
A SIMULATION MODEL FOR DYNAMIC FILE MANAGE ME NT

L a w r e n c e L. Rose 1 M a l c o l m A. G o t t e r e r 2

and Jack C . H a y y a 3

1S ta te U n i v e r s i t y of New York a t Binghamton

2 F l o r i d a I n t e r n a t i o n a l U n i v e r s i t y

3The P e n n s y l v a n i a S ta te U n i v e r s i t y

ABSTRACT

This paper describes a FORTRAN sim-
ulation program written to carry out
Dynamic File Management (DFM) strategies.
The DFM model provides effective manage-
ment of secondary storage while enhancing
throughput time. The main problems we
address are: how data is moved from lev-
el to level; the determination of cri-
teria to justify file movement; and the
implications of implementing the DFM
techniques. It is demonstrated that DFM
strategies are feasible and provide the
manager with a viable mechanism with
which to govern auxiliary storage.

I. INTRODUCTION

Dynamic File Management (DFM) tech-
niques are memory management strategies
which move data in the secondary store in
response to user and system demands for
data. The objective of these strategies
of data movement is to optimize secondary
storage usage with respect to throughput
time.

A simulation model is constructed to
allow the comparison of various strat-
egies of Dynamic File Management. File
process time for any simulated input job
stream is obtained for the system, with
and without DFM management. The output
is statistically analyzed to determine
the potential for time savings under
Dynamic File Management.

II. MODEL BACKGROUND

A memory hierarchy is composed of
devices that have ascending "transport
speeds" dependent upon wait, access, and
transmission times. Memory hierarchies
consisting of a main level (usually high
speed core memory) and the auxiliary
store (drum, disc, tape, etc.) were
created because of the excessive cost of
internal fast core storage. The higher
a set of data (file) is in the auxiliary
store, the faster it can be transported

to or from the main store. However, the
more complex a memory hierarchy, the more
difficult it is to use efficiently.

The problem is one of dynamic
assignment, since the access demand is
stochastic; thus, assignments to hierar-
chial levels of storage should change to
meet new demands. This is our area of
research: it is the determination of
"optimal" file position in secondary
storage in response to changing demand.
Storage management techniques must be
developed for efficient use of configura-
tions such as hierarchical or multilevel
storage. The DFM strategies described
herein are designed to do that, the cri-
terion of efficiency being minimum
throughput time.

The value of a memory management
technique is its ability to improve per-
formance. Thus, we should examine current
techniques used to evaluate the perfor-
mance of computer systems. We are
searching, in particular, for a viable
method to measure the effectiveness of the
Dynamic File Management techniques. One
may consider six major evaluation tech-
niques: hardware monitors, software
monitors, benchmarks, synthetic programs,
analytic models, and simulation models.

It is not feasible (in a University
environment) to obtain a computer system
for experimenting with memory management
strategies. Because of this, DFM
techniques are not implemented in an
actual system. The only evaluation
techniques available are those using
analytic and simulation models.

An analytic model is a mathematical
representation, usually through queuing
theory, of a computer system. Normally,
the model does not evaluate an entire
system, rather portions of it, such as
channel interference and disk throughput.

It may appear that an analytic model
such as Shedler's [22] could be developed
to examine hierarchial storage, assuming
a probabilistic level changer. But one

W i n t e r S i m u l a t i o n C o n f e r e n c e 2 51

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800287.811186&domain=pdf&date_stamp=1974-01-01

DYNAMIC FILE MANAGEMENT ... Continued

goal of this research is to examine the
suitability of criteria for determining
Dynamic File Management strategies in
response to changes in demand. A proper
modeling of this would require dynamic
changes of the probabilities for file
movement. Another goal of our research
is to determine the reasons why files
should be moved; therefore, a level
changer governed only by probabilities
is not considered. It follows that an
analytic model is not the applicable
evaluation tool to use in this research.
Consequently, we use simulation.

III. SIMULATION

Simulation is acknowledged to be the
most powerful of all computer evaluation
techniques [2, 6, 14, 16, 19]. Input to
the model consists of data characterizing
the computer to be simulated and its
normal job stream. The computer system
is described by a set of parameters
dependent upon the simulation model.
Some models will have no system descrip-
tors because these are constant, while
other models may have a large requirement
for system descriptors.

