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ABSTRACT 

This paper describes a FORTRAN sim- 
ulation program written to carry out 
Dynamic File Management (DFM) strategies. 
The DFM model provides effective manage- 
ment of secondary storage while enhancing 
throughput time. The main problems we 
address are: how data is moved from lev- 
el to level; the determination of cri- 
teria to justify file movement; and the 
implications of implementing the DFM 
techniques. It is demonstrated that DFM 
strategies are feasible and provide the 
manager with a viable mechanism with 
which to govern auxiliary storage. 

I. INTRODUCTION 

Dynamic File Management (DFM) tech- 
niques are memory management strategies 
which move data in the secondary store in 
response to user and system demands for 
data. The objective of these strategies 
of data movement is to optimize secondary 
storage usage with respect to throughput 
time. 

A simulation model is constructed to 
allow the comparison of various strat- 
egies of Dynamic File Management. File 
process time for any simulated input job 
stream is obtained for the system, with 
and without DFM management. The output 
is statistically analyzed to determine 
the potential for time savings under 
Dynamic File Management. 

II. MODEL BACKGROUND 

A memory hierarchy is composed of 
devices that have ascending "transport 
speeds" dependent upon wait, access, and 
transmission times. Memory hierarchies 
consisting of a main level (usually high 
speed core memory) and the auxiliary 
store (drum, disc, tape, etc.) were 
created because of the excessive cost of 
internal fast core storage. The higher 
a set of data (file) is in the auxiliary 
store, the faster it can be transported 

to or from the main store. However, the 
more complex a memory hierarchy, the more 
difficult it is to use efficiently. 

The problem is one of dynamic 
assignment, since the access demand is 
stochastic; thus, assignments to hierar- 
chial levels of storage should change to 
meet new demands. This is our area of 
research: it is the determination of 
"optimal" file position in secondary 
storage in response to changing demand. 
Storage management techniques must be 
developed for efficient use of configura- 
tions such as hierarchical or multilevel 
storage. The DFM strategies described 
herein are designed to do that, the cri- 
terion of efficiency being minimum 
throughput time. 

The value of a memory management 
technique is its ability to improve per- 
formance. Thus, we should examine current 
techniques used to evaluate the perfor- 
mance of computer systems. We are 
searching, in particular, for a viable 
method to measure the effectiveness of the 
Dynamic File Management techniques. One 
may consider six major evaluation tech- 
niques: hardware monitors, software 
monitors, benchmarks, synthetic programs, 
analytic models, and simulation models. 

It is not feasible (in a University 
environment) to obtain a computer system 
for experimenting with memory management 
strategies. Because of this, DFM 
techniques are not implemented in an 
actual system. The only evaluation 
techniques available are those using 
analytic and simulation models. 

An analytic model is a mathematical 
representation, usually through queuing 
theory, of a computer system. Normally, 
the model does not evaluate an entire 
system, rather portions of it, such as 
channel interference and disk throughput. 

It may appear that an analytic model 
such as Shedler's [22] could be developed 
to examine hierarchial storage, assuming 
a probabilistic level changer. But one 
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goal of this research is to examine the 
suitability of criteria for determining 
Dynamic File Management strategies in 
response to changes in demand. A proper 
modeling of this would require dynamic 
changes of the probabilities for file 
movement. Another goal of our research 
is to determine the reasons why files 
should be moved; therefore, a level 
changer governed only by probabilities 
is not considered. It follows that an 
analytic model is not the applicable 
evaluation tool to use in this research. 
Consequently, we use simulation. 

III. SIMULATION 

Simulation is acknowledged to be the 
most powerful of all computer evaluation 
techniques [2, 6, 14, 16, 19]. Input to 
the model consists of data characterizing 
the computer to be simulated and its 
normal job stream. The computer system 
is described by a set of parameters 
dependent upon the simulation model. 
Some models will have no system descrip- 
tors because these are constant, while 
other models may have a large requirement 
for system descriptors. 

