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ABSTRACT 

An analysis of the performance of a 
minicomputer, which is used in a computer 
communications environment, is presented. 
The purpose of the paper is to show how 
some of the minicomputer's capabilities 
may be defined, and to establish a basis 
for a more detailed analysis. The 
principal aspect being considered is 
message throughput. Two models, 
oriented about the software, were 
developed: one using conventional 
mathematical queuing techniques and the 
other using a discrete simulation 
language (GPSS). The GPSS model was used 
to provide an approximate verification of 
the assumptions and of the results 
obtained mathematically. 

These are some questions that a system 
designer may have when trying to use a 
minicomputer in a proposed communication 
system. 

An obvious approach is to model the 
system, and then run a variety of 
simulations. The problem that arises 
however, is: how should the system be 
modelled. 

This paper shows how a design problem 
was solved using relatively simple 
modelling techniques, with a view to 
minimizing the cost of obtaining reasonably 
accurate performance predictions. 

1.0 INTRODUCTION 

One of the problems of using a mini- 
computer in a communications environment 
is trying to determine the performance 
capabilities of the machine. The 
manufacturer has general performance 
figures for his equipment, but from the 
point of view of the customer, these 
figures may not be useful. The user is 
interested in the minicomputer's 
performance with respect to his application 
and not in generalities. For example, 
some typical questions might be: 

What message throughput and delay 
will be encountered? 

What percentage utilization of the 
various facilities will occur in the 
application? 

Will there be sufficient time 
available for other secondary tasks 
such as gathering statistics? 

Should priorities be established for 
various operations within the system, 
and what should these priorities be? 

How much buffer space will be required? 

2.0 THE PROBLEM 

The problem was to predict the 
performance of a minicomputer, from a 
throughput versus delay point of view, 
when it was used in a communications system. 
Briefly, the computer had to process 
messages from an asynchronous mode and 
convert them into synchronous information 
and vice versa. A number of asynchronous 
and synchronous lines were to be employed. 

The minicomputer itself makes use Of 
a Communications Executive Software 
package supplied by the manufacturer. 
This basic package provides the customer 
with the capability of interleaving the 
execution of a number of user written 
programs, based on their established 
priorities. These system programs or 
tasks are used to control the flow of 
messages and to condition the messages 
from the asynchronous to synchronous 
environment. The system software is thus 
divided into two principal categories: 

1 The executive software overhead. 

2 Customer written programs or tasks. 

These software tasks are considered 
to be non-suspendable operations. The 
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term non-suspendable is used in reference 
to operations that may only be preempted 
(on a priority-preempt-resume basis) by 
I/O interrupts. Operations may not be 
preempted by other operations. Each 
operation is assigned a priority. When a 
system event occurs, rescheduling takes 
place on a priority basis. A system event 
results when one of these three events 
occurs: 

1 Completion of an I/O transfer. 
w 

2 Internal interrupt. 

3 Completion or cancellation of a 
task. 

The various software operations are 
shown in the block diagram of illustration 
I. Referring to this illustration it can 
be seen that there are three principal 
tasks which perform two operations each. 
These tasks are: the asynchronous task, 
the conditioner task, and the synchronous 
task. They are used to convert 
asynchronous information into synchronous 
information, and to convert synchronous 
information into asynchronous information. 

MOD£L OF SOF•AR£ OpE•TIONS 

$YNC. 
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system. In essence, a limiting action 
occurs which will restrict the message 
throughput if sufficient buffer space is 
not available. 

Also, in addition to the customer 
written tasks, there is thesoftware over- 
head. The manufacturer's supplied figures 
are useful in considering this aspect. 

Table 1 shows how this system may be 
typified by counting the number of 
instructions and averaging the execution 
time and thus determining the average 
latency time of a single message. 
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An asynchronous line is initialized, 
characters are read into a common buffer 
area by the asynchronous task, and then 
queued for conditioning into synchronous 
information. A conditioner task is then 
initialized, the message processed, and 
placed back into a common buffer area. 
The synchronous task is then initialized, 
and the message transmitted on a 
synchronous line. The reverse procedure 
is followed by messages proceeding from 
the synchronous to asynchronous 
environment. Thus, these tasks assign 
buffers, perform the appropriate message 
formatting, and communicate with the 
synchronous and asynchronous lines. 
Another characteristic of the system 
software is that if no buffers are 
available, no messages are input to the 

Therefore, given this application, the 
problem is to predict system performance 
for various design configurations. 