The job stream can be described in
various ways [7, 14, 16]. Event-
oriented software traces can be made if
the projected job stream exists and is
expected to remain constant. This is
expensive; it contributes to the deg-
radation of the system; and it creates
voluminous output. More computation
would be required to reduce the software
traces to their minimal characterization.
Often, however, if a system undergoes
drastic change, the use of the system
will also change to take advantage of
the new features. Thus, extreme care
must be taken in projecting job stream
data. As an alternative, analytical data
can be derived to describe the attributes
of the job stream. One can produce
distributions such as the normal,
exponential, and Weibull, and test the
operation of the system under these
distributions.

Although many languages are used for
simulation, no single language is pre-
ferred [ii, 18]. A simulator written in
ASSEMBLER, FORTRAN, or MAD, for instance,
uses input parameters to describe the
system. Other languages such as
SIMSCRIPT, SOL, CSS, GPSS, SIMTRAN, and
MDL are programmed as subroutines to
describe the system, while a main program
controls the system events.

No matter what language is chosen
for writing the simulator, the main
problem is determining the level of

252 January 14-16, 1974

detail of the model. How close must it
resemble the actual machine? There is
much thought on this issue [3, 9, 12, 13,
14]; but it is generally agreed that the
finer the level of detail, the more costly
the simulation model. On the other hand,
if the level of detail is coarse, the
results may be misleading.

The output of a simulation model
describes the performance of the simulated
system. Criteria must be selected to
determine whether the simulated perfor-
mance is better or worse than that of the
actual system. MacDougall [15] uses
theoretical times to simulate secondary
storage accesses as we do. These are well
documented, acknowledged average device
access times [4]. Using these theoretical
times, one can compute the throughput time
for a collection of jobs, a measure used
by others [8, I0, 12].

The linear objective function which
we propose is similar to those used by
others [7, i0] to measure performance.
The advantage of such a measure is its
versatility: it can easily be changed to
reflect changes in endogenous or exogenous
policies. Kimbleton [13] agrees that
exogenous criteria such as user satis-
faction are pertinent criteria for per-
formance evaluation. He suggests the idea
of system tuning, jobset by jobset.

Also, effective simulation need not
imply a one-to-one correspondence between
the system actions and those of the model.
The goals of the model must be held in the
proper perspective. Kimbleton [13,p. 589]
sums it up best: "The goal of model
building is not to construct a faithful
reproduction of the system but to
determine potential causal relationships
between input and output."

We have said that proper criteria
are required so that systems can be
compared. There is no general agreement
in the profession upon one criterion.
There are, however, several criteria worth
consideration:

a. The number of data units pro-
cessed per unit time under a
program load [I].

b. An objective function repre-
senting read access time, read
resolution time, write time,
size, cost, and reliability [21].

c. A combination of throughput time,
turnaround time, and availability
of the computer [3].

d. A figure of merit based on
throughput time for the basic
system [6]. First one computes
the throughput time for the
basic system, TPT*. Then one
uses the following ratio as a
figure of merit for any other
model i:

TPT*/TPT (i). (1)

IV. THE DFM SIMULATOR

The theory of Dynamic File
Management is described in [20]. The
definition of throughput time (TPT) for
the theoretical model demonstrates the
essentials of Dynamic File Management:

TPT(E,M,k+i) = TPT(E,M,k) + Z(k)

+ U(C'k,Ck+ I)

+ N(Ck+l,Wk+l). (2)

Equation (2) states that the
throughput time required to process the
first k+l Worksets is equal to:

a. TPT(E,M,k): the time to process
k Worksets; plus

b. Z(k): the time to decide if any
files should change levels in
the hierarchy; plus

c. U(C'k,Ck+l): the time to move

from the present file config-
uration set C' k to ~ new file

configuration Ck+l; plus

d. N(Ck+i,Wk+i): the process time

for Worksets Wk+ 1 under the new

file configuration set Ck+ I.

If Z and U in (2) are zero, then (2)
reflects the "natural" throughput time
for a system (characterized by auxiliary
storage M) required to process the set of
jobs E. The functions Z (decision) and
U (move) reflect the overhead of an
auxiliary memory manager. To ensure
generality of the model, the only re-
striction on job processing is that there
exists one CPU. The concept of a Workset
(Wk) is a renaming of the job portions of

set E processed during the k-th period.