The job stream can be described in 
various ways [7, 14, 16]. Event- 
oriented software traces can be made if 
the projected job stream exists and is 
expected to remain constant. This is 
expensive; it contributes to the deg- 
radation of the system; and it creates 
voluminous output. More computation 
would be required to reduce the software 
traces to their minimal characterization. 
Often, however, if a system undergoes 
drastic change, the use of the system 
will also change to take advantage of 
the new features. Thus, extreme care 
must be taken in projecting job stream 
data. As an alternative, analytical data 
can be derived to describe the attributes 
of the job stream. One can produce 
distributions such as the normal, 
exponential, and Weibull, and test the 
operation of the system under these 
distributions. 

Although many languages are used for 
simulation, no single language is pre- 
ferred [ii, 18]. A simulator written in 
ASSEMBLER, FORTRAN, or MAD, for instance, 
uses input parameters to describe the 
system. Other languages such as 
SIMSCRIPT, SOL, CSS, GPSS, SIMTRAN, and 
MDL are programmed as subroutines to 
describe the system, while a main program 
controls the system events. 

No matter what language is chosen 
for writing the simulator, the main 
problem is determining the level of 
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detail of the model. How close must it 
resemble the actual machine? There is 
much thought on this issue [3, 9, 12, 13, 
14]; but it is generally agreed that the 
finer the level of detail, the more costly 
the simulation model. On the other hand, 
if the level of detail is coarse, the 
results may be misleading. 

The output of a simulation model 
describes the performance of the simulated 
system. Criteria must be selected to 
determine whether the simulated perfor- 
mance is better or worse than that of the 
actual system. MacDougall [15] uses 
theoretical times to simulate secondary 
storage accesses as we do. These are well 
documented, acknowledged average device 
access times [4]. Using these theoretical 
times, one can compute the throughput time 
for a collection of jobs, a measure used 
by others [8, I0, 12]. 

The linear objective function which 
we propose is similar to those used by 
others [7, i0] to measure performance. 
The advantage of such a measure is its 
versatility: it can easily be changed to 
reflect changes in endogenous or exogenous 
policies. Kimbleton [13] agrees that 
exogenous criteria such as user satis- 
faction are pertinent criteria for per- 
formance evaluation. He suggests the idea 
of system tuning, jobset by jobset. 

Also, effective simulation need not 
imply a one-to-one correspondence between 
the system actions and those of the model. 
The goals of the model must be held in the 
proper perspective. Kimbleton [13,p. 589] 
sums it up best: "The goal of model 
building is not to construct a faithful 
reproduction of the system but to 
determine potential causal relationships 
between input and output." 

We have said that proper criteria 
are required so that systems can be 
compared. There is no general agreement 
in the profession upon one criterion. 
There are, however, several criteria worth 
consideration: 

a. The number of data units pro- 
cessed per unit time under a 
program load [I]. 

b. An objective function repre- 
senting read access time, read 
resolution time, write time, 
size, cost, and reliability [21]. 

c. A combination of throughput time, 
turnaround time, and availability 
of the computer [3]. 



d. A figure of merit based on 
throughput time for the basic 
system [6]. First one computes 
the throughput time for the 
basic system, TPT*. Then one 
uses the following ratio as a 
figure of merit for any other 
model i: 

TPT*/TPT (i). (1) 

IV. THE DFM SIMULATOR 

The theory of Dynamic File 
Management is described in [20]. The 
definition of throughput time (TPT) for 
the theoretical model demonstrates the 
essentials of Dynamic File Management: 

TPT(E,M,k+i) = TPT(E,M,k) + Z(k) 

+ U(C'k,Ck+ I) 

+ N(Ck+l,Wk+l). (2) 

Equation (2) states that the 
throughput time required to process the 
first k+l Worksets is equal to: 

a. TPT(E,M,k): the time to process 
k Worksets; plus 

b. Z(k): the time to decide if any 
files should change levels in 
the hierarchy; plus 

c. U(C'k,Ck+l): the time to move 

from the present file config- 
uration set C' k to ~ new file 

configuration Ck+l; plus 

d. N(Ck+i,Wk+i): the process time 

for Worksets Wk+ 1 under the new 

file configuration set Ck+ I. 

If Z and U in (2) are zero, then (2) 
reflects the "natural" throughput time 
for a system (characterized by auxiliary 
storage M) required to process the set of 
jobs E. The functions Z (decision) and 
U (move) reflect the overhead of an 
auxiliary memory manager. To ensure 
generality of the model, the only re- 
striction on job processing is that there 
exists one CPU. The concept of a Workset 
(Wk) is a renaming of the job portions of 

set E processed during the k-th period. 