Two approaches were considered 
feasible in this case: 

1 A mathematical queuing analysis. 

2 Computer simulation using GPSS 
(General Purpose Simulation 
System). 

The principal reasons for being 
restricted to these two methods were cost, 
accuracy and computer availability. 

3.0 DISCUSSION OF ASSUMPTIONS 

The five basic areas where assumptions 
have to be made for modelling this system 
are: 
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1 Task service time. 

2 Task initiation rate (implies a 
message arrival rate). 

3. Message and character arrival rate 
on the synchronous and 
asynchronous lines. 

4 Buffer space available. 

5 Queuing discipline and scheduling 
- algorithm. 

The first assumption of task service 
time is relatively easy to consider by 
modelling the software. By counting the 
number of instructions and multiplying by 
an average instruction execution time, it 
is possible to say that the service time 
of each task is nearly constant (ie: the 
standard deviation of the service time is 
zero). 

The second assumption to be made, 
concerning the task initiation rate, is 
the most difficult. Since only one 
operation can be executed at a time, and 
since one task must be completed before 
another can start, the simplest 
consideration is that of processing only 
one message. This processing of a single 
message causes a highly ordered procedure 
to take place. That is, the overall 
processing time for this one message is 
essentially constant. As the message rate 
increases, thus increasing the number of 
messages "in transit" in the system, the 
various operations start to be preempted 
for I/O interrupt servicing, and 
rescheduling occurs more frequently. 
Therefore, the initiation of some of the 
tasks become more disordered, with the 
degree of disorder being dependant upon 
the priority of the task. A completely 
disordered process for the task initiation 
rate may be characterized by a Poisson 
distribution(3). A digression here might 
be useful. The messages for the mini- 
computer originate on the asynchronous 
and synchronous lines, which are virtually 
independant of each other. Because of 
this independance, the message arrival 
rates to the system are approximately 
random and thus may be described by the 
Poisson distribution. This Poisson 
arrival pattern to the system coupled with 
the partially disordered rescheduling of 
tasks allows some faith to be placed in 
the assumption of describing the task 
initiation distribution of being 
exponential. Thus, by assuming a Poisson 
distribution, we will be considering a 
"worst case" situation. Obviously, this 
assumption will have to be examined more 
closely. 

The assumption of available space is 
simplified by assuming that infinite 
buffer storage is available. If the 
system is designed such that the 

probability of there being insufficient 
buffers available is very small, this 
assumption is not unreasonable. 

The queuing discipline that is used 
throughout this analysis is on a first- 
come, first-served basis (FIFO) with 
respect to any given task. 

The scheduling algorithm is on a 
priority basis with non-preemptive priority 
for operations and preempt - resume 
priority for I/O interrupts. 

For simplicity, no abnormal situations, 
such as console interrupts, machine 
malfunctions, etc. are considered. 

4.0 THE MATHEMATICAL MODEL 

Based on the previous assumptions, 
each of the software tasks may be 
characterized as an M/D/i queuing(l) 
problem. 

The basic problem in creating a 
mathematical model of this system is in 
handling I/O interrupts, which have 
preemption capabilities, and in handling 
the operations which have non-preemptive 
priority capabilities, all requiring use 
of the processor facility. 

One approach to solve this problem is 
to initially consider each task in 
isolation. Statistically, a finite queue 
will develop for any given task, as long 
as the arrival rate is less than the 
service rate, and some non-constant 
arrival distribution is assumed. Treating 
each operation in isolation permits the 
"extra delay" due to preemption to be 
calculated for each operation. Adding the 
"extra delay" to the service time of each 
operation and then recalculating their 
second moments, removes the problem of I/O 
interrupts. The problem has now been 
reduced to analyzing the queuing problems 
of the various tasks on a non-preemptive 
priority basis. This is now a relatively 
easy problem to solve and permits such 
factors as facility utilizations, queuing 
delays, average queue lengths, and the 
total message delay to be determined. 