THE DECISION FUNCTION

Input to the decision function Z
consists of current and past data. The
output of this function is a list of file
moves. The more information a decision
function takes into consideration, the
better the decision; however, the more
complex the function, the more overhead.

The input data for the decision
function are classified into three cate-
gories: file priority, F(n); job priority,
J(n); and system priority, S(n). Each of
these measures has a final value ranging
from 0 to i. Adding adjustable weights
of ~, ~, and y to F, J~ and S, respect-
ively, we can define the decision function
as:

Z(n) = eF(n) + 8J(n) + yS(n). (3)

The weights e, 8, and ¥ are user-
defined exogenous variables. This enables
the manager to utilize the DFM to achieve
the goals of his installation more
efficiently. These exogenous variables
separate the DFM model from other memory
management strategies. Given the def-
inition for Z(n), the measur~F, J, and S
must be better defined so they can be
implemented into the DFM model. The DFM
builds a history of file activities in
increments, as each Workset is processed.
Most of the measures relate only to the
files referenced during the most recent
Worksets. The DFM has no need to evaluate
those files that have been inactive over
a long period. This reduces the number of
files needing evaluation; it is
justifiable since only those files
referenced by the processed Worksets have
been active in the system.

File priority consists of three
parameters: the time since the last
activity of the file, the duration of the
last file activity, and the average
activity of the file in question. Job
priority consists of the run priority of
each job, the time allocation for a job,
and the user file priorities of the job's
file reference set. Finally, we have the
system priority which considers three
parameters: the response priority for
each Workset, the splitability of the
files referenced by each Workset, and the
size of those files.

The DFM is invoked after each Workset
is processed, as defined in (2). Since a
Workset comprises a collection of many
user and system jobs, the invocation is
dynamic as opposed to real-time; hence,
the name Dynamic File Management. DFM
monitoring, nonetheless, is performed in
real-time; it is the background portion
of the DFM.

Given an auxiliary store under DFM
control, the level of DFM timeliness must
be examined. Let "gap" represent the
number of Worksets processed between each
DFM invocation. The smaller the value of
"gap", the more overhead the DFM must make
up since it is more active. Also, the
smaller "gap" is, the more timely the DFM
can be in response to changes in the job
environment. The more often the DFM is
invoked, the less new information it has;
thus, the likelihood for performing proper

W i n t e r S i m u l a t i o n C o n f e r e n c e 253

D Y N A M I C FILE M A N A G E M E N T . . . C o n t i n u e d

file movement diminishes. But, the
larger the value of "gap", the lesser the
DFM response. This problem is solved by
creating two separate levels of timeliness
for the DFM: the temporary "gap" (tgap)
and the permanent "gap" (pgap). These
two manager-defined variables enable the
DFM to have short range (tgap) and long
range (pgap) response capabilities.
File moves are made often (each tgap) to
respond temporarily to recent changes in
the workload; other file moves are made
less often (each pgap) to respond more
firmly to long range trends.

THE MOVE FUNCTIONS

Given two levels of timeliness, one
can examine the DFM capabilities to move
data in the auxiliary store. When the
DFM is invoked after tgap Worksets, it
responds with data movement designed to
enhance throughput in the short run.
This is accomplished by making a ser£es .
of Temporary moves (T-moves). DFM data
movement after pgap Worksets focuses upon
long range trends and is accomplished by
Permanent moves (P-moves) of data in the
store. These two DFM move capabilities
constitute the primitives necessary for
data movement in secondary storage.

A "permanent" (P-move) change is the
movement of a file from a spot B to spot
D, with B now available for use by other
files. If a file occupies location D
prior to the P-move, it is moved to an
open spot in the storage hierarchy before
the file from location B is moved to its
destined location D. Illustration 1
shows the action of a typical P-move.

i

J

k

ILLUSTRATION 1

P-move: X~ ÷ X i

I." I ~ T--'h}
• 1 x i

~" • • ~J//~ I

Before

Ix~'"11 J I" • ~////////A I

k'''l, I 1

where: i, j ,k denote levels
and k > i

After

Consider a "temporary" change (T-move)
to be the replacement of location D with
file X from spot B. File X now occupies
both spots D and B. In addition, if
there exists another copy of file X at
some location lower than B, it is deleted
from location B. If spot D was previously
occupied by some file Y, that copy of Y is
lost at D. However, another copy of file
Y still exists, else Y would have been an
illegal destination for the T-move.
Illustration 2 shows the action of a
typical T-move.