THE DECISION FUNCTION 

Input to the decision function Z 
consists of current and past data. The 
output of this function is a list of file 
moves. The more information a decision 
function takes into consideration, the 
better the decision; however, the more 
complex the function, the more overhead. 

The input data for the decision 
function are classified into three cate- 
gories: file priority, F(n); job priority, 
J(n); and system priority, S(n). Each of 
these measures has a final value ranging 
from 0 to i. Adding adjustable weights 
of ~, ~, and y to F, J~ and S, respect- 
ively, we can define the decision function 
as: 

Z(n) = eF(n) + 8J(n) + yS(n). (3) 

The weights e, 8, and ¥ are user- 
defined exogenous variables. This enables 
the manager to utilize the DFM to achieve 
the goals of his installation more 
efficiently. These exogenous variables 
separate the DFM model from other memory 
management strategies. Given the def- 
inition for Z(n), the measur~F, J, and S 
must be better defined so they can be 
implemented into the DFM model. The DFM 
builds a history of file activities in 
increments, as each Workset is processed. 
Most of the measures relate only to the 
files referenced during the most recent 
Worksets. The DFM has no need to evaluate 
those files that have been inactive over 
a long period. This reduces the number of 
files needing evaluation; it is 
justifiable since only those files 
referenced by the processed Worksets have 
been active in the system. 

File priority consists of three 
parameters: the time since the last 
activity of the file, the duration of the 
last file activity, and the average 
activity of the file in question. Job 
priority consists of the run priority of 
each job, the time allocation for a job, 
and the user file priorities of the job's 
file reference set. Finally, we have the 
system priority which considers three 
parameters: the response priority for 
each Workset, the splitability of the 
files referenced by each Workset, and the 
size of those files. 

The DFM is invoked after each Workset 
is processed, as defined in (2). Since a 
Workset comprises a collection of many 
user and system jobs, the invocation is 
dynamic as opposed to real-time; hence, 
the name Dynamic File Management. DFM 
monitoring, nonetheless, is performed in 
real-time; it is the background portion 
of the DFM. 

Given an auxiliary store under DFM 
control, the level of DFM timeliness must 
be examined. Let "gap" represent the 
number of Worksets processed between each 
DFM invocation. The smaller the value of 
"gap", the more overhead the DFM must make 
up since it is more active. Also, the 
smaller "gap" is, the more timely the DFM 
can be in response to changes in the job 
environment. The more often the DFM is 
invoked, the less new information it has; 
thus, the likelihood for performing proper 
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file movement diminishes. But, the 
larger the value of "gap", the lesser the 
DFM response. This problem is solved by 
creating two separate levels of timeliness 
for the DFM: the temporary "gap" (tgap) 
and the permanent "gap" (pgap). These 
two manager-defined variables enable the 
DFM to have short range (tgap) and long 
range (pgap) response capabilities. 
File moves are made often (each tgap) to 
respond temporarily to recent changes in 
the workload; other file moves are made 
less often (each pgap) to respond more 
firmly to long range trends. 

THE MOVE FUNCTIONS 

Given two levels of timeliness, one 
can examine the DFM capabilities to move 
data in the auxiliary store. When the 
DFM is invoked after tgap Worksets, it 
responds with data movement designed to 
enhance throughput in the short run. 
This is accomplished by making a ser£es . 
of Temporary moves (T-moves). DFM data 
movement after pgap Worksets focuses upon 
long range trends and is accomplished by 
Permanent moves (P-moves) of data in the 
store. These two DFM move capabilities 
constitute the primitives necessary for 
data movement in secondary storage. 

A "permanent" (P-move) change is the 
movement of a file from a spot B to spot 
D, with B now available for use by other 
files. If a file occupies location D 
prior to the P-move, it is moved to an 
open spot in the storage hierarchy before 
the file from location B is moved to its 
destined location D. Illustration 1 
shows the action of a typical P-move. 

i 

J 

k 

ILLUSTRATION 1 

P-move: X~ ÷ X i 

I." .... I ~ T--'h} 
• 1 x ...... i 
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where: i, j ,k denote levels 
and k > i 

After 

Consider a "temporary" change (T-move) 
to be the replacement of location D with 
file X from spot B. File X now occupies 
both spots D and B. In addition, if 
there exists another copy of file X at 
some location lower than B, it is deleted 
from location B. If spot D was previously 
occupied by some file Y, that copy of Y is 
lost at D. However, another copy of file 
Y still exists, else Y would have been an 
illegal destination for the T-move. 
Illustration 2 shows the action of a 
typical T-move. 