5.0 THE GPSS MODEL 

To try and eliminate some of the doubts 
that arise from the assumptions that were 
made when deriving the mathematical model, 
a GPSS model was created. The principal 
assumption that we wish to eliminate is the 
task initiation distribution. Referring 
back to illustration i, the modularity of 
the software facilitates implementation in 
GPSS. Specifying a message arrival rate 
according to a known distribution 
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(eg: Poisson), and assigning a priority 
to each message depending upon which task 
it is entering, and by rescheduling tasks 
by use of a "PRIORITY BUFFER" block, a 
more accurate representation of the mini- 
computer may be obtained. The principal 
factor is that the nature of GPSS frees 
us from the constraint of having to 
specify a task initiation distribution. 

The coding of GPSS is an encouraging 
factor to those who must make decisions 
on the system design, as it is reasonably 
easy to understand and relate to when 
compared to a mathematical analysis. The 
main disadvantage of using a simulation 
language in this application is that it is 
expensive. The operations that are being 
modelled have service times in the micro- 
second region, while I/O interrupts occur 
in the order of milliseconds. This 
results in a simulation where it takes 
approximately five seconds to simulate 
one second of operation. However, GPSS 
provides a good means of creating another 
model to compare to the mathematical 
analysis. 

6.0 SIMULATION RESULTS 

The principal characteristics of 
interest result from plotting throughput 
in messages/second, versus the overall 
mini-computer service time including 
delays and queuing. A family of curves 
may be drawn depending upon what message 
size is being considered. A typical 
series of curves is shown in illustration 
2. 
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Two important restrictions are shown in 
this diagram. The first obvious 
restriction is governed by the 
capabilities of the mini-computer (ie: 
the computer becomes "cycle-bound"). This 
is an absolute upper maximum beyond which 
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the mini-computer cannot operate and is 
determined by the point at which the 
processor is nearly 100% utilized. Of 
course, if the programming of the various 
tasks is made more efficient, then this 
curve will be shifted upwards. The second 
restriction is due to the physical 
limitations of the asynchronous and 
synchronous lines transmitting at fixed 
baud rates. In this example the line rates 
are quite slow (1200 to 2400 baud) and 
operate in a half-duplex mode. Thus, for 
the computer to become "cycle-bound," a 
relatively large number of lines are 
required. Therefore, the system throughput 
will be limited by the line capabilities 
before the mini-computer capabilities. An 
obvious conclusion would be that increasing 
the asynchronous and/or synchronous line 
speeds (if possible) will tend to increase 
the utilization of the machine. 

Another interesting characteristic 
that results from an analysis of this kind 
is the character throughput versus the 
percentage utilization of the processor 
(illustration 3). Two curves are of 
specific interest. One is the percentage 
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utilization of the processor for all 
operations and the other is the 
percentage utilization of the processor in 
dealing with I/O interrupts. These curves 
are of course dependant upon the system 
parameters (eg: message size and line 
rates). Note that at the "cycle-bound" 
point of the mini-computer, the processor 
utilization to handle the I/O interrupts 
is approximately 32%. This corresponds to 
a character throughput of about 7300 
characters/second. If an operating region 
of approximately 3000 to 5000 characters/ 
second is assumed, the percentage 
utilization of the processor is quite low 
(27% to 53%). Thus, assuming the computer 
does not become "core-bound," there is 
sufficient capabilities for other 
"housekeeping"chores such as statistics 



gathering. 