ILLUSTRATION 2

T-move: Xj ÷ X i

. . . .

Jl ix. ~.. I
k I..R Y r ix I..I

Before

....... 11

where: i < j < k denote levels;
* denotes up-to-date copy

These move functions produce at most
two file copies: the Home copy, which is
the initial copy, and the Away copy, the
result of a T-move. By definition, an
Away copy is always at a higher level in
the storage hierarchy than is the Home
copy. Any updating is done only to the
Away copy if one exists. If the Away copy
is ever overlaid, the file's Home copy is
first updated.

These DFM move functions offer some
distinct advantages. The first advantage
of the two move functions is that there
are at most two copies of any file in the
auxiliary store. Normal use of a hier-
archical store of N levels allows as many
as N copies of any file to exist in the
store. For large files, the immediate
implication is that storage savings become
large. The second advantage is that the
two file copy types reflect the two levels
of timeliness for the DFM. T-moves are
quick and timely; P-moves are less timely,
but more justified.

254 January 14-16, 1974

The following strategy is employed
using these two move capabilities. On
slight justification, perform T-moves to
create other file copies higher in the
multilevel store. If this is a poor
decision, little time is lost. Less
often do P-moves (followed by device
compaction of Home file copies only) to
increase long-run system throughput.
This allows the DFM to be dynamic; yet,
it minimizes overhead.

A file is accessed at its highest
position in the store. Changes are made
only to the highest file copy which is
the most accessible and up-to-date.
Updates to the extra file copies are done
only when the upper file is to be deleted.
This method preserves information and
minimizes update time with only a slight
addition in bookkeeping overhead.

V. DFM EXPERIMENTS

The objective of the DFM model is
auxiliary memory efficiency. The figure
of merit for the DFM simulation model is
throughput time. The reasons for choos-
ing throughput time are that it is a
valid measure of system efficiency
[8, i0, 12, 15] and that it is defined by
the function TPT, equation (2).

Testing of the DFM model under all
possible input streams would be a costly
task. Instead, tests are performed
using a uniformly distributed input
stream.

THE SIMULATOR EXPERIMENT

The input to the DFM simulator
describes the computer system auxiliary
store to be simulated. The other
necessary input is a definition of the
weights in the DFM decision function Z
for both Temporary and Permanent moves.
These weights are described by the vector
V:

V = (UT, BT, 7T, Up, Bp, Yp). (4)

Changes in weights result in a new DFM
strategy. These changes do not alter the
manner of file movement; rather, they
alter the reasons for it.

The output of the DFM model is file
throughput time (FTT): auxiliary storage
cumulative time spent during the
processing of the input stream accesses.
When we add the CPU time to these times,
we have throughput time (TPT).

The DFM model is simulated 82 times
under uniform input accesses to storage,
varying randomly the six major parameters
(4). One run is executed without DFM
intervention to provide the base file

throughput time, FTT0, for the work periods
1,2,...,48. File throughput time after
k work periods for DFM model i is denoted
FTTi(k). This represents the total
auxlliary storage time spent during the
processing of k Worksets. From file
throughput time, we can derive throughput
time for these simulation runs.

ILLUSTRATION 3

DF~ Output Times

' L /~Group 0

80 : 18%

70

60

50

o

m

40

30

20

i0

roup 1
10%
rouD 2

0 l0 20 30 40 50

Work Period

Illustration 3 represents three FTT
curves: Groups 0, l, and 2. The Group 0
curve represents FTT file throughput time
for the system with no intervention under
uniform random input. This curve
represents the upper bound for DFM output.

The curve labeled Group i,
Illustration 3, constitutes the mean of
the high DFM output for 48 Worksets. The
Group 2 curve represents the mean of the
low DFM output. Forty-six of the eighty-
one DFM output curves are classified in
either Group 1 or Group 2.

Illustration 3 shows that, for certa~
DFM strategies (defined by the V vector
for each run), time savings from 18% - 28%
can be made under random selection from a
uniform distribution. Expansion from FTT
to TPT reveals a 13% - 23% increase in
throughput.