ILLUSTRATION 2 

T-move: Xj ÷ X i 

. . . .  

Jl ..... ix. ~.. I 
k I..R Y r .... ix I..I 

Before 

....... 11 

where: i < j < k denote levels; 
* denotes up-to-date copy 

These move functions produce at most 
two file copies: the Home copy, which is 
the initial copy, and the Away copy, the 
result of a T-move. By definition, an 
Away copy is always at a higher level in 
the storage hierarchy than is the Home 
copy. Any updating is done only to the 
Away copy if one exists. If the Away copy 
is ever overlaid, the file's Home copy is 
first updated. 

These DFM move functions offer some 
distinct advantages. The first advantage 
of the two move functions is that there 
are at most two copies of any file in the 
auxiliary store. Normal use of a hier- 
archical store of N levels allows as many 
as N copies of any file to exist in the 
store. For large files, the immediate 
implication is that storage savings become 
large. The second advantage is that the 
two file copy types reflect the two levels 
of timeliness for the DFM. T-moves are 
quick and timely; P-moves are less timely, 
but more justified. 
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The following strategy is employed 
using these two move capabilities. On 
slight justification, perform T-moves to 
create other file copies higher in the 
multilevel store. If this is a poor 
decision, little time is lost. Less 
often do P-moves (followed by device 
compaction of Home file copies only) to 
increase long-run system throughput. 
This allows the DFM to be dynamic; yet, 
it minimizes overhead. 

A file is accessed at its highest 
position in the store. Changes are made 
only to the highest file copy which is 
the most accessible and up-to-date. 
Updates to the extra file copies are done 
only when the upper file is to be deleted. 
This method preserves information and 
minimizes update time with only a slight 
addition in bookkeeping overhead. 

V. DFM EXPERIMENTS 

The objective of the DFM model is 
auxiliary memory efficiency. The figure 
of merit for the DFM simulation model is 
throughput time. The reasons for choos- 
ing throughput time are that it is a 
valid measure of system efficiency 
[8, i0, 12, 15] and that it is defined by 
the function TPT, equation (2). 

Testing of the DFM model under all 
possible input streams would be a costly 
task. Instead, tests are performed 
using a uniformly distributed input 
stream. 

THE SIMULATOR EXPERIMENT 

The input to the DFM simulator 
describes the computer system auxiliary 
store to be simulated. The other 
necessary input is a definition of the 
weights in the DFM decision function Z 
for both Temporary and Permanent moves. 
These weights are described by the vector 
V: 

V = (UT, BT, 7T, Up, Bp, Yp). (4) 

Changes in weights result in a new DFM 
strategy. These changes do not alter the 
manner of file movement; rather, they 
alter the reasons for it. 

The output of the DFM model is file 
throughput time (FTT): auxiliary storage 
cumulative time spent during the 
processing of the input stream accesses. 
When we add the CPU time to these times, 
we have throughput time (TPT). 

The DFM model is simulated 82 times 
under uniform input accesses to storage, 
varying randomly the six major parameters 
(4). One run is executed without DFM 
intervention to provide the base file 

throughput time, FTT0, for the work periods 
1,2,...,48. File throughput time after 
k work periods for DFM model i is denoted 
FTTi(k). This represents the total 
auxlliary storage time spent during the 
processing of k Worksets. From file 
throughput time, we can derive throughput 
time for these simulation runs. 

ILLUSTRATION 3 
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Illustration 3 represents three FTT 
curves: Groups 0, l, and 2. The Group 0 
curve represents FTT file throughput time 
for the system with no intervention under 
uniform random input. This curve 
represents the upper bound for DFM output. 

The curve labeled Group i, 
Illustration 3, constitutes the mean of 
the high DFM output for 48 Worksets. The 
Group 2 curve represents the mean of the 
low DFM output. Forty-six of the eighty- 
one DFM output curves are classified in 
either Group 1 or Group 2. 

