I.TZ(X~ 3
CI'IARP, C T Q THROLIGHPUT ~ pERCI~I" UTTLI~TIOH

TO'FAt,

S O y ' I ' J ~

PROCESSING

,ol o.!!
zo

Io0o z ~ 3o0O 4O0o 50oo ~ooo 7ooo

c ~ c T z x ~ o l ~ . d ~ r
(c c a x s x c c ~ s / s ~)

utilization of the processor for all
operations and the other is the
percentage utilization of the processor in
dealing with I/O interrupts. These curves
are of course dependant upon the system
parameters (eg: message size and line
rates). Note that at the "cycle-bound"
point of the mini-computer, the processor
utilization to handle the I/O interrupts
is approximately 32%. This corresponds to
a character throughput of about 7300
characters/second. If an operating region
of approximately 3000 to 5000 characters/
second is assumed, the percentage
utilization of the processor is quite low
(27% to 53%). Thus, assuming the computer
does not become "core-bound," there is
sufficient capabilities for other
"housekeeping"chores such as statistics

gathering.

Illustration 4 shows the effect of
varying the established priorities of the
various operations. As can be seen there
is very little difference in the overall
service time for a message until the
system starts to become more heavily
loaded. Near the "cycle-bound" point of
the curves, a small spread is noted
between three typical priority schemes.
The difference is almost negligible due to
the fact that the service times are nearly
equal. If there was a greater spread in
service times, then the system delay would
show a greater variation.

n"

IO

l
9-I

7-

ILLUSTRATION &
EFFECT OF CIF,*NC'[NC

TASK PRIORITT ~5

~cL~ eotmD
L~XIT^TXO.

~ P E 1
TTPE 2
Type 3

TASK PtIOR~TXE..~__..~

TY~ I cosy, sY~, ^SYNC

~ 2 snnc. As~mc, cow
TvPz 3 s~c, coNu, a s ~ c

$ ~0 1~ 20 25 30 35 40 45 50 55 60

Ti4lt OU~Xpv, yr

The GPSS results are shown with the
mathematical results in illustration 5.
The main item to note is that the GPSS
results tend to give "better" results for
system performance than the mathematical
results. That is, the mathematical
results tend to predict that the message
throughput is slightly less than that
predicted by the GPSS model. This
difference is attributed to the task
initiation distributionwhich we assumed
to be Poisson.

cot~sou o~" ~tmAZXCaL
Aim ~ S smuiA~m,s

c~cl~-so4mo c~s ~zs~Ts
cmz~Txou

Ar~WX Y~ Z ~ • M I l l UTZLIgTIOM SXZI

• 2 /12

*s~r~/S~ LIXZS

S tO *5 ZO 2S 3o 3S 40 *S ~ 55 60 6S

~ e / s E c m m

7.0 DISCUSSION OF RESULTS

One of the more questionable
assumptions that was originally made for
the mathematical model was the assumption
of an exponential distribution for the
tasks' initiation rates. This was said to
be a "worst case" assumption. One of the
reasons for using a GPSS model was to
eliminate this assumption. Referring again
to illustration 5, note that three message
sizes have been assumed. As can be
expected, as the message throughput
increases, there are increased delays in
the system, and the mini-computer service
time increases until the "cycle-bound"
point is reached. Note that as the message
throughput increases (by decreasing message
size), the difference between the results
of the two modelling techniques decreases.
For example, with a processor utilization
of approximately 70%, the percentage error
for the 180 character message size is
about 6%, for the 80 character message size,
about 5%, and for the 40 character message
size, about 2%. This tends to lend
credence to the assumption that as the
system becomes more heavily loaded, the
task initiation distribution becomes more
disordered and approaches an exponential
distribution. For low processor
utilizations, the queuing delays are
obviously going to be relatively small, and
the assumption of a Poisson distribution
will not be significant for the conditions
being considered.

Another aspect which must be taken
into consideration is the actual physical
limitations of the overall system in which
the mini-computer is being used. One
consideration is that it may not be
physically possible to support sufficient
synchronous or asynchronous lines to give
a message throughput which approaches the
"cycle-bound" restriction. Two curves
showing the line restrictions are included
in illustration 5. These two curves
represent 24 and 12 asynchronous and
synchronous lines respectively, and 16
asynchronous and 8 synchronous lines. Note
that the percentage utilization at the
points where they cross the performance
curves is quite low. Thus the accuracy of
the mathematical model is quite good for
this operating region.

To summarize therefore, the greatest
error in the mathematical model will result
from the condition of a low message
throughput with a relatively large message
size (which implies a high processor
utilization).

8.0 CONCLUSIONS

A mathematical analysis of the mini-
computer permitted quick, easy to understand
information to be gathered about the

W i n t e r S i m u l a t i o n C o n f e r e n c e 73

S I M U L A T I O N OF A M I N I C O M P U T E R . . . C o n t i n u e d

predicted performance of the system. By
making several general assumptions, to
facilitate the calculations, and
verifying them by using a discrete
simulation language, it is possible to
place a fairly high degree of confidence
in the results.

Treating the various modular tasks in
an isolated fashion to determine the
"extra" service time associated with
preemption, and then treating them as a
"whole" to determine the various queuing
delays, allows a complicated system
service distribution to be modelled in a
simple fashion.