File throughput data represents the
necessary output from the DFM simulator.
Each of the 82 DFM data sets is

Winter Simulation Conference 255

D Y N A M I C FILE M A N A G E M E N T . . . C o n t i n u e d

associated with a vector of weights.
These data sets are then fitted to poly-
nomials [5]. In all cases, the linear
coefficient was statistically
significant at a = 0.01.

STATISTICAL ANALYSIS

Inspection of the eighty-two poly-
nomials indicates three groups. The
grouping yields significant differences
in time savings for Group 2 (low times)
over the scale from work period t=0 and
t=k. This is verified by a multivariate
test of equality for means of the re-
gression coefficients of Group 2 and
Group 0 [17, p. 117-120].

That is, we test the hypothesis,

H0:~2 = ~0' where ~0 represents

the Group 0 mean,

versus

Hl: P2 ~ P0' where ~0 represents

the Group 2 mean.

The above test involves the use of
the covariance matrix [23, p. 418] of the
Group 2 vectors. This matrix is found to
be near singular. Singularity of the
covariance matrix implies that the
vectors are very nearly linearly dependent
or approximately the same, eliminating
the need for further computation. Resul~
derived from polynomial slope comparison
indicate that the Group 2 vector
statistically dominates the base vector.
This implies that for arbitrary work
period k and vector t of Group 2:
TPT0>TPT t •

Another test of hypothesis is made
using the data of Group 1 and that of
Group 2. To wit,

H0: ~2 = ~2' where ~l = mean

Group l,

versus

Hl: ~l z P2' where ~2 = mean

Group 2.

The same results are obtained as before.
The mean Group 2 vector dominates the
mean Group vector statistically.

We have shown that the DFM decision
function enhances throughput. We next
show that statistically significant
differences between groups can be

256 lanuary 14-16, 1974

attributed to the weights in (4). We also
determine which of these weights contribu~
to the efficiency of the DFM model.

DECISION FUNCTION WEIGHTS

The six weights in the decision
function are exogenous variables which the
manager defines. They are in the decision
functions so that the manager can define
the priorities for file movement during
run-time. Now benefits, such as job
priority, may be more important to the
manager than globally minimizing throughput
time. Hence, our purpose is not to find
the "optimal" set of weights for the
decision function, but to determine the
bounds within which the manager can easily
work without adversely affecting
throughput time.

Stepwise discriminant analysis
[23, p. 413] is applied to partition the
associated decision weight vectors into
inferior and superior groups by time
saving differentials of the polynomial
regressions of time on the weight vectors.
The objective of discriminant analysis in
this test is to identify these significant
differences in throughput time with the
input decision function weights, and
subsequently, to see if some restrictions
might be removed from those weights not
contributing to savings.

The stepwise discriminant analysis
yields the function

U = 19.87093 + 1.33809a T -2.626768 T

+ 2.228270ap + 4.38766yp (5)

significant at the 0.01 level. The
resulting classification table shows that
the classification procedure was adequate.

The stepwise discriminant analysis
indicates that the superior weight
vectors can be identified easily. This
means that there exists a procedure where-
by the vector (4) can be classified as
superior or inferior.

The stepwise procedure also indicates
that variables a T and 8p can be eliminated
as they do not contribute significantly to
the classification power. It is then
concluded that system priority for T-moves
(short run) and job priority for P-moves
(long run) will have little effect upon
the resulting throughput time of the model.

SUMMARY AND CONCLUSIONS

In this paper we demonstrate that
simulation is a viable and effective
technique for dealing with the analysis
of complex computer systems. The DFM
simulator is tested with random uniform
input. It is shown that throughput time
can be decreased. The decrease depends
upon the values assigned to four "bound"
weights in a decision function. It is
possible to classify a weight vector for
a decision function as superior or
inferior, depending upon the effect it has
on throughput time. These results
demonstrate the soundness of the theory
of Dynamic File Management.

BIBLIOGRAPHY

1. Anacker, William and Wang, Chu Ping.
Evaluation of Computing Systems
with Memory Hierarchies." IEEE
Transactions on Electronic
Computers, Vol. EC-16, No. 6
(December, 1967), 670-679.

2. Calingaert, Peter. "System Per-
formance and Evaluation: Survey
and Appraisal." CACM, Vol. i0,
No. 1 (January, 196~, 12-18.