Illustration 3 shows that, for certa~ 
DFM strategies (defined by the V vector 
for each run), time savings from 18% - 28% 
can be made under random selection from a 
uniform distribution. Expansion from FTT 
to TPT reveals a 13% - 23% increase in 
throughput. 

File throughput data represents the 
necessary output from the DFM simulator. 
Each of the 82 DFM data sets is 
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associated with a vector of weights. 
These data sets are then fitted to poly- 
nomials [5]. In all cases, the linear 
coefficient was statistically 
significant at a = 0.01. 

STATISTICAL ANALYSIS 

Inspection of the eighty-two poly- 
nomials indicates three groups. The 
grouping yields significant differences 
in time savings for Group 2 (low times) 
over the scale from work period t=0 and 
t=k. This is verified by a multivariate 
test of equality for means of the re- 
gression coefficients of Group 2 and 
Group 0 [17, p. 117-120]. 

That is, we test the hypothesis, 

H0:~2 = ~0' where ~0 represents 

the Group 0 mean, 

versus 

Hl: P2 ~ P0' where ~0 represents 

the Group 2 mean. 

The above test involves the use of 
the covariance matrix [23, p. 418] of the 
Group 2 vectors. This matrix is found to 
be near singular. Singularity of the 
covariance matrix implies that the 
vectors are very nearly linearly dependent 
or approximately the same, eliminating 
the need for further computation. Resul~ 
derived from polynomial slope comparison 
indicate that the Group 2 vector 
statistically dominates the base vector. 
This implies that for arbitrary work 
period k and vector t of Group 2: 
TPT0>TPT t • 

Another test of hypothesis is made 
using the data of Group 1 and that of 
Group 2. To wit, 

H0: ~2 = ~2' where ~l = mean 

Group l, 

versus 

Hl: ~l z P2' where ~2 = mean 

Group 2. 

The same results are obtained as before. 
The mean Group 2 vector dominates the 
mean Group vector statistically. 

We have shown that the DFM decision 
function enhances throughput. We next 
show that statistically significant 
differences between groups can be 
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attributed to the weights in (4). We also 
determine which of these weights contribu~ 
to the efficiency of the DFM model. 

DECISION FUNCTION WEIGHTS 

The six weights in the decision 
function are exogenous variables which the 
manager defines. They are in the decision 
functions so that the manager can define 
the priorities for file movement during 
run-time. Now benefits, such as job 
priority, may be more important to the 
manager than globally minimizing throughput 
time. Hence, our purpose is not to find 
the "optimal" set of weights for the 
decision function, but to determine the 
bounds within which the manager can easily 
work without adversely affecting 
throughput time. 

Stepwise discriminant analysis 
[23, p. 413] is applied to partition the 
associated decision weight vectors into 
inferior and superior groups by time 
saving differentials of the polynomial 
regressions of time on the weight vectors. 
The objective of discriminant analysis in 
this test is to identify these significant 
differences in throughput time with the 
input decision function weights, and 
subsequently, to see if some restrictions 
might be removed from those weights not 
contributing to savings. 

The stepwise discriminant analysis 
yields the function 

U = 19.87093 + 1.33809a T -2.626768 T 

+ 2.228270ap + 4.38766yp (5) 

significant at the 0.01 level. The 
resulting classification table shows that 
the classification procedure was adequate. 

The stepwise discriminant analysis 
indicates that the superior weight 
vectors can be identified easily. This 
means that there exists a procedure where- 
by the vector (4) can be classified as 
superior or inferior. 

The stepwise procedure also indicates 
that variables a T and 8p can be eliminated 
as they do not contribute significantly to 
the classification power. It is then 
concluded that system priority for T-moves 
(short run) and job priority for P-moves 
(long run) will have little effect upon 
the resulting throughput time of the model. 



SUMMARY AND CONCLUSIONS 

In this paper we demonstrate that 
simulation is a viable and effective 
technique for dealing with the analysis 
of complex computer systems. The DFM 
simulator is tested with random uniform 
input. It is shown that throughput time 
can be decreased. The decrease depends 
upon the values assigned to four "bound" 
weights in a decision function. It is 
possible to classify a weight vector for 
a decision function as superior or 
inferior, depending upon the effect it has 
on throughput time. These results 
demonstrate the soundness of the theory 
of Dynamic File Management. 
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