Illustration 4 shows the effect of 
varying the established priorities of the 
various operations. As can be seen there 
is very little difference in the overall 
service time for a message until the 
system starts to become more heavily 
loaded. Near the "cycle-bound" point of 
the curves, a small spread is noted 
between three typical priority schemes. 
The difference is almost negligible due to 
the fact that the service times are nearly 
equal. If there was a greater spread in 
service times, then the system delay would 
show a greater variation. 
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The GPSS results are shown with the 
mathematical results in illustration 5. 
The main item to note is that the GPSS 
results tend to give "better" results for 
system performance than the mathematical 
results. That is, the mathematical 
results tend to predict that the message 
throughput is slightly less than that 
predicted by the GPSS model. This 
difference is attributed to the task 
initiation distributionwhich we assumed 
to be Poisson. 
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7.0 DISCUSSION OF RESULTS 

One of the more questionable 
assumptions that was originally made for 
the mathematical model was the assumption 
of an exponential distribution for the 
tasks' initiation rates. This was said to 
be a "worst case" assumption. One of the 
reasons for using a GPSS model was to 
eliminate this assumption. Referring again 
to illustration 5, note that three message 
sizes have been assumed. As can be 
expected, as the message throughput 
increases, there are increased delays in 
the system, and the mini-computer service 
time increases until the "cycle-bound" 
point is reached. Note that as the message 
throughput increases (by decreasing message 
size), the difference between the results 
of the two modelling techniques decreases. 
For example, with a processor utilization 
of approximately 70%, the percentage error 
for the 180 character message size is 
about 6%, for the 80 character message size, 
about 5%, and for the 40 character message 
size, about 2%. This tends to lend 
credence to the assumption that as the 
system becomes more heavily loaded, the 
task initiation distribution becomes more 
disordered and approaches an exponential 
distribution. For low processor 
utilizations, the queuing delays are 
obviously going to be relatively small, and 
the assumption of a Poisson distribution 
will not be significant for the conditions 
being considered. 

Another aspect which must be taken 
into consideration is the actual physical 
limitations of the overall system in which 
the mini-computer is being used. One 
consideration is that it may not be 
physically possible to support sufficient 
synchronous or asynchronous lines to give 
a message throughput which approaches the 
"cycle-bound" restriction. Two curves 
showing the line restrictions are included 
in illustration 5. These two curves 
represent 24 and 12 asynchronous and 
synchronous lines respectively, and 16 
asynchronous and 8 synchronous lines. Note 
that the percentage utilization at the 
points where they cross the performance 
curves is quite low. Thus the accuracy of 
the mathematical model is quite good for 
this operating region. 

To summarize therefore, the greatest 
error in the mathematical model will result 
from the condition of a low message 
throughput with a relatively large message 
size (which implies a high processor 
utilization). 

8.0 CONCLUSIONS 

A mathematical analysis of the mini- 
computer permitted quick, easy to understand 
information to be gathered about the 

W i n t e r  S i m u l a t i o n  C o n f e r e n c e  73 



S I M U L A T I O N  OF A M I N I C O M P U T E R  . . .  C o n t i n u e d  

predicted performance of the system. By 
making several general assumptions, to 
facilitate the calculations, and 
verifying them by using a discrete 
simulation language, it is possible to 
place a fairly high degree of confidence 
in the results. 

Treating the various modular tasks in 
an isolated fashion to determine the 
"extra" service time associated with 
preemption, and then treating them as a 
"whole" to determine the various queuing 
delays, allows a complicated system 
service distribution to be modelled in a 
simple fashion. 

The modularity of these techniques 
allows various system configurations to be 
modelled to determine the sensitivity of 
the system to the change. New tasks may 
be easily introduced into the model, or 
existing tasks removed. This is important 
in the system design phase, as many 
different ideas and configurations may be 
quickly tested before the actual physical 
system is built. 

APPENDIX 

Queuing Relationships used in the Analysis 
Of The System Performance 

The basic theorem of a single-server 
queuing model is the Khinchine - Pollaczek 
equation (2) . 

_ 2 : [~tsl 2 9(i) 
N(w)-~_p) ~I + --Ts 

J t 3 
where: 

N(w) = mean number of messages 
waiting for service. 

p = facility utilization. 

ats = standard deviation of 
the service time. 

Ts = mean service time. 

This relationship is useful in 
determining the queuing delays that result 
in computer systems and is applicable to 
any single-server system where an 
exponential arrival pattern and any 
distribution of service time is assumed. 
An important characteristic of this 
relationship is that it is valid for any 
dispatching discipline, provided that the 
selection of the next item to be serviced 
does not depend on the service time. In 
the case we are considering in this paper, 
the dispatching discipline is on a first- 
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in, first-out (FIFO) basis with priority 
and for some operations, preemption. 