3. Campbell, D. J., and Heffner, W. J.
"Measurement and Analysis of
Large Operating Systems during
System Development." Proceedings
AFIPS, 1968, FJCC, Vol. 33,
Pt. I, 903-914.

4. Denning, P. J. "Virtual Memory,"
ACM Computing Surve[s, Vol. 2,
No. 3 (September, 1970), 153-189.

5. Dixon, W. J., ed. BMD Biomedical
Computer Pro@rams. Berkely:
University of California Press,
1968.

6. Drummond, M. E. "A Perspective on
System Performance Evaluation."
IBM S[stems Journal, Vol. 8,
No. 4 (1969), 252-263.

7. Gascei, J; Slutz, D. R.; and Traiger,
I.L. "Evaluation Techniques
for Storage Hierarchies." IBM
S[stems Journal, Vol. 9, No. 2
(1970), 78-117.

8. Herman, Donald J. "SCERT: A
Computer Evaluation Tool."
Datamation, Vol. 13, No. 2
(February, 1967), 26-28.

9. Huesmann, Lowell R., and Goldberg,
Robert P. "Evaluating Computer
Systems Through Simulation."
Computer Journal, Vol. 10
(August, 1967), 150-156.

10. Hutchinson, George K. "A Computer
Center Simulation Project."
CACM, Vol. 8, No. 9 (September,
1965), 559-568.

ii. , and Maguire, John Morris.
"Computer Systems Design and
Analysis Through Simulation."
AFIPS Conference Proceedin@s
1965, FJCC, Vol. 27, Pt. i.

12. Katz, Jesse H. "Simulation of a
Multiprocessor Computer System."
AFIPS Conference Proceedin@s
1966, SJCC, Vol. 28, 127-139.

13. Kimbleton, Stephen R. "The Role of
Computer System Models in
Performance Evaluation." CACM,
Vol. 15, No. 7 (July, 1972),
586-590.

14. Lucas, Henry C., Jr. "Performance
Evaluation and Monitoring."
ACM Computing Surveys, Vol. 3,
No. 3 (September, 1971), 79-92.

15. MacDougall, M. H. "Computer System
Simulation: An Introduction."
ACM Computing Survevs, Vol. 2,
No. 3 (September, 1970), 191-209.

16. Merikallis, Reino A., and Holland, F.
C. "Simulation Design of a
Multiprocessing System." AFIPS
Conference Proceedin@s 196~,
FJCC, Vol. 33, Pt. 2, 1399-1410.

17.. Morrison, Donald F. Multivariate
Statistical Methods. New York:
McGraw-Hill, 1967.

18. Parupudi, Murty, and Winograd,
Joseph. "Interactive Task
Behavior in a Time-Sharing
Environment." Proceedin@s of the
ACM, August 1972, 680-692.

19. Peters, Alan. "LCS at United
Airlines." Modern Data, Vol. 5,
No. 2 (February, 1972), 34-36.

20. Rose, Lawrence, and Gotterer, Malcolm.
"A Theory of Dynamic File
Management." International
Journal of Computer and Infor-
mation Sciences, scheduled for
publication in December, 1973.

21. Scarrott, C. G. "The Efficient Use
of Multilevel Storage."
Proceedin@s of the IFIP Con@ress,
1965, Vol. I, 137-141.

22. Shedler, G. S. "A Queueing Model of
a Multiprogrammed Computer with
a Two-Level Storage System."
CACM, Vol. 16, No. 2 (January,
i~), 3-i0.

23. Snedecor, George W., and Cochran,
William G. Statistical
Methods. Ames, Iowa: Iowa
State University Press, 1967.

Winter Simulation Conference 257

LAWRENCE L. ROSE is an Assistant Professor
at the State University of New York at
Binghamton in the School of Advanced
Technology. His teaching and research
interests include Information Retrieval,
Simulation, and Automata Theory.

MALCOLM A. GOTTERER is a Professor at the
Florida International University. He was
formerly at The Pennsylvania State
University and has long been active in the
areas of Information Retrieval and Business
Data Processing.

JACK C. HAYYA is a Professor at The
Pennsylvania State University in the
College of Business Administration. His
teaching and research interests include
Business Statistics and Quantitative
Analysis.

250 January 14-16, 1974