The modularity of these techniques
allows various system configurations to be
modelled to determine the sensitivity of
the system to the change. New tasks may
be easily introduced into the model, or
existing tasks removed. This is important
in the system design phase, as many
different ideas and configurations may be
quickly tested before the actual physical
system is built.

APPENDIX

Queuing Relationships used in the Analysis
Of The System Performance

The basic theorem of a single-server
queuing model is the Khinchine - Pollaczek
equation (2) .

_ 2 : [~tsl 2 9(i)
N(w)-~_p) ~I + --Ts

J t 3
where:

N(w) = mean number of messages
waiting for service.

p = facility utilization.

ats = standard deviation of
the service time.

Ts = mean service time.

This relationship is useful in
determining the queuing delays that result
in computer systems and is applicable to
any single-server system where an
exponential arrival pattern and any
distribution of service time is assumed.
An important characteristic of this
relationship is that it is valid for any
dispatching discipline, provided that the
selection of the next item to be serviced
does not depend on the service time. In
the case we are considering in this paper,
the dispatching discipline is on a first-

74 lanuary 14-16, 1974

in, first-out (FIFO) basis with priority
and for some operations, preemption.

The mean number of items waiting for
service may be determined from:

N(w) = I * T(w) (2)

= average number of
message arrivals/sec.

T(w) = average time spent
waiting for service.

The facility utilization (p) may be
expressed by the following:

p = I * Ts (3)

Using these two relationships,
equations 2 and 3, and substituting into
the Khinchine - Pollaczek equation (I), the
mean time (T(w)) that a message spends
waiting for service is:

from (2) T(w) = N(w) (4) --D--

using (3)

using (1)

= N (w) Ts
P

T(w) = p2Ts ~i +f~t~
~'[i~)p% LTsA .3

0Ts fl +pt 2?
~TY-p)i L Ts ~ j

Now since we are considering constant
service times in this analysis, equation 4
reduces to:

T(w) = pTs (5)
2~-p)

as Ots = 0

PRIORITY QUEUING

In the analysis there are two types
of dispatching disciplines:

1 Non-preemptive, priority queuing.

2 Preemptive priority queuing.

Assume that a task has a priority i
and this operation has priority over an
i + 1 priority operation for N operations.
If we assume that each task initiation is
independant of the other (random - Poisson),
with ratesll,12, ... I n then the total
mean arrlva± rate is random and may be
represented by:

I = 11+I 2 + ...+lq (6)

Now, if the various priority classes
require different service times according
to their priority, then the dispatching

discipline is no longer independant of the
service time and thus the Khinchine -
Pollaczek equation cannot be used. In
this case the mean waiting time relation-
ship may be represented by(3):

(7)

T(W i) = Ib2
2 + +

CJ-c0 ÷ 02 ÷ ...0i3

where: pi = li bli bli = ° I~ tdQ(t)

b,i = I tdQ(t)
0

b 2 = I~b21+12 b22 + ...IN b2N
i Y- -7

2

b2 =0I t dQ(t)

Q(t) = service time distribution
of each operation.

Since we are considering constant
service times

• 01 when 0<t<T
Q(t) = s

when t>T s

Now considering situations in which
there are only two priority classes (as
there would be when considering operations
and I/O interrupts in isolation), then
equation 8 reduces to:

(9) 1 T(wi)= 1 [pL2p1+ I~(11b21 + 12b22)

l-pl 2(i-(Pi+P2))

i.

BIBLIOGRAPHY

Chu, W.W. and Konheim, A.Go, On the
Analysis and Modelling of a Class of
Computer Communication Systems, IEEE
Trans. on comm., vol. com-20, No. 3,
June 1972.

2. Martin, J. Systems Analysis for Data
Transmission, Prentice'Hall Inc.,
Englewoo~ J Cliffs, N.J., 1972.

3~ IBM Publication GF20-0007-i, Analysis
of Some Queuing Models in Real-Time
Systems.

Therefore bN= 01 ~ tNdQ(t)

t N = 01 ~ (t - Ts) dt= Ts N

b2= Ts 2 and b2i = T2si

PREEMPTIVE-RESUME PRIORITY QUEUING

This queuing situation must take
into account the initial wait for service,
as well as the subsequent waits for
higher priority interrupts. Thus the mean
waiting time for the ith customer is
given by (3):

T (Wi) = i
i-i

(i-E pk)
k=l

~! ±-1 (8)

i
li Z IK b2K

K=i

LK=i

where P'l = li Tsi

b2k = second moment of service
time for the kth operation.

I i = mean arrival rate for the
ith operation.

Winter Simulation Conference 75

68 January 14-16, 1974

FREDERICK V. CROWLEY was born in
Montreal, Quebec, Canada on January 7,
1944. In 1966, he graduated from the
L'Institut Technologie de Montreal. He
received the BaSc degree in Electrical
Engineering in 1971, and the MaSc degree
in Systems Design Engineering in 1972,
both from the University of Waterloo,
Waterloo, Ontario, Canada.

At present, he is a Computer Systems
Associate with the Computer
Communications Group of Bell Canada,
located in Ottawa, Canada. From 1972 to
1973, he was associated with the Software
Controlled Communication Services
district and was responsible for
modelling and simulation for various
development projects. Currently, he is
on Special Assignment in the design of
computer communication systems.