The mean number of items waiting for 
service may be determined from: 

N(w) = I * T(w) (2) 

= average number of 
message arrivals/sec. 

T(w) = average time spent 
waiting for service. 

The facility utilization (p) may be 
expressed by the following: 

p = I * Ts (3) 

Using these two relationships, 
equations 2 and 3, and substituting into 
the Khinchine - Pollaczek equation (I), the 
mean time (T(w)) that a message spends 
waiting for service is: 

from (2) T(w) = N(w) (4) --D-- 

using (3) 

using (1) 

= N (w) Ts 
P 

T(w) = p2Ts ~i +f~t~ 
~'[i~)p% LTsA .3 

0Ts fl +pt 2? 
~TY-p)i L Ts ~ j 

Now since we are considering constant 
service times in this analysis, equation 4 
reduces to: 

T(w) = pTs (5) 
2~-p) 

as Ots = 0 

PRIORITY QUEUING 

In the analysis there are two types 
of dispatching disciplines: 

1 Non-preemptive, priority queuing. 

2 Preemptive priority queuing. 

Assume that a task has a priority i 
and this operation has priority over an 
i + 1 priority operation for N operations. 
If we assume that each task initiation is 
independant of the other (random - Poisson), 
with ratesll,12, ... I n then the total 
mean arrlva± rate is random and may be 
represented by: 

I = 11+I 2 + ...+lq (6) 

Now, if the various priority classes 
require different service times according 
to their priority, then the dispatching 



discipline is no longer independant of the 
service time and thus the Khinchine - 
Pollaczek equation cannot be used. In 
this case the mean waiting time relation- 
ship may be represented by(3): 

(7) 

T(W i) = Ib2 
2 + + 

CJ-c0  ÷ 02 ÷ ...0i3 

where: pi = li bli bli = ° I~ tdQ(t) 

b,i = I tdQ(t) 
0 

b 2 = I~b21+12 b22 + ...IN b2N 
i Y- -7 

2 

b2 =0I t dQ(t) 

Q(t) = service time distribution 
of each operation. 

Since we are considering constant 
service times 

• 01 when 0<t<T 
Q(t) = s 

when t>T s 

Now considering situations in which 
there are only two priority classes (as 
there would be when considering operations 
and I/O interrupts in isolation), then 
equation 8 reduces to: 

(9) 1 T(wi)= 1 [pL2p1+ I~(11b21 + 12b22) 

l-pl 2(i-(Pi+P2 )) 

i. 
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Therefore bN= 01 ~ tNdQ(t) 

t N = 01 ~ (t - Ts) dt= Ts N 

b2= Ts 2 and b2i = T2si 

PREEMPTIVE-RESUME PRIORITY QUEUING 

This queuing situation must take 
into account the initial wait for service, 
as well as the subsequent waits for 
higher priority interrupts. Thus the mean 
waiting time for the ith customer is 
given by (3): 

T (Wi) = i 
i-i 

(i-E pk) 
k=l 

~! ±-1 (8) 

i 
li Z IK b2K 

K=i 

LK=i 

where P'l = li Tsi 

b2k = second moment of service 
time for the kth operation. 

I i = mean arrival rate for the 
ith operation. 

Winter Simulation Conference 75 



68 January 14-16, 1974 

FREDERICK V. CROWLEY was born in 
Montreal, Quebec, Canada on January 7, 
1944. In 1966, he graduated from the 
L'Institut Technologie de Montreal. He 
received the BaSc degree in Electrical 
Engineering in 1971, and the MaSc degree 
in Systems Design Engineering in 1972, 
both from the University of Waterloo, 
Waterloo, Ontario, Canada. 

At present, he is a Computer Systems 
Associate with the Computer 
Communications Group of Bell Canada, 
located in Ottawa, Canada. From 1972 to 
1973, he was associated with the Software 
Controlled Communication Services 
district and was responsible for 
modelling and simulation for various 
development projects. Currently, he is 
on Special Assignment in the design of 
computer communication systems. 


